1
|
Adamo FM, De Falco F, Dorillo E, Sorcini D, Stella A, Esposito A, Arcaleni R, Rosati E, Sportoletti P. Nanotechnology Advances in the Detection and Treatment of Lymphoid Malignancies. Int J Mol Sci 2024; 25:9253. [PMID: 39273202 PMCID: PMC11395233 DOI: 10.3390/ijms25179253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Lymphoid malignancies are complex diseases with distinct biological behaviors, clinical presentations, and treatment responses. Ongoing research and advancements in biotechnology enhance the understanding and management of these malignancies, moving towards more personalized approaches for diagnosis and treatment. Nanotechnology has emerged as a promising tool to improve some limitations of conventional diagnostics as well as treatment strategies for lymphoid malignancies. Nanoparticles (NPs) offer unique advantages such as enhanced multimodal detection, drug delivery, and targeted therapy capabilities, with the potential to improve precision medicine and patient outcomes. Here, we comprehensively examine the current landscape of nanoconstructs applied in the management of lymphoid disease. Through a comprehensive analysis of preclinical studies, we highlight the translational potential of NPs in revolutionizing the field of hematological malignancies, with a specific focus on lymphoid neoplasms.
Collapse
Affiliation(s)
- Francesco Maria Adamo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Erica Dorillo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Daniele Sorcini
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Arianna Stella
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Angela Esposito
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Roberta Arcaleni
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, Biosciences and Medical Embryology Section, University of Perugia, 06132 Perugia, Italy
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| |
Collapse
|
2
|
Yang J, Sun Q, Liu X, Yang Y, Rong R, Yan P, Xie Y. Targeting Notch signaling pathways with natural bioactive compounds: a promising approach against cancer. Front Pharmacol 2024; 15:1412669. [PMID: 39092224 PMCID: PMC11291470 DOI: 10.3389/fphar.2024.1412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Notch signaling pathway is activated abnormally in solid and hematological tumors, which perform essential functions in cell differentiation, survival, proliferation, and angiogenesis. The activation of Notch signaling and communication among Notch and other oncogenic pathways heighten malignancy aggressiveness. Thus, targeting Notch signaling offers opportunities for improved survival and reduced disease incidence. Already, most attention has been given to its role in the cancer cells. Recent research shows that natural bioactive compounds can change signaling molecules that are linked to or interact with the Notch pathways. This suggests that there may be a link between Notch activation and the growth of tumors. Here, we sum up the natural bioactive compounds that possess inhibitory effects on human cancers by impeding the Notch pathway and preventing Notch crosstalk with other oncogenic pathways, which provoke further study of these natural products to derive rational therapeutic regimens for the treatment of cancer and develop novel anticancer drugs. This review revealed Notch as a highly challenging but promising target in oncology.
Collapse
Affiliation(s)
- Jia Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Liu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Yang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Peiyu Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Del Giudice I, Della Starza I, De Falco F, Gaidano G, Sportoletti P. Monitoring Response and Resistance to Treatment in Chronic Lymphocytic Leukemia. Cancers (Basel) 2024; 16:2049. [PMID: 38893168 PMCID: PMC11171231 DOI: 10.3390/cancers16112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The recent evolution in chronic lymphocytic leukemia (CLL) targeted therapies led to a progressive change in the way clinicians manage the goals of treatment and evaluate the response to treatment in respect to the paradigm of the chemoimmunotherapy era. Continuous therapies with BTK inhibitors achieve prolonged and sustained control of the disease. On the other hand, venetoclax and anti-CD20 monoclonal antibodies or, more recently, ibrutinib plus venetoclax combinations, given for a fixed duration, achieve undetectable measurable residual disease (uMRD) in the vast majority of patients. On these grounds, a time-limited MRD-driven strategy, a previously unexplored scenario in CLL, is being attempted. On the other side of the spectrum, novel genetic and non-genetic mechanisms of resistance to targeted treatments are emerging. Here we review the response assessment criteria, the evolution and clinical application of MRD analysis and the mechanisms of resistance according to the novel treatment strategies within clinical trials. The extent to which this novel evidence will translate in the real-life management of CLL patients remains an open issue to be addressed.
