1
|
Peng H, Chao Z, Wang Z, Hao X, Xi Z, Ma S, Guo X, Zhang J, Zhou Q, Qu G, Gao Y, Luo J, Wang Z, Wang J, Li L. Biomechanics in the tumor microenvironment: from biological functions to potential clinical applications. Exp Hematol Oncol 2025; 14:4. [PMID: 39799341 PMCID: PMC11724500 DOI: 10.1186/s40164-024-00591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
Immune checkpoint therapies have spearheaded drug innovation over the last decade, propelling cancer treatments toward a new era of precision therapies. Nonetheless, the challenges of low response rates and prevalent drug resistance underscore the imperative for a deeper understanding of the tumor microenvironment (TME) and the pursuit of novel targets. Recent findings have revealed the profound impacts of biomechanical forces within the tumor microenvironment on immune surveillance and tumor progression in both murine models and clinical settings. Furthermore, the pharmacological or genetic manipulation of mechanical checkpoints, such as PIEZO1, DDR1, YAP/TAZ, and TRPV4, has shown remarkable potential in immune activation and eradication of tumors. In this review, we delved into the underlying biomechanical mechanisms and the resulting intricate biological meaning in the TME, focusing mainly on the extracellular matrix, the stiffness of cancer cells, and immune synapses. We also summarized the methodologies employed for biomechanical research and the potential clinical translation derived from current evidence. This comprehensive review of biomechanics will enhance the understanding of the functional role of biomechanical forces and provide basic knowledge for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Hao Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zefeng Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaodong Hao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zirui Xi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Xiangdong Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Qiang Zhou
- Department of Urology, Qinghai University Affiliated Hospital, Qinghai University Medical College, Xining, 810001, Qinghai, China
| | - Guanyu Qu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Yuan Gao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
- Taikang Tongji (Wuhan) Hospital, 420060, Wuhan, China.
| | - Jing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
| |
Collapse
|
2
|
Karavasili C, Young T, Francis J, Blanco J, Mancini N, Chang C, Bernstock JD, Connolly ID, Shankar GM, Traverso G. Local drug delivery challenges and innovations in spinal neurosurgery. J Control Release 2024; 376:1225-1250. [PMID: 39505215 DOI: 10.1016/j.jconrel.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The development of novel therapeutics in the field of spinal neurosurgery faces a litany of translational challenges. Achieving precise drug targeting within the confined spaces associated with the spinal cord, canal and vertebra requires the development of next generation delivery systems and devices. These must be capable of overcoming inherent barriers related to drug diffusion, whilst concurrently ensuring optimal drug distribution and retention. In this review, we provide an overview of the most recent advances in the therapeutic management of diseases and disorders affecting the spine, including systems and devices capable of releasing small molecules and biopharmaceuticals that help eliminate pain and restore the mechanical function and stability of the spine. We highlight material-based approaches and minimally invasive techniques that can be employed to provide control over drug release kinetics and improve retention. We also seek to explore how the newest advancements in nanotechnology, biomaterials, additive manufacturing technologies and imaging modalities can be employed in this translational pursuit. Finally, we discuss the landscape of clinical trials and recently approved products aimed at overcoming the complexities associated with drug delivery to the spine.
