1
|
Lei S, Sun J, Xie Y, Xiao X, He X, Lin S, Zhang H, Huang Z, Wang H, Wu X, Peng H, Liu J. Diverse functions of Tribbles homolog 3 in cancers and its potential as a therapeutic target. Carcinogenesis 2024; 45:527-542. [PMID: 38902892 DOI: 10.1093/carcin/bgae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Currently, cancer is the second leading cause of death worldwide, and potential targeted drugs and molecular pathways for cancer development and progression have been a hot research topic worldwide. In recent years, the importance of the kinase superfamily in diseases has been well demonstrated by studies on various molecular mechanisms of kinases and the successful application of their inhibitors in diseases. Pseudokinases are members of the kinase superfamily, which have been increasingly documented to play a crucial role in cancers year after year. As a member of pseudokinases, tribbles homolog 3 (TRIB3) also exerts diverse functions in different cancers through different interacting proteins and molecular pathways, especially in tumor immunity, stemness, drug resistance, metabolism, and autophagy. In addition, peptide drugs targeting TRIB3 have high specificity in preclinical studies, which shows great promise for TRIB3 application in diseases including cancers. In this review, we dissect diverse functions played by TRIB3 in different cancers, describing the underlying mechanisms in detail. Notably, inhibitors and agonists currently available for TRIB3 are discussed, indicating the potential for TRIB3 as a therapeutic target.
Collapse
Affiliation(s)
- Shiying Lei
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajun Sun
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yifang Xie
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaofeng He
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Huifang Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zineng Huang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haiqin Wang
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| |
Collapse
|
2
|
Li J, Zhang Q, Guan Y, Liao D, Chen H, Xiong H, Sheng Y, Chen X, Pang J. TRIB3 promotes the progression of renal cell carcinoma by upregulating the lipid droplet-associated protein PLIN2. Cell Death Dis 2024; 15:240. [PMID: 38561354 PMCID: PMC10985002 DOI: 10.1038/s41419-024-06627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Abnormal lipid metabolism and lipid accumulation are characteristic hallmarks of renal cell carcinoma (RCC). While there is prior evidence closely linking such lipid accumulation within RCC cells and consequent tumorigenesis, the mechanisms underlying this process remain incompletely understood. In this study, a series of bioinformatics analyses were initially performed by screening RCC databases and gene sets, ultimately leading to the identification of TRIB3 as an oncogene that functions as a central regulator of lipid metabolism. TRIB3 overexpression was observed in both RCC patient tumor tissues and cell lines, and this upregulation was correlated with a worse RCC patient prognosis. When TRIB3 was knocked down, this resulted in a reduction in lipid accumulation and the consequent induction of endoplasmic reticulum (ER) stress-related apoptotic cell death. At the molecular level, interactions between TRIB3 and PLIN2 were found to abrogate TEB4-mediated PLIN2 ubiquitination and consequent degradation, thus maintaining higher PLIN2 expression levels. This simultaneously helps facilitate the accumulation of lipids while preserving ER homeostasis, thus driving accelerated RCC tumor progression. This TRIB3-PLIN2 axis thus represents a promising new target for efforts to treat RCC.