Collapse
Affiliation(s)
- Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy;
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy;
- AIL Roma, ODV, 00161 Rome, Italy
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, 06129 Perugia, Italy;
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, 06129 Perugia, Italy;
| |
Collapse
|
4
|
Li N, Zhu C, Fu R, Ma X, Duan Z, Fan D. Ginsenoside Rg5 inhibits lipid accumulation and hepatocyte apoptosis via the Notch1 signaling pathway in NASH mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155287. [PMID: 38176268 DOI: 10.1016/j.phymed.2023.155287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a prevalent chronic liver disease that lacks an FDA-approved treatment medicine. Despite the known antitumor and hypoglycemic properties of Ginsenoside Rg5, its effects and underlying mechanisms in the context of NASH remain largely unexplored. PURPOSE This study aims to investigate the effect of Rg5 on NASH mice induced by a high-fat diet and CCl4. STUDY DESIGN In vivo experiments, a mouse NASH model was established by a HFHC diet plus intraperitoneal injection of low-dose CCl4. In vitro experiments, a cellular steatosis model was established using free fatty acids (FFA) induced HepG2 cells. In addition, a fibrogenesis model was established using HSC-LX2 cells. METHODS The effects of Ginsenoside Rg5 on lipid accumulation and oxidative damage were analyzed by ELISA kit, H&E staining, Oil Red O staining, flow cytometry and Western blot. The effects of Ginsenoside Rg5 on liver fibrosis were analyzed by Masson staining, Sirus Red staining, immunohistochemistry and Western blot. The effect of Ginsenoside Rg5 on Notch1 signaling pathway in liver was studied by protein Oil Red staining, protein immunoblotting and immunofluorescence. RESULTS In terms of lipid accumulation, Rg5 has the ability to regulate key proteins related to lipogenesis, thereby inhibiting hepatic lipid accumulation and oxidative stress. Additionally, Rg5 can reduce the occurrence of hepatocyte apoptosis by regulating the p53 protein. Moreover, after Rg5 intervention, the presence of fibrotic proteins (α-SMA, Collagen 1, TGF-β) in the liver is significantly suppressed, thus inhibiting liver fibrosis. Lastly, Rg5 leads to a decrease in the expression levels of Notch1 and its ligand Jagged-1 in the liver. CONCLUSION In summary, the regulatory effects of Rg5 on the Notch1 signaling pathway play a crucial role in modulating hepatic lipid metabolism and preventing hepatocyte apoptosis, thereby impeding the progression of NASH. These findings highlight the potential of Rg5 as a promising natural product for interventions targeting NASH.
Collapse
Affiliation(s)
- Na Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an 710069, China.
| |
Collapse
|
5
|
Brown J, Mashima K, Fernandes S, Naeem A, Shupe S, Fardoun R, Davids M. Mutations Detected in Real World Clinical Sequencing during BTK Inhibitor Treatment in CLL. RESEARCH SQUARE 2024:rs.3.rs-3837426. [PMID: 38313250 PMCID: PMC10836097 DOI: 10.21203/rs.3.rs-3837426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
We retrospectively analyzed 609 chronic lymphocytic leukemia (CLL) patients treated with BTK inhibitors (BTKis) at Dana-Farber Cancer Institute from 2014 to 2022. Among them, 85 underwent next-generation sequencing (NGS) during or after BTKi therapy (ibrutinib, 64; acalabrutinib, 13; pirtobrutinib, 7; vecabrutinib, 1). Patients with NGS at progression (N=36, PD group) showed more 17p deletion, complex karyotype, and previous treatments including BTKi, compared to ongoing responders (N=49, NP group). 216 variants were found in 57 genes across both groups, with more variants in the PD group (158 variants, 70.3% pathogenic, P<0.001). The PD group had a higher incidence of pathogenic variants (70.3%, P<0.001), including 32 BTK(BTK C481S/F/R/Y, L528W, and T474I/L) and 4 PLCG2mutations. Notably, a high VAF L528W mutation was found in a first line ibrutinib-resistant patient. TP53, SF3B1, and NOTCH2mutations were also significantly more prevalent in the PD group (P<0.01, P<0.05, P<0.05). Additionally, MAPK pathway gene mutations trended more common and had higher VAFs in the PD group (P=0.041). T474 mutations were found in 4 of 6 patients progressing on pirtobrutinib, and BTK L528W mutation can arise with both covalent and non-covalent BTKi therapy. These results also suggest that RAS/RAF/MAPK pathway mutations may contribute to BTKi resistance.