Collapse
Affiliation(s)
- Christina Karavasili
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Young
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua Francis
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Julianna Blanco
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicholas Mancini
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charmaine Chang
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D Bernstock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian D Connolly
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Aebisher D, Czech S, Dynarowicz K, Misiołek M, Komosińska-Vassev K, Kawczyk-Krupka A, Bartusik-Aebisher D. Photodynamic Therapy: Past, Current, and Future. Int J Mol Sci 2024; 25:11325. [PMID: 39457108 PMCID: PMC11508366 DOI: 10.3390/ijms252011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The Greek roots of the word "photodynamic" are as follows: "phos" (φω~ς) means "light" and "dynamis" (δύναμις) means "force" or "power". Photodynamic therapy (PDT) is an innovative treatment method based on the ability of photosensitizers to produce reactive oxygen species after the exposure to light that corresponds to an absorbance wavelength of the photosensitizer, either in the visible or near-infrared range. This process results in damage to pathological cancer cells, while minimizing the impact on healthy tissues. PDT is a promising direction in the treatment of many diseases, with particular emphasis on the fight against cancer and other diseases associated with excessive cell growth. The power of light contributed to the creation of phototherapy, whose history dates back to ancient times. It was then noticed that some substances exposed to the sun have a negative effect on the body, while others have a therapeutic effect. This work provides a detailed review of photodynamic therapy, from its origins to the present day. It is surprising how a seemingly simple beam of light can have such a powerful healing effect, which is used not only in dermatology, but also in oncology, surgery, microbiology, virology, and even dentistry. However, despite promising results, photodynamic therapy still faces many challenges. Moreover, photodynamic therapy requires further research and improvement.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland
| | - Sara Czech
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland;
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| |
Collapse
|
4
|
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther 2024; 9:175. [PMID: 39013849 PMCID: PMC11252281 DOI: 10.1038/s41392-024-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Sacino AN, Chen H, Sahgal A, Bettegowda C, Rhines LD, Maralani P, Redmond KJ. Stereotactic body radiation therapy for spinal metastases: A new standard of care. Neuro Oncol 2024; 26:S76-S87. [PMID: 38437670 PMCID: PMC10911798 DOI: 10.1093/neuonc/noad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Advancements in systemic therapies for patients with metastatic cancer have improved overall survival and, hence, the number of patients living with spinal metastases. As a result, the need for more versatile and personalized treatments for spinal metastases to optimize long-term pain and local control has become increasingly important. Stereotactic body radiation therapy (SBRT) has been developed to meet this need by providing precise and conformal delivery of ablative high-dose-per-fraction radiation in few fractions while minimizing risk of toxicity. Additionally, advances in minimally invasive surgical techniques have also greatly improved care for patients with epidural disease and/or unstable spines, which may then be combined with SBRT for durable local control. In this review, we highlight the indications and controversies of SBRT along with new surgical techniques for the treatment of spinal metastases.
Collapse
Affiliation(s)
- Amanda N Sacino
- Department of Neurosurgery, John Hopkins University, Baltimore, Maryland, USA
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chetan Bettegowda
- Department of Neurosurgery, John Hopkins University, Baltimore, Maryland, USA
| | - Laurence D Rhines
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, Texas, USA
| | - Pejman Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Kristin J Redmond
- Department of Radiation and Molecular Oncology, John Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Hu Q, Zuo H, Hsu JC, Zeng C, Zhou T, Sun Z, Cai W, Tang Z, Chen W. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308286. [PMID: 37971203 PMCID: PMC10872442 DOI: 10.1002/adma.202308286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Qitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Cheng Zeng
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tian Zhou
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhouyi Sun
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
7
|
Dinakaran D, Wilson BC. The use of nanomaterials in advancing photodynamic therapy (PDT) for deep-seated tumors and synergy with radiotherapy. Front Bioeng Biotechnol 2023; 11:1250804. [PMID: 37849983 PMCID: PMC10577272 DOI: 10.3389/fbioe.2023.1250804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Photodynamic therapy (PDT) has been under development for at least 40 years. Multiple studies have demonstrated significant anti-tumor efficacy with limited toxicity concerns. PDT was expected to become a major new therapeutic option in treating localized cancer. However, despite a shifting focus in oncology to aggressive local therapies, PDT has not to date gained widespread acceptance as a standard-of-care option. A major factor is the technical challenge of treating deep-seated and large tumors, due to the limited penetration and variability of the activating light in tissue. Poor tumor selectivity of PDT sensitizers has been problematic for many applications. Attempts to mitigate these limitations with the use of multiple interstitial fiberoptic catheters to deliver the light, new generations of photosensitizer with longer-wavelength activation, oxygen independence and better tumor specificity, as well as improved dosimetry and treatment planning are starting to show encouraging results. Nanomaterials used either as photosensitizers per se or to improve delivery of molecular photosensitizers is an emerging area of research. PDT can also benefit radiotherapy patients due to its complementary and potentially synergistic mechanisms-of-action, ability to treat radioresistant tumors and upregulation of anti-tumoral immune effects. Furthermore, recent advances may allow ionizing radiation energy, including high-energy X-rays, to replace external light sources, opening a novel therapeutic strategy (radioPDT), which is facilitated by novel nanomaterials. This may provide the best of both worlds by combining the precise targeting and treatment depth/volume capabilities of radiation therapy with the high therapeutic index and biological advantages of PDT, without increasing toxicities. Achieving this, however, will require novel agents, primarily developed with nanomaterials. This is under active investigation by many research groups using different approaches.