Collapse
Affiliation(s)
- Jun Li
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Qian Zhang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yupeng Guan
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dingzhun Liao
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Huikun Chen
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Haiyun Xiong
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yiyu Sheng
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xianju Chen
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Cai H, Ke ZB, Chen JY, Li XD, Zhu JM, Xue YT, Ruan ZT, Wang Z, Lin F, Zheng QS, Wei Y, Xue XY, Xu N. Ubiquitin-specific protease 5 promotes bladder cancer progression through stabilizing Twist1. Oncogene 2024; 43:703-713. [PMID: 38218898 DOI: 10.1038/s41388-023-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
Aberrant activation of the epithelial-mesenchymal transition (EMT) pathway drives the development of solid tumors, which is precisely regulated by core EMT-related transcription factors, including Twist1. However, the expression pattern and regulatory mechanism of Twist1 in the progression of bladder cancer is still unclear. In this study, we explore the role of Twist1 in the progression of bladder cancer. We discovered that the EMT regulon Twist1 protein, but not Twist1 mRNA, is overexpressed in bladder cancer samples using RT-qPCR, western blot and immunohistochemistry (IHC). Mechanistically, co-immunoprecipitation (Co-IP) coupled with liquid chromatography and tandem mass spectrometry identified USP5 as a binding partner of Twist1, and the binding of Twist1 to ubiquitin-specific protease 5 (USP5) stabilizes Twist through its deubiquitinase activity to activate the EMT. Further studies found that USP5 depletion reduces cell proliferation, invasion and the EMT in bladder cancer cells, and ectopic expression of Twist1 rescues the adverse effects of USP5 loss on cell invasion and the EMT. A xenograft tumor model was used to reconfirmed the inhibitor effect of silencing USP5 expression on tumorigenesis in vivo. In addition, USP5 protein levels are significantly elevated and positively associated with Twist1 levels in clinical bladder cancer samples. Collectively, our study revealed that USP5-Twist1 axis is a novel regulatory mechanism driving bladder cancer progression and that approaches targeting USP5 may become a promising cancer treatment strategy.
Collapse
Affiliation(s)
- Hai Cai
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiao-Dong Li
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yu-Ting Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zhong-Tian Ruan
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zhen Wang
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Urology, National Region Medical center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
4
|
Jin W, Dai Y, Chen L, Zhu H, Dong F, Zhu H, Meng G, Li J, Chen S, Chen Z, Fang H, Wang K. Cellular hierarchy insights reveal leukemic stem-like cells and early death risk in acute promyelocytic leukemia. Nat Commun 2024; 15:1423. [PMID: 38365836 PMCID: PMC10873341 DOI: 10.1038/s41467-024-45737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Acute promyelocytic leukemia (APL) represents a paradigm for targeted differentiation therapy, with a minority of patients experiencing treatment failure and even early death. We here report a comprehensive single-cell analysis of 16 APL patients, uncovering cellular compositions and their impact on all-trans retinoic acid (ATRA) response in vivo and early death. We unveil a cellular differentiation hierarchy within APL blasts, rooted in leukemic stem-like cells. The oncogenic PML/RARα fusion protein exerts branch-specific regulation in the APL trajectory, including stem-like cells. APL cohort analysis establishes an association of leukemic stemness with elevated white blood cell counts and FLT3-ITD mutations. Furthermore, we construct an APL-specific stemness score, which proves effective in assessing early death risk. Finally, we show that ATRA induces differentiation of primitive blasts and patients with early death exhibit distinct stemness-associated transcriptional programs. Our work provides a thorough survey of APL cellular hierarchies, offering insights into cellular dynamics during targeted therapy.
Collapse
Affiliation(s)
- Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Honghu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Fangyi Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
6
|
Tagami M, Kasashima H, Kakehashi A, Yoshikawa A, Nishio M, Misawa N, Sakai A, Wanibuchi H, Yashiro M, Azumi A, Honda S. Stromal area differences with epithelial-mesenchymal transition gene changes in conjunctival and orbital mucosa-associated lymphoid tissue lymphoma. Front Oncol 2024; 14:1277749. [PMID: 38322414 PMCID: PMC10845137 DOI: 10.3389/fonc.2024.1277749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Purpose To examine the molecular biological differences between conjunctival mucosa-associated lymphoid tissue (MALT) lymphoma and orbital MALT lymphoma in ocular adnexa lymphoma. Methods Observational case series. A total of 129 consecutive, randomized cases of ocular adnexa MALT lymphoma diagnosed histopathologically between 2008 and 2020.Total RNA was extracted from formalin-fixed paraffin-embedded tissue from ocular adnexa MALT lymphoma, and RNA-sequencing was performed. Orbital MALT lymphoma gene expression was compared with that of conjunctival MALT lymphoma. Gene set (GS) analysis detecting for gene set cluster was performed in RNA-sequence. Related proteins were further examined by immunohistochemical staining. In addition, artificial segmentation image used to count stromal area in HE images. Results GS analysis showed differences in expression in 29 GS types in primary orbital MALT lymphoma (N=5,5, FDR q-value <0.25). The GS with the greatest difference in expression was the GS of epithelial-mesenchymal transition (EMT). Based on this GS change, immunohistochemical staining was added using E-cadherin as an epithelial marker and vimentin as a mesenchymal marker for EMT. There was significant staining of vimentin in orbital lymphoma (P<0.01, N=129) and of E-cadherin in conjunctival lesions (P=0.023, N=129). Vimentin staining correlated with Ann Arbor staging (1 versus >1) independent of age and sex on multivariate analysis (P=0.004). Stroma area in tumor were significant difference(P<0.01). Conclusion GS changes including EMT and stromal area in tumor were used to demonstrate the molecular biological differences between conjunctival MALT lymphoma and orbital MALT lymphoma in ocular adnexa lymphomas.