Collapse
|
6
|
Pagliaro L, Cerretani E, Vento F, Montanaro A, Moron Dalla Tor L, Simoncini E, Giaimo M, Gherli A, Zamponi R, Tartaglione I, Lorusso B, Scita M, Russo F, Sammarelli G, Todaro G, Silini EM, Rigolin GM, Quaini F, Cuneo A, Roti G. CAD204520 Targets NOTCH1 PEST Domain Mutations in Lymphoproliferative Disorders. Int J Mol Sci 2024; 25:766. [PMID: 38255842 PMCID: PMC10815907 DOI: 10.3390/ijms25020766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
NOTCH1 PEST domain mutations are often seen in hematopoietic malignancies, including T-cell acute lymphoblastic leukemia (T-ALL), chronic lymphocytic leukemia (CLL), splenic marginal zone lymphoma (SMZL), mantle cell lymphoma (MCL), and diffuse large B-cell lymphoma (DLBCL). These mutations play a key role in the development and progression of lymphoproliferative tumors by increasing the Notch signaling and, consequently, promoting cell proliferation, survival, migration, and suppressing apoptosis. There is currently no specific treatment available for cancers caused by NOTCH1 PEST domain mutations. However, several NOTCH1 inhibitors are in development. Among these, inhibition of the Sarco-endoplasmic Ca2+-ATPase (SERCA) showed a greater effect in NOTCH1-mutated tumors compared to the wild-type ones. One example is CAD204520, a benzimidazole derivative active in T-ALL cells harboring NOTCH1 mutations. In this study, we preclinically assessed the effect of CAD204520 in CLL and MCL models and showed that NOTCH1 PEST domain mutations sensitize cells to the anti-leukemic activity mediated by CAD204520. Additionally, we tested the potential of CAD204520 in combination with the current first-line treatment of CLL, venetoclax, and ibrutinib. CAD204520 enhanced the synergistic effect of this treatment regimen only in samples harboring the NOTCH1 PEST domain mutations, thus supporting a role for Notch inhibition in these tumors. In summary, our work provides strong support for the development of CAD204520 as a novel therapeutic approach also in chronic lymphoproliferative disorders carrying NOTCH1 PEST domain mutations, emerging as a promising molecule for combination treatment in this aggressive subset of patients.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Elisa Cerretani
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.S.); (G.M.R.); (A.C.)
| | - Federica Vento
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.S.); (G.M.R.); (A.C.)
| | - Anna Montanaro
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
| | - Lucas Moron Dalla Tor
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
| | - Elisa Simoncini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
| | - Mariateresa Giaimo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Andrea Gherli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Raffaella Zamponi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Isotta Tartaglione
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
| | - Bruno Lorusso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
| | - Matteo Scita
- Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.S.); (G.M.R.); (A.C.)
| | - Filomena Russo
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Gabriella Sammarelli
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Giannalisa Todaro
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Enrico Maria Silini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
| | - Gian Matteo Rigolin
- Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.S.); (G.M.R.); (A.C.)
- Hematology Unit, University Hospital of Ferrara, 44121 Ferrara, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
| | - Antonio Cuneo
- Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.S.); (G.M.R.); (A.C.)
- Hematology Unit, University Hospital of Ferrara, 44121 Ferrara, Italy
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| |
Collapse
|
7
|
Balla B, Tripon F, Candea M, Banescu C. Copy Number Variations and Gene Mutations Identified by Multiplex Ligation-Dependent Probe Amplification in Romanian Chronic Lymphocytic Leukemia Patients. J Pers Med 2023; 13:1239. [PMID: 37623489 PMCID: PMC10455273 DOI: 10.3390/jpm13081239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is known for its wide-ranging clinical and genetic diversity. The study aimed to assess the associations between copy number variations (CNVs) and various biological and clinical features, as well as the survival rates of CLL patients and to evaluate the effectiveness of the multiplex ligation-dependent probe amplification (MLPA) technique in CLL patients.DNA was extracted from 110 patients, and MLPA was performed. Mutations in NOTCH1, SF3B1, and MYD88 were also analyzed. A total of 52 patients showed at least one CNV, 26 had at least one somatic mutation, and 10 presented both, CNVs, and somatic mutations. The most commonly identified CNVs were del(114.3), del(11q22.3), and dup(12q23.2). Other CNVs identified included del(17p13.1), del(14q32.33), dup(10q23.31), and del(19p13.2). One patient was identified with concomitant trisomy 12, 13, and 19. NOTCH1 and SF3B1 mutations were found in 13 patients each, either alone or in combination with other mutations or CNVs, while MYD88 mutation was identified in one patient. Forty-two patients had normal results. Associations between the investigated CNVs and gene mutations and patients' overall survival were found. The presence of NOTCH1 and SF3B1 mutations or the combination of NOTCH1 mutation and CNVs significantly influenced the survival of patients with CLL. Both mutations are frequently associated with different CNVs. Del(13q) is associated with the longest survival rate, while the shortest survival is found in patients with del(17p). Even if MLPA has constraints, it may be used as the primary routine analysis in patients with CLL.
Collapse
Affiliation(s)
- Beata Balla
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Florin Tripon
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Marcela Candea
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Claudia Banescu
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Medical Genetics Laboratory, Emergency County Hospital of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
8
|
Abolhasani S, Hejazian SS, Karpisheh V, Khodakarami A, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of SF3B1 and NOTCH1 in the pathogenesis of leukemia. IUBMB Life 2023; 75:257-278. [PMID: 35848163 DOI: 10.1002/iub.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/18/2022] [Indexed: 11/09/2022]
Abstract
The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.