Collapse
Affiliation(s)
- Deepak Dinakaran
- National Cancer Institute, National Institute of Health, Bethesda, MD, United States
- Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Nguyen EK, Ruschin M, Zhang B, Soliman H, Myrehaug S, Detsky J, Chen H, Sahgal A, Tseng CL. Stereotactic body radiotherapy for spine metastases: a review of 24 Gy in 2 daily fractions. J Neurooncol 2023; 163:15-27. [PMID: 37155133 DOI: 10.1007/s11060-023-04327-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Stereotactic body radiotherapy (SBRT) has proven to be a highly effective treatment for selected patients with spinal metastases. Randomized evidence shows improvements in complete pain response rates and local control with lower retreatment rates favoring SBRT, compared to conventional external beam radiotherapy (cEBRT). While there are several reported dose-fractionation schemes for spine SBRT, 24 Gy in 2 fractions has emerged with Level 1 evidence providing an excellent balance between minimizing treatment toxicity while respecting patient convenience and financial strain. METHODS We provide an overview of the 24 Gy in 2 SBRT fraction regimen for spine metastases, which was developed at the University of Toronto and tested in an international Phase 2/3 randomized controlled trial. RESULTS The literature summarizing global experience with 24 Gy in 2 SBRT fractions suggests 1-year local control rates ranging from 83-93.9%, and 1-year rates of vertebral compression fracture ranging from 5.4-22%. Reirradiation of spine metastases that failed prior cEBRT is also feasible with 24 Gy in 2 fractions, and 1-year local control rates range from 72-86%. Post-operative spine SBRT data are limited but do support the use of 24 Gy in 2 fractions with reported 1-year local control rates ranging from 70-84%. Typically, the rates of plexopathy, radiculopathy and myositis are under 5% in those series reporting mature follow up, with no cases of radiation myelopathy (RM) reported in the de novo setting when the spinal cord avoidance structure is limited to 17 Gy in 2 fractions. However, re-irradiation RM has been observed following 2 fraction SBRT. More recently, 2-fraction dose escalation with 28 Gy, with a higher dose constraint to the critical neural tissues, has been reported suggesting improved rates of local control. This regimen may be important in those patients with radioresistant histologies, high grade epidural disease, and/or paraspinal disease. CONCLUSION The dose-fractionation of 24 Gy in 2 fractions is well-supported by published literature and is an ideal starting point for centers looking to establish a spine SBRT program.
Collapse
Affiliation(s)
- Eric K Nguyen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Beibei Zhang
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
9
|
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010236. [PMID: 36678868 PMCID: PMC9861355 DOI: 10.3390/pharmaceutics15010236] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Correspondence: (T.V.); (S.L.)
| | - Valentin Lecomte
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Levy Van Leuven
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Robert N. Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
- Correspondence: (T.V.); (S.L.)
| |
Collapse
|
10
|
Tan G, Xu J, Yu Q, Yang Z, Zhang H. The safety and efficiency of photodynamic therapy for the treatment of osteosarcoma: A systematic review of in vitro experiment and animal model reports. Photodiagnosis Photodyn Ther 2022; 40:103093. [PMID: 36031143 DOI: 10.1016/j.pdpdt.2022.103093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is an aggressive malignant bone tumour with high mortality. A poor prognosis is noted in patients with distal metastases or multidrug resistance. As an emerging antitumor strategy, photodynamic therapy (PDT) mediated by visible and near infrared light has attracted intensive attention given its target selectivity, remote controllability, minimal or non-invasive features. However, PDT also has obvious limitations. Specifically, due to the limited penetration of light, it is mainly used in the clinical treatment of superficial malignant tumours, such as musculoskeletal sarcomas and melanoma, but it has not been applied to the clinical treatment of deep malignant bone tumours except for a very small number of experiments on deep canine OS models. MATERIALS AND METHODS We searched for studies that focused on the effectiveness and safety of PDT for OS based on in vitro experiments and animal models in the last decade. A systematic search was conducted using electronic databases, including PubMed, ClinicalTrials.gov, and the Cochrane Library. INCLUSION CRITERIA (1) original research articles about PDT for OS; (2) articles in English; (3) in vitro or animal model research; and (4) detailed information, including cell name, fluence, irradiation wavelength, time of incubation with PS, duration between PS