Collapse
Affiliation(s)
- Mizuki Tagami
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Ophthalmology Department and Eye Center, Kobe Kaisei Hospital, Kobe, Japan
| | - Hiroaki Kasashima
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsuko Yoshikawa
- Ophthalmology Department and Eye Center, Kobe Kaisei Hospital, Kobe, Japan
| | - Mizuho Nishio
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norihiko Misawa
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsushi Sakai
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Azumi
- Ophthalmology Department and Eye Center, Kobe Kaisei Hospital, Kobe, Japan
| | - Shigeru Honda
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
7
|
Zhang C, Wen R, Wu G, Li G, Wu X, Guo Y, Yang Z. Identification and validation of a prognostic risk-scoring model for AML based on m 7G-associated gene clustering. Front Oncol 2024; 13:1301236. [PMID: 38273850 PMCID: PMC10808397 DOI: 10.3389/fonc.2023.1301236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Background Acute myeloid leukemia (AML) patients still suffer from poor 5-year survival and relapse after remission. A better prognostic assessment tool is urgently needed. New evidence demonstrates that 7-methylguanosine (m7G) methylation modifications play an important role in AML, however, the exact role of m7G-related genes in the prognosis of AML remains unclear. Methods The study obtained AML expression profiles and clinical information from TCGA, GEO, and TARGET databases. Using the patient data from the TCGA cohort as the training set. Consensus clustering was performed based on 29 m7G-related genes. Survival analysis was performed by KM curves. The subgroup characteristic gene sets were screened using WGCNA. And tumor immune infiltration correlation analysis was performed by ssGSEA. Results The patients were classified into 3 groups based on m7G-related genebased cluster analysis, and the differential genes were screened by differential analysis and WGCNA. After LASSO regression analysis, 6 characteristic genes (including CBR1, CCDC102A, LGALS1, RD3L, SLC29A2, and TWIST1) were screened, and a prognostic risk-score model was constructed. The survival rate of low-risk patients was significantly higher than that of high-risk patients (p < 0.0001). The area under the curve values at 1, 3, and 5 years in the training set were 0.871, 0.874, and 0.951, respectively, indicating that this predictive model has an excellent predictive effect. In addition, after univariate and multivariate Cox regression screening, histograms were constructed with clinical characteristics and prognostic risk score models to better predict individual survival. Further analysis showed that the prognostic risk score model was associated with immune cell infiltration. Conclusion These findings suggest that the scoring model and essential risk genes could provide potential prognostic biomarkers for patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Chiyi Zhang
- Department of Hematology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Ruiting Wen
- Department of Hematology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Guocai Wu
- Department of Hematology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Guangru Li
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Xiaoqing Wu
- Department of Hematology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Yunmiao Guo
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Zhigang Yang
- Department of Hematology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
8
|
Wu H, Fu Z, Li H, Fang F, He B, Ye Y, Wu H, Xu D, Zheng H, Zhang Q. TRIB3, as a robust prognostic biomarker for HNSC, is associated with poor immune infiltration and cancer cell immune evasion. Front Immunol 2024; 14:1290839. [PMID: 38235126 PMCID: PMC10791810 DOI: 10.3389/fimmu.2023.1290839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Objective As a pseudokinase, Tribbles Pseudokinase 3 (TRIB3) is implicated in a wide array of biological processes, including cell signal transduction, metabolic regulation, stress responses, and immune regulation. While its significant role in the immune regulation of certain cancers is well-established, the specific functions and impact of TRIB3 in head and neck squamous cell carcinoma (HNSC) remain unclear. Methods The data of RNA-sequence was acquired from the TCGA database to