Collapse
Affiliation(s)
- Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
De Falco F, Rompietti C, Sorcini D, Esposito A, Scialdone A, Baldoni S, Del Papa B, Adamo FM, Silva Barcelos EC, Dorillo E, Stella A, Di Ianni M, Screpanti I, Sportoletti P, Rosati E. GSK3β is a critical, druggable component of the network regulating the active NOTCH1 protein and cell viability in CLL. Cell Death Dis 2022; 13:755. [PMID: 36050315 PMCID: PMC9436923 DOI: 10.1038/s41419-022-05178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023]
Abstract
NOTCH1 alterations have been associated with chronic lymphocytic leukemia (CLL), but the molecular mechanisms underlying NOTCH1 activation in CLL cells are not completely understood. Here, we show that GSK3β downregulates the constitutive levels of the active NOTCH1 intracellular domain (N1-ICD) in CLL cells. Indeed, GSK3β silencing by small interfering RNA increases N1-ICD levels, whereas expression of an active GSK3β mutant reduces them. Additionally, the GSK3β inhibitor SB216763 enhances N1-ICD stability at a concentration at which it also increases CLL cell viability. We also show that N1-ICD is physically associated with GSK3β in CLL cells. SB216763 reduces GSK3β/N1-ICD interactions and the levels of ubiquitinated N1-ICD, indicating a reduction in N1-ICD proteasomal degradation when GSK3β is less active. We then modulated the activity of two upstream regulators of GSK3β and examined the impact on N1-ICD levels and CLL cell viability. Specifically, we inhibited AKT that is a negative regulator of GSK3β and is constitutively active in CLL cells. Furthermore, we activated the protein phosphatase 2 A (PP2A) that is a positive regulator of GSK3β, and has an impaired activity in CLL. Results show that either AKT inhibition or PP2A activation reduce N1-ICD expression and CLL cell viability in vitro, through mechanisms mediated by GSK3β activity. Notably, for PP2A activation, we used the highly specific activator DT-061, that also reduces leukemic burden in peripheral blood, spleen and bone marrow in the Eµ-TCL1 adoptive transfer model of CLL, with a concomitant decrease in N1-ICD expression. Overall, we identify in GSK3β a key component of the network regulating N1-ICD stability in CLL, and in AKT and PP2A new druggable targets for disrupting NOTCH1 signaling with therapeutic potential.
Collapse
Affiliation(s)
- Filomena De Falco
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Chiara Rompietti
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Daniele Sorcini
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Angela Esposito
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Annarita Scialdone
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy ,grid.412451.70000 0001 2181 4941Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Del Papa
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Francesco Maria Adamo
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Estevão Carlos Silva Barcelos
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Erica Dorillo
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Arianna Stella
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- grid.412451.70000 0001 2181 4941Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy ,grid.461844.bDepartment of Oncology and Hematology, Ospedale Civile “Santo Spirito”, ASL Pescara, Pescara, Italy
| | - Isabella Screpanti
- grid.7841.aDepartment of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Paolo Sportoletti
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Emanuela Rosati
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
11
|
Zhang Q, Zhu Z, Guan J, Hu Y, Zhou W, Ye W, Lin B, Weng S, Chen Y, Zheng C. Hes1 Controls Proliferation and Apoptosis in Chronic Lymphoblastic Leukemia Cells by Modulating PTEN Expression. Mol Biotechnol 2022; 64:1419-1430. [PMID: 35704163 DOI: 10.1007/s12033-022-00476-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/02/2022] [Indexed: 12/26/2022]
Abstract
Hairy and enhancer of split homolog-1 (HES1), regulated by the Notch, has been reported to play important roles in the immune response and cancers, such as leukemia. In this study, we aim to explore the effect of HES1-mediated Notch1 signaling pathway in chronic lymphocytic leukemia (CLL). Reverse transcription quantitative polymerase chain reaction and Western blot assay were conducted to determine the expression of HES1, Notch1, and PTEN in B lymphocytes of peripheral blood samples of 60 CLL patients. We used lentivirus-mediated overexpression or silencing of HES1 and the Notch1 signaling pathway inhibitor, MW167, to detect the interaction among HES1, Notch1, and PTEN in CLL MEC1 and HG3 cells. MTT assay and flow cytometry were employed for detection of biological behaviors of CLL cells. HES1 and Notch1 showed high expression, but PTEN displayed low expression in B lymphocytes of peripheral blood samples of patients with CLL in association with poor prognosis. HES1 bound to the promoter region of PTEN and reduced PTEN expression. Overexpression of HES1 activated the Notch1 signaling pathway, thus promoting the proliferation of CLL cells, increasing the proportion of cells arrested at the S phase and limiting the apoptosis of CLL cells. Collectively, HES1 can promote activation of the Notch1 signaling pathway to cause PTEN transcription inhibition and the subsequent expression reduction, thereby promoting the proliferation and inhibiting the apoptosis of CLL cells.