treatment and irradiation, and duration between irradiation and viability assays. EXCLUSION CRITERIA (1) study was a review/systemic review article, patent, letter, or conference abstract/paper; (2) articles were not published in English; (3) studies containing overlapping or insufficient data. RESULTS We identified 201 publications, and 44 articles met the inclusion criteria and were included in the synthesis. Unfortunately, there are no relevant clinical reports of the use of PDT in the treatment of human OS. In these studies, 8 studies only employed in vivo experiments to evaluate the efficiency of PDT in an OS animal model, 19 studies exclusively performed in vitro viability assays of cells treated with PDT under different conditions, and 17 studies included in vitro cell experiments and in vivo animal OS models to evaluate the effect of PDT on OS in vivo and in vitro. All studies have shown that PDT is cytotoxic to OS cells or can inhibit the growth of OS in heterologous or homologous animal OS models but exhibits minimal cytotoxicity at a certain range of dosages. CONCLUSION Based on this systematic review, PDT can eradicate OS cells in cell culture and there is some evidence for efficacy in animal models. However, the ability for PDT to control human OS is unclear, the animal and human reports do not show evidence of human OS control, they just do show feasibility. The major issues concerning the potential for treatment of osteosarcoma with PDT are that adequate light should be transmitted to tumor loci and if the disease is caught before metastasis and irradiation of tumor sites is feasible, curative potential is there. Otherwise, PDT may be mainly palliative. To determine whether PDT can safely and efficiently be used in the clinical treatment of OS, many preclinical orthotopic animal OS models and OS models of multiple systemic metastases must be performed and interstitial PDT or intraoperative PDT may be a good and potential candidate for human OS treatment. If these problems can be well solved, PDT may be a potentially effective strategy for the treatment of OS patients.
Collapse
Affiliation(s)
- Gang Tan
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xu
- Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Yu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zeyu Yang
- Rotex Tech.Ltd.Co. Room 1104, floor 11, building 6, No. 599, Shijicheng South Road, high tech Zone, Chengdu, Sichuan, China.
| | - Hui Zhang
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Zhou Z, Liu Y, Song W, Jiang X, Deng Z, Xiong W, Shen J. Metabolic reprogramming mediated PD-L1 depression and hypoxia reversion to reactivate tumor therapy. J Control Release 2022; 352:793-812. [PMID: 36343761 DOI: 10.1016/j.jconrel.2022.11.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
As a promising cancer treatment, photodynamic therapy (PDT) still achieved limited clinical success due to the severe hypoxia and programmed death ligand-1 (PD-L1) over-expressed immunosuppression tumor microenvironment. At present, few methods have been proven to solve these two defects simply and effectively by a single drug or nano-system simultaneously. To ameliorate this situation, we designed and constructed MB@Bu@MnO2 nanoparticles with two-step oxygen regulation ability and PD-1/PD-L1 axis cascade-disruption capacity via a biomineralization method. In such a nanosystem, manganese dioxide albumin (MnO2@Alb) was used as the drug carrier, Butformin (Bu) as mitochondria-associated oxidative phosphorylation (OXPHOS) disruption agent with PD-L1 depression and oxygen reversion ability, and methylene blue (MB) as PDT drug with programmed cell death protein 1 (PD-1) inhibition capacity. Owing to the tumor-responsive capacity of MB@Bu@MnO2 nanoparticles, Bu and MB were selectively delivered and released in tumors. Then, the tumor hypoxia was dramatically reversed by Bu inhibited oxygen consumption, and MnO2 improved oxygen generation. Following this, the reactive oxygen species (ROS) generation was enhanced by MB@Bu@MnO2 nanoparticles mediated PDT owing to the reversed tumor hypoxia. Furthermore, the immunosuppression microenvironment was also obviously reversed by MB@Bu@MnO2 nanoparticles enhanced immunogenic cell death (ICD) and PD-1/PD-L1 axis cascade-disruption, which then enhanced T cell infiltration and improved its tumor cell killing ability. Finally, the growth of solid tumors was significantly depressed by MB@Bu@MnO2 nanoparticles mediated PDT. All in all, this well-designed nanosystem could solve the defects of traditional PDT via PD-1/PD-L1 axis dual disruption and reversing tumor hypoxia by two-step oxygen regulation.
Collapse
Affiliation(s)
- Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Song
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Xin Jiang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zaian Deng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118, China.