analyze the expression patterns of TRIB3 and elucidate its prognostic value in HNSC patients. Furthermore, the correlation between TRIB3 and tumor mutation burden, clinical data, immune checkpoint genes, and immune cell infiltration was explored. Moreover, the TRIB3 location in tumor tissues and subcellular structures was identified via Tisch in the HPA database, and the potential protein interaction molecules for TRIB3 were elucidated in the STRING database. The potential TRIB3 gene function was assessed using gene set enrichment analysis (GSEA), whereas the TRIB3 expression levels in clinical HNSC samples were verified by RT-qPCR and immunohistochemistry. the role of TRIB3 in enhancing the malignant behavior of HNSC cells was validated in vitro through a series of methods including RT-qPCR, CCK8 assay, wound healing assay, and transwell assay. Results It was revealed that TRIB3 was significantly overexpressed in the nucleus and cytoplasm of HNSC. Furthermore, this overexpression markedly enhanced the migration ability of tumor cells. As an independent prognostic factor, TRIB3 was associated with advanced tumor T stage and was significantly involved with tumor mutation burden and immune cell infiltration in HNSC. Moreover, it was observed that TRIB3 was not a predicted factor for PD1/PDL1 and ATL4 inhibitor treatment; however, it was substantially correlated with various immune evasion-related genes in HNSC. Conclusion TRIB3 could serve as a potential prognostic marker for HNSC and might be a key gene mediating HNSC immune evasion.
Collapse
Affiliation(s)
- Huadong Wu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi, China
- Department of Otolaryngology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhen Fu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi, China
| | - Hong Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi, China
| | - Feifei Fang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi, China
| | - Bin He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi, China
| | - Yujie Ye
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi, China
| | - Heyong Wu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi, China
| | - Dong Xu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi, China
| | - Haoran Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Jiangxi Medical college, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Li H, Wang Y, Feng S, Chang K, Yu X, Yang F, Huang H, Wang Y, Li X, Guan F. Reciprocal regulation of TWIST1 and OGT determines the decitabine efficacy in MDS/AML. Cell Commun Signal 2023; 21:255. [PMID: 37736724 PMCID: PMC10514931 DOI: 10.1186/s12964-023-01278-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
Chemoresistance poses a significant impediment to effective treatment strategies for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Our previous study unveiled that oncogene TWIST1 interacted with DNA methyltransferase 3a (DNMT3a) to regulate the decitabine (DAC) resistance in MDS/AML. However, the underlying mechanism of TWIST1 dysregulation in DAC resistance remained enigmatic. Here, we found that O-GlcNAc modification was upregulated in CD34+ cells from MDS/AML patients who do not respond to DAC treatment. Functional study revealed that O-GlcNAcylation could stabilize TWIST1 by impeding its interaction with ubiquitin E3 ligase CBLC. In addition, as one typical transcription factor, TWIST1 could bind to the promoter of O-GlcNAc transferase (OGT) gene and activate its transcription. Collectively, we highlighted the crucial role of the O-GlcNAcylated TWIST1 in the chemoresistance capacity of MDS/AML clonal cells, which may pave the way for the development of a new therapeutic strategy targeting O-GlcNAcylated proteins and reducing the ratio of MDS/AML relapse. Video Abstract.
Collapse
Affiliation(s)
- Hongjiao Li
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, 710068, China
| | - Shuang Feng
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kaijing Chang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinwen Yu
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Fenfang Yang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Haozhe Huang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yuanbo Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, 710069, China.
- College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China.