Collapse
Affiliation(s)
- Qikai Zhang
- Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Zongsi Zhu
- Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Jiaqiang Guan
- Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yingying Hu
- Department of Haematology and Chemotherapy, Wenzhou Central Hospital, Theorem Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Wenjin Zhou
- Department of Chemotherapy, Cancer Hospital of The University of Chinese Academy of Science, Wenzhou Campus, Wenzhou, 325000, People's Republic of China
| | - Wanchun Ye
- Department of Chemotherapy, Cancer Hospital of The University of Chinese Academy of Science, Wenzhou Campus, Wenzhou, 325000, People's Republic of China
| | - Bijing Lin
- Department of Haematology and Chemotherapy, Wenzhou Central Hospital, Theorem Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Shanshan Weng
- Department of Haematology and Chemotherapy, Wenzhou Central Hospital, Theorem Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yuemiao Chen
- Department of Haematology and Chemotherapy, Wenzhou Central Hospital, Theorem Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Cuiping Zheng
- Department of Haematology and Chemotherapy, Wenzhou Central Hospital, Theorem Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Tambaro FP, De Novellis D, Wierda WG. The Role of BTK Inhibition in the Treatment of Chronic Lymphocytic Leukemia: A Clinical View. J Exp Pharmacol 2021; 13:923-935. [PMID: 34744463 PMCID: PMC8565990 DOI: 10.2147/jep.s265284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
The B cell receptor (BCR) signaling pathway is functional and has critical cell survival implications in B cell malignancies, such as chronic lymphocytic leukemia (CLL). Orally administered small molecule tyrosine kinase inhibitors of members of the BCR signaling pathway have proven to be transformational in treatment of CLL. The first-generation inhibitor, ibrutinib, covalently binds to the C481 amino acid of Bruton's tyrosine kinase (BTK), thereby irreversibly inhibiting its kinase activity, and interferes with the biology of the cells, ultimately resulting in CLL cell death and therapeutic response. Remissions are not deep to the point of considering discontinuation for most patients, but BTK-inhibitor-based therapy provides exceptional long-term disease control with continuous treatment. There are in-class toxicities and more selective second- and subsequent-generation agents and reversible inhibitors have been developed with the intent of reducing toxicities. Also, strategies to subvert resistance have included tighter or alternative, non-covalent, inhibitor binding. Furthermore, other strategies to deplete BTK protein, such as degraders, are in development and being tested in the clinic. Ultimately, the development and approval of these agents targeting BTK have ushered in a new era of chemotherapy-free treatments with remarkably improved survival outcomes for patients with CLL.
Collapse
Affiliation(s)
- Francesco Paolo Tambaro
- Unità Operativa di Trapianto di Midollo Osseo e Servizio Trasfusionale, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, Napoli, Italy
| | - Danilo De Novellis
- Unità Operativa di Trapianto di Midollo Osseo e Servizio Trasfusionale, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, Napoli, Italy
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Napoli, Italy
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
14
|
Pacholewska A, Grimm C, Herling CD, Lienhard M, Königs A, Timmermann B, Altmüller J, Mücke O, Reinhardt HC, Plass C, Herwig R, Hallek M, Schweiger MR. Altered DNA Methylation Profiles in SF3B1 Mutated CLL Patients. Int J Mol Sci 2021; 22:ijms22179337. [PMID: 34502260 PMCID: PMC8431484 DOI: 10.3390/ijms22179337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in splicing factor genes have a severe impact on the survival of cancer patients. Splicing factor 3b subunit 1 (SF3B1) is one of the most frequently mutated genes in chronic lymphocytic leukemia (CLL); patients carrying these mutations have a poor prognosis. Since the splicing machinery and the epigenome are closely interconnected, we investigated whether these alterations may affect the epigenomes of CLL patients. While an overall hypomethylation during CLL carcinogenesis has been observed, the interplay between the epigenetic stage of the originating B cells and SF3B1 mutations, and the subsequent effect of the mutations on methylation alterations in CLL, have not been investigated. We profiled the genome-wide DNA methylation patterns of 27 CLL patients with and without SF3B1 mutations and identified local decreases in methylation levels in SF3B1mut CLL patients at 67 genomic regions, mostly in proximity to telomeric regions. These differentially methylated regions (DMRs) were enriched in gene bodies of cancer-related signaling genes, e.g., NOTCH1, HTRA3, and BCL9L. In our study, SF3B1 mutations exclusively emerged in two out of three epigenetic stages of the originating B cells. However, not all the DMRs could be associated with the methylation programming of B cells during development, suggesting that mutations in SF3B1 cause additional epigenetic aberrations during carcinogenesis.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Institute for Translational Epigenetics, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (A.P.); (C.G.); (A.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Christina Grimm
- Institute for Translational Epigenetics, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (A.P.); (C.G.); (A.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Carmen D. Herling
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (C.D.H.); (H.C.R.); (M.H.)
| | - Matthias Lienhard
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; (M.L.); (R.H.)
| | - Anja Königs
- Institute for Translational Epigenetics, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (A.P.); (C.G.); (A.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany;
| | - Oliver Mücke
- German Cancer Research Center, Cancer Epigenomics, 69120 Heidelberg, Germany; (O.M.); (C.P.)
| | - Hans Christian Reinhardt
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (C.D.H.); (H.C.R.); (M.H.)