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
12
|
Lu Y, Wu W. Conjugated‐Polymer‐Based Photodynamic Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yaru Lu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 P. R. China
| | - Wenbo Wu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
13
|
Calori IR, Braga G, Tessaro AL, Caetano W, Tedesco AC, Hioka N. Self-aggregation of the proteolytic forms of Verteporfin: An in silico and in vitro study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Jin T, Cheng D, Jiang G, Xing W, Liu P, Wang B, Zhu W, Sun H, Sun Z, Xu Y, Qian X. Engineering naphthalimide-cyanine integrated near-infrared dye into ROS-responsive nanohybrids for tumor PDT/PTT/chemotherapy. Bioact Mater 2021; 14:42-51. [PMID: 35310343 PMCID: PMC8892148 DOI: 10.1016/j.bioactmat.2021.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Photodynamic (PDT) and photothermal therapies (PTT) are emerging treatments for tumour ablation. Organic dyes such as porphyrin, chlorin, phthalocyanine, boron-dipyrromethene and cyanine are the clinically or preclinically used photosensitizer or photothermal agents. Development of structurally diverse near-infrared dyes with long absorption wavelength is of great significance for PDT and PTT. Herein, we report a novel near-infrared dye ML880 with naphthalimide modified cyanine skeleton. The introduction of naphthalimide moiety results in stronger electron delocalization and larger redshift in emission compared with IR820. Furthermore, ML880 is co-loaded with chemotherapeutic drug into ROS-responsive mesoporous organosilica (RMON) to construct nanomedicine NBD&ML@RMON, which exhibits remarkable tumor inhibition effects through PDT/PTT/chemotherapy in vivo. The structure of the near-infrared dye ML880 was first reported. ML880 showed potential to be an excellent phototherapy agent activated by NIR laser. ML880 and chemodrug were co-loaded into ROS-degradable mesoporous organosilica to prepare NBD&ML@RMON. NBD&ML@RMON showed ROS- and NIR-responsible drug release behaviors. The remarkably tumor inhibition was achieved by the combined PDT/PTT/chemotherapy under 880 nm laser.
Collapse
|
15
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|
16
|
Assessment of 5-Aminolevulinic Acid-Mediated Photodynamic Therapy on Bone Metastases: An in Vitro Study. BIOLOGY 2021; 10:biology10101020. [PMID: 34681119 PMCID: PMC8533584 DOI: 10.3390/biology10101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Bone metastases are typically associated with a short-term prognosis. Photodynamic therapy (PDT) emerges as a promising alternative treatment for targeting metastatic lesions. In this study we investigated the effect of 5-aminolevulinic acid-mediated PDT treatment on both primary and human bone metastatic cancer cell lines. We found that human cell lines have different sensitivity to the same doses and exposure of 5-ALA PDT resulting in two different cell fates, apoptosis or senescence, depending on the extent of the cellular damage. As such, PDT has potential applicability in bone metastases of invasive ductal carcinoma. Abstract Bone is a frequent site of metastases, being typically associated with a short-term prognosis in affected patients. Photodynamic therapy (PDT) emerges as a promising alternative treatment for controlling malignant disease that can directly target interstitial metastatic lesions. The aim of this study was to assess the effect induced by PDT treatment on both primary (giant cell bone tumor) and human bone metastatic cancer cell lines (derived from a primary invasive ductal breast carcinoma and renal carcinoma). After 24 h post light delivery (blue light-wavelength 436 nm) with 5-aminolevulinic acid, the effect on cellular migration, viability, apoptosis, and senescence were assessed. Our results showed that bone metastasis derived from breast cancer reacted with an inhibition of cell migration coupled with reduced viability and signs of apoptosis such as nuclei fragmentation following PDT exposure. A limited effect in terms of cellular viability inhibition was observed for the cells of giant cell bone tumors. In contrast, bone metastasis derived from renal carcinoma followed a different fate—cells were characterized by senescent features, without a notable effect on cell migration or viability. Collectively, our study illustrates that PDT could act as a successful therapy concept for local tumor control in some entities of bone metastases.