- College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
10
|
Zhang C, Lin Q, Li C, Chen Z, Deng M, Weng H, Zhu X. Analysis of endoplasmic reticulum stress-related gene signature for the prognosis and pattern in diffuse large B cell lymphoma. Sci Rep 2023; 13:13894. [PMID: 37626099 PMCID: PMC10457392 DOI: 10.1038/s41598-023-38568-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. This study aimed to determine the prognostic significance of endoplasmic reticulum (ER) stress-related genes in DLBCL. ER stress-related genes were obtained from the molecular signatures database. Gene expression data and clinical outcomes from the gene expression omnibus and TCGA datasets were collected, and differentially expressed genes (DEGs) were screened out. Gene ontology enrichment analysis, the kyoto encyclopaedia of genes and genomes pathway analysis, and geneset enrichment analysis were used to analyse the possible biological function of ER stress-related DEGs in DLBCL. Protein-protein interaction network construction using the STRING online and hub genes were identified by cytoHubba on Cytoscape software. The significant prognosis-related genes were screened, and the differential expression was validated. The immune microenvironment assessment of significant genes were evaluated. Next, the nomogram was built using univariate and multivariate Cox regression analysis. 26 ER stress-related DEGs were screened. Functional enrichment analysis showed them to be involved in the regulation of the endoplasmic reticulum mainly. NUPR1 and TRIB3 were identified as the most significant prognostic-related genes by comparison with the GSE10846, GSE11318, and TCGA datasets. NUPR1 was correlated with a good prognosis and immune infiltration in DLBCL; on the other hand, high expression of TRIB3 significantly correlated with a poor prognosis, which was an independent prognostic factor for DLBCL. In summary, we identified NUPR1 and TRIB3 as critical ER stress-related genes in DLBCL. NUPR1 might be involved in immune infiltration in DLBCL, and TRIB3 might serve as a potential therapeutic target and prognostic factor in DLBCL.
Collapse
Affiliation(s)
- Chaofeng Zhang
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Chaoqi Li
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Mengmeng Deng
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Huixin Weng
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Xiongpeng Zhu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China.
- Department of Haematology, Quanzhou First Hospital of Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
11
|
Radhakrishnan K, Truong L, Carmichael CL. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Front Immunol 2023; 14:1207360. [PMID: 37600794 PMCID: PMC10435889 DOI: 10.3389/fimmu.2023.1207360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, VIC, Australia
| |
Collapse
|
12
|
Li L, Zhu R, Zhou H, Cui C, Yu X, Liu Y, Yin Y, Li Y, Feng R, Katz JP, Zhao Y, Zhang Y, Zhang L, Liu Z. All-Trans Retinoic Acid Promotes a Tumor Suppressive OTUD6B-β-TrCP-SNAIL Axis in Esophageal Squamous Cell Carcinoma and Enhances Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207458. [PMID: 37038094 PMCID: PMC10238178 DOI: 10.1002/advs.202207458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/02/2023] [Indexed: 06/04/2023]
Abstract
β-TrCP is an E3 ubiquitin ligase that plays important roles in multiple human cancers including esophageal squamous cell carcinoma (ESCC). Analysis of ESCC patient samples reveal that only protein level but not transcript level of β-TrCP associated with patient prognosis, suggesting regulators of β-TrCP protein stability play an essential role in ESCC progression and may be novel targets to develop ESCC therapies. Although β-TrCP stability is known to be mediated by the ubiquitin-proteasome system, it is unclear which enzymes play a major role to determine β-TrCP stability in the context of ESCC. In this study, OTUD6B is identified as a potent deubiquitinase of β-TrCP that suppress ESCC progression through the OTUD6B-β-TrCP-SNAIL axis. Low OTUD6B expression is associated with a poor prognosis of ESCC patients. Importantly, all-trans retinoic acid (ATRA) is found to promote OTUD6B translation and thus suppress ESCC tumor growth and enhance the response of ESCC tumors to anti-PD-1 immunotherapies. These findings demonstrate that OTUD6B is a crucial deubiquitinase of β-TrCP in ESCC and suggest combination of ATRA and anti-PD-1 immune checkpoint inhibitor may benefit a cohort of ESCC patients.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116P. R. China
| | - Rui Zhu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Honghong Zhou
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Chun‐Ping Cui
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850P. R. China
| | - Xiao Yu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Yuhao Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116P. R. China
| | - Yin Yin
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Yang Li
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Riyue Feng
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Jonathan P. Katz
- Gastroenterology DivisionDepartment of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yahui Zhao
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Yun Zhang
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Lingqiang Zhang
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing100850P. R. China
| | - Zhihua Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| |
Collapse
|
13
|
The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol 2023; 114:109581. [PMID: 36527874 DOI: 10.1016/j.intimp.2022.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.