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- West German Cancer Center Essen, Department of Hematology and Stem Cell Transplantation, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Plass
- German Cancer Research Center, Cancer Epigenomics, 69120 Heidelberg, Germany; (O.M.); (C.P.)
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; (M.L.); (R.H.)
| | - Michael Hallek
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (C.D.H.); (H.C.R.); (M.H.)
| | - Michal R. Schweiger
- Institute for Translational Epigenetics, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (A.P.); (C.G.); (A.K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
15
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
|
17
|
Overcoming of Microenvironment Protection on Primary Chronic Lymphocytic Leukemia Cells after Treatment with BTK and MDM2 Pharmacological Inhibitors. ACTA ACUST UNITED AC 2021; 28:2439-2451. [PMID: 34287267 PMCID: PMC8293193 DOI: 10.3390/curroncol28040223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022]
Abstract
In B-chronic lymphocytic leukemia (B-CLL), the interaction between leukemic cells and the microenvironment promotes tumor cell survival. The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib is one of the first-in-class molecules for the treatment of B-CLL patients; however, the emerging mechanisms of resistance to ibrutinib call for new therapeutic strategies. The purpose of the current study was to investigate the ability of ibrutinib plus the MDM2-inhibitor nutlin-3 to counteract the tumor microenvironment protective effect. We observed that primary B-CLL cells cultivated in microenvironment mimicking conditions were protected from apoptosis by the up-regulation of c-MYC and of p53. In the same setting, combined treatments with ibrutinib plus nutlin-3 led to significantly higher levels of apoptosis compared to the single treatments, counteracting the c-MYC up-regulation. Moreover, the combination induced high p53 levels and a significant dissipation of the mitochondrial membrane potential, together with BAX cleavage in the more active p18 form and phospho-BAD down-regulation, that are key components of the mitochondrial apoptotic pathway, enhancing the apoptosis level. Our findings propose a new therapeutic strategy to overcome the tumor microenvironment protection involved in B-CLL resistance to drugs, with possible clinical implications also for other hematologic and solid tumors for which ibrutinib is considered a therapeutic option.
Collapse
|
18
|
Griffen TL, Dammer EB, Dill CD, Carey KM, Young CD, Nunez SK, Ohandjo AQ, Kornblau SM, Lillard JW. Multivariate transcriptome analysis identifies networks and key drivers of chronic lymphocytic leukemia relapse risk and patient survival. BMC Med Genomics 2021; 14:171. [PMID: 34187466 PMCID: PMC8243588 DOI: 10.1186/s12920-021-01012-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/10/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is an indolent heme malignancy characterized by the accumulation of CD5+ CD19+ B cells and episodes of relapse. The biological signaling that influence episodes of relapse in CLL are not fully described. Here, we identify gene networks associated with CLL relapse and survival risk. METHODS Networks were investigated by using a novel weighted gene network co-expression analysis method and examining overrepresentation of upstream regulators and signaling pathways within co-expressed transcriptome modules across clinically annotated transcriptomes from CLL patients (N = 203). Gene Ontology analysis was used to identify biological functions overrepresented in each module. Differential Expression of modules and individual genes was assessed using an ANOVA (Binet Stage A and B relapsed patients) or T-test (SF3B1 mutations). The clinical relevance of biomarker candidates was evaluated using log-rank Kaplan Meier (survival and relapse interval) and ROC tests. RESULTS Eight distinct modules (M2, M3, M4, M7, M9, M10, M11, M13) were significantly correlated with relapse and differentially expressed between relapsed and non-relapsed Binet Stage A CLL patients. The biological functions of modules positively correlated with relapse were carbohydrate and mRNA metabolism, whereas negatively correlated modules to relapse were protein translation associated. Additionally, M1, M3, M7, and M13 modules negatively correlated with overall survival. CLL biomarkers BTK, BCL2, and TP53 were co-expressed, while unmutated IGHV biomarker ZAP70 and cell survival-associated NOTCH1 were co-expressed in modules positively correlated with relapse and negatively correlated with survival days. CONCLUSIONS This study provides novel insights into CLL relapse biology and pathways associated with known and novel biomarkers for relapse and overall survival. The modules associated with relapse and overall survival represented both known and novel pathways associated with CLL pathogenesis and can be a resource for the CLL research community. The hub genes of these modules, e.g., ARHGAP27P2, C1S, CASC2, CLEC3B, CRY1, CXCR5, FUT5, MID1IP1, and URAHP, can be studied further as new therapeutic targets or clinical markers to predict CLL patient outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Gene Expression Profiling
- Gene Regulatory Networks
- Male
- Female
- Recurrence
- Multivariate Analysis
- Biomarkers, Tumor/genetics
- Middle Aged
- Transcriptome
- Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Prognosis
Collapse
Affiliation(s)
- Ti'ara L Griffen
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Courtney D Dill
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Kaylin M Carey
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Corey D Young
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Sha'Kayla K Nunez
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Adaugo Q Ohandjo
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Steven M Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA.