Collapse
|
17
|
Furlan JC, Wilson JR, Massicotte EM, Sahgal A, Michael FG. Recent advances and new discoveries in the pipeline of the treatment of primary spinal tumors and spinal metastases: A scoping review. Neuro Oncol 2021; 24:1-13. [PMID: 34508647 DOI: 10.1093/neuonc/noab214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The field of spinal oncology has substantially evolved over the past decades. This review synthesizes and appraises what was learned and what will potentially be discovered from the recently completed and ongoing clinical studies related to the treatment of primary and secondary spinal neoplasms. This scoping review included all clinical studies on the treatment of spinal neoplasms registered in the ClinicalTrials.gov website from February/2000 to December/2020. The terms "spinal cord tumor", "spinal metastasis", and "metastatic spinal cord compression" were used. Of the 174 registered clinical studies on primary spinal tumors and spinal metastasis, most of the clinical studies registered in this American registry were interventional studies led by single institutions in North America (n=101), Europe (n=43), Asia (n=24) or other continents (n=6). The registered clinical studies mainly focused on treatment strategies for spinal neoplasms (90.2%) that included investigating stereotactic radiosurgery (n=33), radiotherapy (n=21), chemotherapy (n=20), and surgical technique (n=11). Of the 69 completed studies, the results from 44 studies were published in the literature. In conclusion, this review highlights the key features of the 174 clinical studies on spinal neoplasms that were registered from 2000 to 2020. Clinical trials were heavily skewed towards the metastatic population as opposed to the primary tumours which likely reflects the rarity of the latter condition and associated challenges in undertaking prospective clinical studies in this population. This review serves to emphasize the need for a focused approach to enhancing translational research in spinal neoplasms with a particular emphasis on primary tumors.
Collapse
Affiliation(s)
- Julio C Furlan
- Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,KITE Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Jefferson R Wilson
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.,St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eric M Massicotte
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.,Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, University of Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Ontario, Canada
| | - Fehlings G Michael
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.,Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Yassine AA, Lo WCY, Saeidi T, Ferguson D, Whyne CM, Akens MK, Betz V, Lilge L. Photodynamic therapy outcome modelling for patients with spinal metastases: a simulation-based study. Sci Rep 2021; 11:17871. [PMID: 34504208 PMCID: PMC8429418 DOI: 10.1038/s41598-021-97407-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal metastases often occur in the advanced stages of breast, lung or prostate cancer, resulting in a significant impact on the patient's quality of life. Current treatment modalities for spinal metastases include both systemic and localized treatments that aim to decrease pain, improve mobility and structural stability, and control tumour growth. With the development of non-toxic photosensitizer drugs, photodynamic therapy (PDT) has shown promise as a minimally invasive non-thermal alternative in oncology, including for spinal metastases. To apply PDT to spinal metastases, predictive algorithms that optimize tumour treatment and minimize the risk of spinal cord damage are needed to assess the feasibility of the treatment and encourage a broad acceptance of PDT in clinical trials. This work presents a framework for PDT modelling and planning, and simulates the feasibility of using a BPD-MA mediated PDT to treat bone metastases at two different wavelengths (690 nm and 565 nm). An open-source software for PDT planning, PDT-SPACE, is used to evaluate different configurations of light diffusers (cut-end and cylindrical) fibres with optimized power allocation in order to minimize the damage to spinal cord or maximize tumour destruction. The work is simulated on three CT images of metastatically involved vertebrae acquired from three patients with spinal metastases secondary to colorectal or lung cancer. Simulation results show that PDT at a 565 nm wavelength has the ability to treat 90% of the metastatic lesion with less than 17% damage to the spinal cord. However, the energy required, and hence treatment time, to achieve this outcome with the 565 nm is infeasible. The energy required and treatment time for the longer wavelength of 690 nm is feasible ([Formula: see text] min), but treatment aimed at 90% of the metastatic lesion would severely damage the proximal spinal cord. PDT-SPACE provides a simulation platform that can be used to optimize PDT delivery in the metastatic spine. While this work serves as a prospective methodology to analyze the feasibility of PDT for tumour ablation in the spine, preclinical studies in an animal model are ongoing to elucidate the spinal cord damage extent as a function of PDT dose, and the resulting short and long term functional impairments. These will be required before there can be any consideration of clinical trials.