Collapse
|
14
|
Wong JJW, Lorenz S, Selbo PK. All-trans retinoic acid enhances the anti-tumour effects of fimaporfin-based photodynamic therapy. Biomed Pharmacother 2022; 155:113678. [PMID: 36108391 DOI: 10.1016/j.biopha.2022.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
The vitamin A metabolite all-trans retinoic acid (ATRA; tretinoin) has anticancer potential. However, lack of clinical success has prevented its approval for solid tumours. Herein, we propose combining short-term low-dose ATRA with fimaporfin-based photodynamic therapy (ATRA+PDT) for the improved treatment of solid cancers. Compared to monotherapies, ATRA+PDT induced synergistic cytotoxic responses including promotion of apoptosis in colon and breast carcinoma cell lines. Neither enhanced activity of alkaline phosphatase (ALP) nor increased expression of CD133 was detected after ATRA treatment indicating that the improved therapeutic effect of ATRA+PDT is independent of the differentiation state of the cancer cells. In the human colorectal adenocarcinoma cell line HT-29, the effect of ATRA+PDT on gene expression was evaluated by RNA sequencing (RNA-seq). We identified 1129 differentially expressed genes (DEGs) after ATRA+PDT compared to PDT. Ingenuity Pathway Analysis (IPA) predicted the unfolded protein response (UPR), interferon (IFN) signaling and retinoic acid-mediated apoptosis signaling as strongly activated canonical pathways after ATRA+PDT compared to PDT. A validation of the RNA-sec data by RT-qPCR revealed that ATRA+PDT elevated mRNA expression of early growth response 1 (EGR1) and strongly the stress-induced activating transcription factor 3 (ATF3), of which was confirmed on the protein level. In addition, ATRA+PDT abolished mRNA expression of regenerating islet-derived protein 4 (REG4). During the first 20 days post-ATRA+PDT, we obtained significant anti-tumour responses in HT-29 xenografts, including complete responses in 2/5 mice. In conclusion, ATRA+PDT represent a novel combination therapy for solid tumours that should be further tested in immunocompetent preclinical models.
Collapse
Affiliation(s)
- Judith Jing Wen Wong
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, P.b. 4953 Nydalen, 0424 Oslo, Norway
| | - Susanne Lorenz
- Genomics Core Facility, Department of Core Facilities, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, P.b. 4953 Nydalen, 0424 Oslo, Norway
| | - Pål Kristian Selbo
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, P.b. 4953 Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
15
|
TRIB3 Interacts with STAT3 to Promote Cancer Angiogenesis. Curr Med Sci 2022; 42:932-940. [PMID: 36245025 DOI: 10.1007/s11596-022-2655-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/27/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor A (VEGFA) is a key regulator of angiogenesis, which is a hallmark of cancer that promotes cancer growth and metastasis. It is of great significance to find new intervention targets and related regulatory mechanisms of VEGFA related angiogenesis for the treatment of tumors. This study focuses on the role of tribbles pseudokinase 3 (TRIB3)/signal transducer and activator of transcription 3 (STAT3)/VEGFA signaling axis in colon cancer angiogenesis. METHODS This study investigated the expression level of TRIB3 in colon cancer through database analysis and tissue microarray analysis. The effect of TRIB3 on proliferation, migration and tube formation ability of human umbilical vein endothelial cells (HUVECs) was further confirmed by CCK8 assay, scratch-wound assay/migration assay and tube formation assay respectively. The regulatory relationship of TRIB3/VEGFA signaling axis was identified by qPCR and Western blotting, which was further confirmed through animal experiments, and the specific regulatory mechanism was explored by immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) with colon cancer cell lines. RESULTS TRIB3 was increased in colon cancer tissues compared to normal tissues, and elevated TRIB3 expression indicated a poor prognosis in colon cancer patients. Moreover, it was found that silencing TRIB3 could inhibit cancer angiogenesis, whereas overexpressing TRIB3 promoted cancer angiogenesis in vitro and in vivo. Mechanistically, TRIB3 physically interacted with STAT3 and enhanced STAT3-mediated transcriptional activity. Furthermore, the function of TRIB3 in cancer angiogenesis was through cooperating with STAT3 to increase the VEGFA expression. CONCLUSION Our study provides insights into cancer angiogenesis and offers a potential therapeutic strategy for TRIB3-overexpressed cancer.