| |
Collapse
|
19
|
Baldoni S, Del Papa B, De Falco F, Dorillo E, Sorrentino C, Rompietti C, Adamo FM, Nogarotto M, Cecchini D, Mondani E, Silva Barcelos EC, Moretti L, Mameli MG, Fabi B, Sorcini D, Stella A, Giancola R, Guardalupi F, Ulbar F, Plebani S, Guarente V, Rosati E, Di Nicola M, Marchioni M, Di Ianni M, Sportoletti P. NOTCH1 Activation Negatively Impacts on Chronic Lymphocytic Leukemia Outcome and Is Not Correlated to the NOTCH1 and IGHV Mutational Status. Front Oncol 2021; 11:668573. [PMID: 34123837 PMCID: PMC8187905 DOI: 10.3389/fonc.2021.668573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
NOTCH1 mutations and deregulated signal have been commonly found in chronic lymphocytic leukemia (CLL) patients. Whereas the impact of NOTCH1 mutations on clinical course of CLL has been widely studied, the prognostic role of NOTCH1 activation in CLL remains to be defined. Here, we analyzed the activation of NOTCH1/NOTCH2 (ICN1/ICN2) and the expression of JAGGED1 (JAG1) in 163 CLL patients and evaluated their impact on TTFT (Time To First Treatment) and OS (Overall Survival). NOTCH1 activation (ICN1+) was found in 120/163 (73.6%) patients. Among them, 63 (52.5%) were NOTCH1 mutated (ICN1+/mutated) and 57 (47.5%) were NOTCH1 wild type (ICN1+/WT). ICN1+ patients had a significant reduction of TTFT compared to ICN1-negative (ICN1-). In the absence of NOTCH1 mutations, we found that the ICN1+/WT group had a significantly reduced TTFT compared to ICN1- patients. The analysis of IGHV mutational status showed that the distribution of the mutated/unmutated IGHV pattern was similar in ICN1+/WT and ICN1- patients. Additionally, TTFT was significantly reduced in ICN1+/ICN2+ and ICN1+/JAG1+ patients compared to ICN1-/ICN2- and ICN1-/JAG1- groups. Our data revealed for the first time that NOTCH1 activation is a negative prognosticator in CLL and is not correlated to NOTCH1 and IGHV mutational status. Activation of NOTCH2 and JAGGED1 expression might also influence clinical outcomes in this group, indicating the need for further dedicated studies. The evaluation of different NOTCH network components might represent a new approach to refine CLL risk stratification.
Collapse
Affiliation(s)
- Stefano Baldoni
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Del Papa
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Filomena De Falco
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Erica Dorillo
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlo Sorrentino
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Chiara Rompietti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Maria Adamo
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Manuel Nogarotto
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Debora Cecchini
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Mondani
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Estevao Carlos Silva Barcelos
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Department of Biological Sciences, Postgraduate Program in Biotechnology (UFES), Federal University of Espirito Santo, Vitoria, Brazil
| | - Lorenzo Moretti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Maria Grazia Mameli
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Bianca Fabi
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Daniele Sorcini
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Arianna Stella
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Raffaella Giancola
- Department of Oncology and Hematology, "Santo Spirito" Hospital, Pescara, Italy
| | - Francesco Guardalupi
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ulbar
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Plebani
- Hematology Unit, "San Salvatore" Hospital, L'Aquila, Italy
| | - Valerio Guarente
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Oncology and Hematology, "Santo Spirito" Hospital, Pescara, Italy
| | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
20
|
Baldoni S, Ruggeri L, Del Papa B, Sorcini D, Guardalupi F, Ulbar F, Marra A, Dorillo E, Stella A, Giancola R, Fabi B, Sola R, Ciardelli S, De Falco F, Rompietti C, Adamo FM, Rosati E, Pierini A, Sorrentino C, Sportoletti P, Di Ianni M. NOTCH1 inhibition prevents GvHD and maintains GvL effect in murine models. Bone Marrow Transplant 2021; 56:2019-2023. [PMID: 33875813 DOI: 10.1038/s41409-021-01297-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Stefano Baldoni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Loredana Ruggeri
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Beatrice Del Papa
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Daniele Sorcini
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Francesco Guardalupi
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ulbar
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Andrea Marra
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Erica Dorillo
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Arianna Stella
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Raffaella Giancola
- Department of Oncology and Hematology, Ospedale Civile "Santo Spirito", ASL Pescara, Pescara, Italy
| | - Bianca Fabi
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rosaria Sola
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Sara Ciardelli
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Filomena De Falco
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Chiara Rompietti
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Francesco Maria Adamo
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonio Pierini
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Paolo Sportoletti
- Institute of Hematology, Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Department of Oncology and Hematology, Ospedale Civile "Santo Spirito", ASL Pescara, Pescara, Italy.