Collapse
Affiliation(s)
- Abdul-Amir Yassine
- grid.17063.330000 0001 2157 2938Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - William C. Y. Lo
- grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA ,grid.116068.80000 0001 2341 2786Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA 02142 USA
| | - Tina Saeidi
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7 Canada
| | - Dallis Ferguson
- grid.17063.330000 0001 2157 2938Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada ,grid.17063.330000 0001 2157 2938Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Cari M. Whyne
- grid.17063.330000 0001 2157 2938Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada ,grid.17063.330000 0001 2157 2938Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Surgery, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Holland Bone and Joint Research Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Margarete K. Akens
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Department of Surgery, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Techna Institute, University Health Network, Toronto, ON M5T 1P5 Canada
| | - Vaughn Betz
- grid.17063.330000 0001 2157 2938Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Lothar Lilge
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
19
|
Conrado PCV, Sakita KM, Arita GS, Galinari CB, Gonçalves RS, Lopes LDG, Lonardoni MVC, Teixeira JJV, Bonfim-Mendonça PS, Kioshima ES. A systematic review of photodynamic therapy as an antiviral treatment: Potential guidance for dealing with SARS-CoV-2. Photodiagnosis Photodyn Ther 2021; 34:102221. [PMID: 33601001 PMCID: PMC7883714 DOI: 10.1016/j.pdpdt.2021.102221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND SARS-CoV-2, which causes the coronavirus disease (COVID-19), presents high rates of morbidity and mortality around the world. The search to eliminate SARS-CoV-2 is ongoing and urgent. This systematic review seeks to assess whether photodynamic therapy (PDT) could be effective in SARS-CoV-2 inactivation. METHODS The focus question was: Can photodynamic therapy be used as potential guidance for dealing with SARS-CoV-2?". A literature search, according to PRISMA statements, was conducted in the electronic databases PubMed, EMBASE, SCOPUS, Web of Science, LILACS, and Google Scholar. Studies published from January 2004 to June 2020 were analyzed. In vitro and in vivo studies were included that evaluated the effect of PDT mediated by several photosensitizers on RNA and DNA enveloped and non-enveloped viruses. RESULTS From 27 selected manuscripts, 26 publications used in vitro studies, 24 were exclusively in vitro, and two had in vitro/in vivo parts. Only one analyzed publication was exclusively in vivo. Meta-analysis studies were unfeasible due to heterogeneity of the data. The risk of bias was analyzed in all studies. CONCLUSION The in vitro and in vivo studies selected in this systematic review indicated that PDT is capable of photoinactivating enveloped and non-enveloped DNA and RNA viruses, suggesting that PDT can potentially photoinactivate SARS-CoV-2.
Collapse
Affiliation(s)
- Pollyanna C V Conrado
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Karina M Sakita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Glaucia S Arita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Camila B Galinari
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | | | - Luciana D G Lopes
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Maria V C Lonardoni
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Jorge J V Teixeira
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | | | - Erika S Kioshima
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil.
| |
Collapse
|
20
|
Evolving role of minimally invasive techniques in the management of symptomatic bone metastases. Curr Opin Support Palliat Care 2021; 15:91-98. [PMID: 33905381 DOI: 10.1097/spc.0000000000000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Bone metastases are responsible for considerable morbidity, which can significantly limit a patient's quality of life. This article aims to review minimally invasive, image-guided locoregional treatments for symptomatic bone metastases as an adjunct to conventional treatment modalities. RECENT FINDINGS Conservative therapy and radiation therapy (RT) can be effective at addressing pain, however, they require time to achieve optimal efficacy and do not address the instability and progressive collapse of pathological fractures. Vertebral and pelvic augmentation with cement enhances structural stability and can prevent progressive collapse and deformity. Ablative therapies, including radiofrequency ablation (RFA), cryoablation, and photodynamic therapy (PDT), induce cellular destruction of tumor tissue. RFA and PDT can be combined with cement augmentation in a single sitting. SUMMARY Minimally invasive image-guided treatments can provide rapid pain relief, enhance mechanical stability, and improve quality of life. These treatments are associated with low complication rates and are suitable for frail patients. They can be used as companion procedures to conventional treatments, or function as an alternative for patients with radioresistant biologies or those with dose limitations from prior RT sessions.