Collapse
|
16
|
Min J, Li Q, Liu S, Wang Q, Yin M, Zhang Y, Yan J, Cui B, Liu S. TRAF6 Suppresses the Development of Pulmonary Fibrosis by Attenuating the Activation of Fibroblasts. Front Pharmacol 2022; 13:911945. [PMID: 35668944 PMCID: PMC9163739 DOI: 10.3389/fphar.2022.911945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis (PF) has a high mortality rate, and its pathogenesis is unknown. TNF receptor-associated factor 6 (TRAF6), a signal transducer for inflammatory signaling, plays crucial roles in the pathogenesis of immune diseases. However, its function in PF remains unknown. Herein, we demonstrated that lungs from mice with bleomycin (BLM)-induced PF were characterized by decreased expression of TRAF6 in lung fibroblasts. Enhancing TRAF6 expression protected mice from BLM-induced PF coupled with a significant reduction in fibroblast differentiation. Furthermore, we demonstrated that overexpression of TRAF6 reversed the activation of myofibroblasts from PF mice by reducing the expression of Wnt3a and subsequently suppressing Wnt/β-catenin signaling. Additionally, the abundance of Tribbles pseudokinase 3 (TRIB3), a stress sensor, was negatively correlated with the abundance of TRAF6 in lung fibroblasts. TRIB3 overexpression decreased TRAF6 abundance by reducing TRAF6 stability in lung fibroblasts during PF. Mechanistic studies revealed that TRIB3 bound to TRAF6 and accelerated basal TRAF6 ubiquitination and degradation. Collectively, our data indicate that reduced TRAF6 expression in fibroblasts is essential for the progression of PF, and therefore, genetically increasing TRAF6 expression or disrupting the TRIB3-TRAF6 interaction could be potential therapeutic strategies for fibroproliferative lung diseases in clinical settings.
Collapse
Affiliation(s)
- Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiao Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Yan
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Shanshan Liu,
| |
Collapse
|
17
|
Zhang X, Yu W. RBCK1-TRIB3 decelerated the progression of acute promyelocytic leukemia. Hematol Oncol 2021; 39:567-569. [PMID: 34310740 DOI: 10.1002/hon.2901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/05/2021] [Accepted: 07/09/2021] [Indexed: 11/12/2022]
Abstract
Under the differentiation induction therapy with all-trans retinoic acid and arsenic trioxide, nearly 95% of typical acute promyelocyte leukemia (APL), which is characterized by the presence of PML-RARA, patients can be cured. Though its good prognosis, if left untreated, the natural survival duration of typical APL patients is only 1 month, but some exceptional cases also exist. Occasionally, we have observed the entire natural clinical course of one extremely indolent APL patient, who developed from pre-APL stage (<20% promyelocytes in bone marrow) to overt-APL stage (≥20% promyelocytes in bone marrow) with one nearly 2-year latency. Strikingly, we identified one novel fusion RBCK1-TRIB3 in the pre-APL stage but not overt-APL stage sample. It has been reported that TRIB3 stabilized PML-RARA to driver APL progression, while RBCK1-TRIB3 partially disrupted TRIB3WT expression, so it contributed to the deceleration of APL progression in this patient.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
AKR1C1 Contributes to Cervical Cancer Progression via Regulating TWIST1 Expression. Biochem Genet 2020; 59:516-530. [PMID: 33170398 DOI: 10.1007/s10528-020-10014-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/30/2020] [Indexed: 01/04/2023]
Abstract
Cervical cancer (CC) is a common gynecological malignancy, accounting for 10% of all gynecological cancers. Recently, targeted therapy for CC has shown unprecedented advantages. To improve CC patients' prognosis, there are still urgent needs to develop more promising therapeutic targets. Aldo-keto reductase 1 family member C1 (AKR1C1) is a type of aldosterone reductase and plays a regulatory role in a variety of key metabolic pathways. Several studies indicated that AKR1C1 was highly expressed in a series of tumors, and participated in the progression of these tumors. However, the possible effects of AKR1C1 on CC progression remain unclear. Herein, we revealed AKR1C1 was highly expressed in human CC tissues and correlated with the clinical characteristics of patients with CC. AKR1C1 could regulate the proliferation and invasion of cervical cancer cells in vitro. Further experiments showed that AKR1C1 could regulate TWIST1 expression and AKT pathway. In summary, we confirmed the involvement of AKR1C1 in CC progression, and therefore AKR1C1 may have the potential to be a molecular target for CC treatment.
