1
|
Fan L, You H, Jiang X, Niu Y, Chen Z, Wang H, Xu Y, Zhou P, Wei L, Jiang T, Deng D, Xue L, Peng Y, Xing W, Shao N. UCHL3 induces radiation resistance and acquisition of mesenchymal phenotypes by deubiquitinating POLD4 in glioma stem cells. Cell Mol Life Sci 2024; 81:247. [PMID: 38829550 PMCID: PMC11149539 DOI: 10.1007/s00018-024-05265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The high degree of intratumoral genomic heterogeneity is a major obstacle for glioblastoma (GBM) tumors, one of the most lethal human malignancies, and is thought to influence conventional therapeutic outcomes negatively. The proneural-to-mesenchymal transition (PMT) of glioma stem cells (GSCs) confers resistance to radiation therapy in glioblastoma patients. POLD4 is associated with cancer progression, while the mechanisms underlying PMT and tumor radiation resistance have remained elusive. METHOD Expression and prognosis of the POLD family were analyzed in TCGA, the Chinese Glioma Genome Atlas (CGGA) and GEO datasets. Tumorsphere formation and in vitro limiting dilution assay were performed to investigate the effect of UCHL3-POLD4 on GSC self-renewal. Apoptosis, TUNEL, cell cycle phase distribution, modification of the Single Cell Gel Electrophoresis (Comet), γ-H2AX immunofluorescence, and colony formation assays were conducted to evaluate the influence of UCHL3-POLD4 on GSC in ionizing radiation. Coimmunoprecipitation and GST pull-down assays were performed to identify POLD4 protein interactors. In vivo, intracranial xenograft mouse models were used to investigate the molecular effect of UCHL3, POLD4 or TCID on GCS. RESULT We determined that POLD4 was considerably upregulated in MES-GSCs and was associated with a meagre prognosis. Ubiquitin carboxyl terminal hydrolase L3 (UCHL3), a DUB enzyme in the UCH protease family, is a bona fide deubiquitinase of POLD4 in GSCs. UCHL3 interacted with, depolyubiquitinated, and stabilized POLD4. Both in vitro and in vivo assays indicated that targeted depletion of the UCHL3-POLD4 axis reduced GSC self-renewal and tumorigenic capacity and resistance to IR treatment by impairing homologous recombination (HR) and nonhomologous end joining (NHEJ). Additionally, we proved that the UCHL3 inhibitor TCID induced POLD4 degradation and can significantly enhance the therapeutic effect of IR in a gsc-derived in situ xenograft model. CONCLUSION These findings reveal a new signaling axis for GSC PMT regulation and highlight UCHL3-POLD4 as a potential therapeutic target in GBM. TCID, targeted for reducing the deubiquitinase activity of UCHL3, exhibited significant synergy against MES GSCs in combination with radiation.
Collapse
Affiliation(s)
- Ligang Fan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Hongtao You
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Xiao Jiang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Yixuan Niu
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Zhengxin Chen
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Huibo Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yuan Xu
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Peng Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Li Wei
- Department of Blood Transfusion, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Tianwei Jiang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Danni Deng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Lian Xue
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Naiyuan Shao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
2
|
Kunos CA, Piekarz R, Collins JM, Kinsella TJ. A case report of typhlitis during novel use of ropidoxuridine-capecitabine-radiotherapy for treatment-naïve rectal cancer. Cancer Chemother Pharmacol 2023:10.1007/s00280-023-04561-4. [PMID: 37369852 DOI: 10.1007/s00280-023-04561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Rectal carcinomas are tumors that arise from the last 12 cm of the large intestine closest to the anus. They generally have a modest prognosis exacerbated by a high local recurrence rate if radiosensitizing chemotherapy is not given during radiotherapy. This case report discusses the clinical trial treatment of a patient with rectal adenocarcinoma by a new ropidoxuridine-capecitabine-radiotherapy combination. This case report is novel due to the patient's participation in an accelerated titration phase I clinical trial and the resultant rare adverse event of treatment-related sigmoid typhlitis. CASE PRESENTATION The patient was an 82-year-old female who noticed hematochezia and change in stool caliber over a period of 3 months. A rectal mass was identified by biopsy as a microsatellite stable adenocarcinoma. A planned total neoadjuvant treatment involved eight cycles of leucovorin calcium (folinic acid)-fluorouracil-oxaliplatin (mFOLFOX6) chemotherapy, followed by a clinical trial combination of ropidoxuridine-capecitabine-radiotherapy, prior to definitive surgery. The patient began daily intensity modulated pelvic radiotherapy with concurrent twice-daily oral ropidoxuridine and twice-daily oral capecitabine to be given over 6 weeks. After 14 days of ropidoxuridine-capecitabine-radiotherapy, the patient developed sigmoid typhlitis requiring a 10-day hospitalization and 14-day disruption of treatment. The patient died 27 days after the start of ropidoxuridine-capecitabine-radiotherapy. This adverse event was listed as a definite attribution to the ropidoxuridine-capecitabine treatment; pharmacokinetic and pharmacodynamic data showed low ropidoxuridine metabolite DNA incorporation and high capecitabine metabolite concentration. The accelerated titration phase I clinical trial has been subsequently closed to accrual (NCT04406857). CONCLUSIONS We believe this case report demonstrates the decision-making process for terminating a phase I accelerated titration designed clinical trial. The report also presents the rare complication of sigmoid typhlitis as a treatment-attributed adverse event. In this case, a ropidoxuridine-capecitabine combination was used as an investigational radiosensitizing treatment now with a narrower future clinical development pathway.
Collapse
Affiliation(s)
- Charles A Kunos
- Department of Radiation Medicine, Markey Cancer Center, University of Kentucky, 800 Rose Street, C111, Lexington, KY, 40536-0293, USA.
| | - Richard Piekarz
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD, USA
| | - Jerry M Collins
- Developmental Therapeutics Program, National Cancer Institute, Rockville, MD, USA
| | | |
Collapse
|
3
|
Edwards DM, Speers C, Wahl DR. Targeting Noncanonical Regulators of the DNA Damage Response to Selectively Overcome Cancer Radiation Resistance. Semin Radiat Oncol 2021; 32:64-75. [PMID: 34861997 DOI: 10.1016/j.semradonc.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Donna M Edwards
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; Department of Radiation Oncology, Rogel Cancer Center, Ann Arbor, MI
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; Department of Radiation Oncology, Rogel Cancer Center, Ann Arbor, MI
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; Department of Radiation Oncology, Rogel Cancer Center, Ann Arbor, MI.
| |
Collapse
|