Collapse
|
21
|
Kotecha R, Dea N, Detsky JS, Sahgal A. Management of recurrent or progressive spinal metastases: reirradiation techniques and surgical principles. Neurooncol Pract 2020; 7:i45-i53. [PMID: 33299573 PMCID: PMC7705530 DOI: 10.1093/nop/npaa045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
With the growing incidence of new cases and the increasing prevalence of patients living longer with spine metastasis, a methodological approach to the management of patients with recurrent or progressive disease is increasing in relevance and importance in clinical practice. As a result, disease management has evolved in these patients using advanced surgical and radiotherapy technologies. Five key goals in the management of patients with spine metastases include providing pain relief, controlling metastatic disease at the treated site, improving neurologic deficits, maintaining or improving functional status, and minimizing further mechanical instability. The focus of this review is on advanced reirradiation techniques, given that the majority of patients will be treated with upfront conventional radiotherapy and further treatment on progression is often limited by the cumulative tolerance of nearby organs at risk. This review will also discuss novel surgical approaches such as separation surgery, minimally invasive percutaneous instrumentation, and laser interstitial thermal therapy, which is increasingly being coupled with spine reirradiation to maximize outcomes in this patient population. Lastly, given the complexities of managing recurrent spinal disease, this review emphasizes the importance of multidisciplinary care from neurosurgery, radiation oncology, medical oncology, neuro-oncology, rehabilitation medicine, and palliative care.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, US
| | - Nicolas Dea
- Combined Neurosurgical and Orthopaedic Spine Program, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - Jay S Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| |
Collapse
|
22
|
Blum NT, Zhang Y, Qu J, Lin J, Huang P. Recent Advances in Self-Exciting Photodynamic Therapy. Front Bioeng Biotechnol 2020; 8:594491. [PMID: 33195164 PMCID: PMC7606875 DOI: 10.3389/fbioe.2020.594491] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is already (Food and Drug Administration) FDA approved and used in the clinic for oncological treatment of pancreatic, lung, esophagus, bile duct, and of course several cancers of skin. It is an important tool in the oncological array of treatments, but for it exist several shortcomings, the most prominent of which is the shallow depth penetration of light within tissues. One-way researchers have attempted to circumvent this is through the creation of self-exciting "auto-PDT" nanoplatforms, which do not require the presence of an external light source to drive the PDT process. Instead, these platforms are driven either through oxidative chemical excitation in the form of chemiluminescence or radiological excitation from beta-emitting isotopes in the form of Cherenkov luminescence. In both, electronic excitations are generated and then transferred to the photosensitizer (PS) via Resonance Energy Transfer (RET) or Cherenkov Radiation Energy Transfer (CRET). Self-driven PDT has many components, so in this review, using contemporary examples from literature, we will breakdown the important concepts, strategies, and rationale behind the design of these self-propagating PDT nanoplatforms and critically review the aspects which make them successful and different from conventional PDT. Particular focus is given to the mechanisms of excitation and the different methods of transfer of excited electronic energy to the photosensitizer as well as the resulting therapeutic effect. The papers reviewed herein will be critiqued for their apparent therapeutic efficiency, and a basic rationale will be developed for what qualities are necessary to constitute an "effective" auto-PDT platform. This review will take a biomaterial engineering approach to the review of the auto-PDT platforms and the intended audience includes researchers in the field looking for a new perspective on PDT nanoplatforms as well as other material scientists and engineers looking to understand the mechanisms and relations between different parts of the complex "auto-PDT" system.
Collapse
Affiliation(s)
- Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yifan Zhang
- Marshall Laboratory of Biomedical Engineering, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
23
|
Percutaneous Minimally Invasive Thermal Ablation of Osseous Metastases: Evidence-Based Practice Guidelines. AJR Am J Roentgenol 2020; 215:502-510. [DOI: 10.2214/ajr.19.22521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17:657-674. [DOI: 10.1038/s41571-020-0410-2] [Citation(s) in RCA: 723] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
|
25
|
Zhang Q, He J, Yu W, Li Y, Liu Z, Zhou B, Liu Y. A promising anticancer drug: a photosensitizer based on the porphyrin skeleton. RSC Med Chem 2020; 11:427-437. [PMID: 33479647 PMCID: PMC7460723 DOI: 10.1039/c9md00558g] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive combination of treatments that treat tumors and other diseases by using photosensitizers, light and oxygen to produce cytotoxic reactive oxygen species (ROS) inducing tumor cell apoptosis. Photosensitizers are the key part of PDT for clinical application and experimental research, and most of them are porphyrin compounds at present. Due to their unique affinity for tumor tissues, porphyrins are not only excellent photosensitizers, but also good carriers to transport other active drugs into tumor tissues, which can exert synergistic anticancer effects of PDT and chemotherapy. This article reviews the clinical development of porphyrin photosensitizers and the research status of porphyrin containing bioactive groups. Finally, future perspectives and the current challenges of photosensitizers based on the porphyrin skeleton are discussed.
Collapse
Affiliation(s)
- Qizhi Zhang
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering , University of South China , Hengyang City , Hunan Province 421001 , P.R. China
| | - Wenmei Yu
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Yanchun Li
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Binning Zhou
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| |
Collapse
|