Collapse
|
19
|
Li H, Wang Y, Pang X, Xie C, Deeg HJ, Wang H, Wan T, Wu J, Guan F, Li X. Elevated TWIST1 expression in myelodysplastic syndromes/acute myeloid leukemia reduces efficacy of hypomethylating therapy with decitabine. Haematologica 2020; 105:e502. [PMID: 33054092 PMCID: PMC7556660 DOI: 10.3324/haematol.2019.235325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hongjiao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yi Wang
- Department of Hematology, Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Xingchen Pang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chenglian Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - H. Joachim Deeg
- Fred Hutchinson Cancer Research Center, and University of Washington School of Medicine, Seattle, WA, USA
| | - Hui Wang
- Department of Hematology, Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Ting Wan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jinpeng Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
20
|
TRIB3 destabilizes tumor suppressor PPARα expression through ubiquitin-mediated proteasome degradation in acute myeloid leukemia. Life Sci 2020; 257:118021. [PMID: 32621919 DOI: 10.1016/j.lfs.2020.118021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
AIMS Tribbles homolog 3 (TRIB3) is emerging as a multifunctional oncoprotein associated with various cellular events in different tumors. However, the regulatory mechanism of TRIB3 in acute myeloid leukemia (AML) remains unknown. This study aims to investigate the molecular mechanisms and uncover the functions of TRIB3 in AML. METHODS Western blotting and quantitative real-time PCR were used to analyze the expression levels of TRIB3, peroxisome proliferator-activated receptor α (PPARα), apoptosis markers and autophagy markers in AML cells. Flow cytometry was used to assess cell apoptosis. The interaction of TRIB3 and PPARα was evaluated by immunofluorescence, coimmunoprecipitation, and in vivo ubiquitination assays. KEY FINDINGS We demonstrated that downregulating TRIB3 in leukemic cells effectively induced apoptosis and autophagy by regulating the degradation of PPARα. Mechanistically, TRIB3 interacted with PPARα and contributed to its destabilization by promoting its ubiquitination. When PPARα was activated by its specific agonist clofibrate, the apoptosis and autophagy of AML cells were significantly enhanced. These results were confirmed by rescue experiments. Blocking PPARα expression using the PPARα inhibitor GW6471 reversed the functional influence of TRIB3 on AML cells. SIGNIFICANCE The aim of this study is to provide evidence of the degradation of PPARα by TRIB3 via ubiquitin-dependent proteasomal degradation. This process meditates the progression of AML and prolongs the survival of leukemic cells. As a result, these data indicate that TRIB3 is a novel and promising therapeutic target for AML treatment.
Collapse
|
21
|
Peeke SZ, Gritsman K. Twist of Fate for Acute Promyelocytic Leukemia: TRIB3-TWIST1 Interaction Promotes Resistance. Clin Cancer Res 2019; 25:6018-6020. [PMID: 31405833 DOI: 10.1158/1078-0432.ccr-19-2140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
While acute promyelocytic leukemia has a good prognosis with all-trans retinoic acid (ATRA) treatment, ATRA resistance is a major obstacle. It is now demonstrated that TRIBBLES 3 (TRIB3) stabilizes TWIST1, leading to ATRA resistance. Peptides that disrupt this interaction lead to the degradation of TWIST1 and overcome ATRA resistance.See related article by Lin et al., p. 6228.
Collapse
Affiliation(s)
- Stephen Z Peeke
- Department of Medicine, Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York.,Department of Medicine-Oncology, Montefiore Medical Center, Bronx, New York
| | - Kira Gritsman
- Department of Medicine, Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York. .,Department of Medicine-Oncology, Montefiore Medical Center, Bronx, New York
| |
Collapse
|