| |
Collapse
|
21
|
Böttcher M, Bruns H, Völkl S, Lu J, Chartomatsidou E, Papakonstantinou N, Mentz K, Büttner-Herold M, Zenz T, Herling M, Huber W, Ghia P, Stamatopoulos K, Mackensen A, Mougiakakos D. Control of PD-L1 expression in CLL-cells by stromal triggering of the Notch-c-Myc-EZH2 oncogenic signaling axis. J Immunother Cancer 2021; 9:e001889. [PMID: 33931470 PMCID: PMC8098943 DOI: 10.1136/jitc-2020-001889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/04/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Emerging data suggest that CLL-cells efficiently evade immunosurveillance. T-cell deficiencies in CLL include immuno(metabolic) exhaustion that is achieved by inhibitory molecules, with programmed cell death 1/programmed cell death ligand 1 (PD-L1) signaling emerging as a major underlying mechanism. Moreover, CLL-cells are characterized by a close and recurrent interaction with their stromal niches in the bone marrow and lymph nodes. Here, they receive nurturing signals within a well-protected environment. We could previously show that the interaction of CLL-cells with stroma leads to c-Myc activation that is followed by metabolic adaptations. Recent data indicate that c-Myc also controls expression of the immune checkpoint molecule PD-L1. Therefore, we sought out to determine the role of stromal contact for the CLL-cells' PD-L1 expression and thus their immuno-evasive phenotype.To do so, we analyzed PD-L1 expression on CLL cell (subsets) in untreated patients and on healthy donor-derived B-cells. Impact of stromal contact on PD-L1 expression on CLL-cells and the underlying signaling pathways were assessed in well-established in vitro niche models. Ex vivo and in vitro findings were validated in the Eµ-TCL1 transgenic CLL mouse model.We found increased PD-L1 expression on CLL-cells as compared with B-cells that was further enhanced in a cell-to-cell contact-dependent manner by stromal cells. In fact, circulating recent stromal-niche emigrants displayed higher PD-L1 levels than long-time circulating CLL-cells. Using our in vitro niche model, we show that a novel Notch-c-Myc-enhancer of zeste homolog 2 (EZH2) signaling axis controls PD-L1 upregulation. Ultimately, elevated PD-L1 levels conferred increased resistance towards activated autologous T-cells.In summary, our findings support the notion that the CLL microenvironment contributes to immune escape variants. In addition, several targetable molecules (eg, Notch or EZH2) could be exploited in view of improving immune responses in patients with CLL, which warrants further in-depth investigation.
Collapse
MESH Headings
- Animals
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Case-Control Studies
- Cell Line
- Coculture Techniques
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphocyte Activation
- Mice, Inbred C57BL
- Mice, Transgenic
- Paracrine Communication
- Proto-Oncogene Proteins c-myc/metabolism
- Receptors, Notch/metabolism
- Signal Transduction
- Stromal Cells/immunology
- Stromal Cells/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Cells, Cultured
- Tumor Escape
- Tumor Microenvironment
- Mice
Collapse
Affiliation(s)
- Martin Böttcher
- Department of Internal Medicine 5 for Hematology and Oncology, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5 for Hematology and Oncology, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Simon Völkl
- Department of Internal Medicine 5 for Hematology and Oncology, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Junyan Lu
- Genome Biology Unit, EMBL, Heidelberg, Baden-Württemberg, Germany
| | - Elisavet Chartomatsidou
- Division of Experimental Oncology and Department of Onco-Hematology, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Nikos Papakonstantinou
- Institute of Applied Biosciences, Centre for Research and Technology-Hellas, Thessaloniki, Central Macedonia, Greece
| | - Kristin Mentz
- Department of Internal Medicine 5 for Hematology and Oncology, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Marco Herling
- Department I of Internal Medicine, CMMC, CECAD, CIO-ABCD, University of Cologne, Köln, Nordrhein-Westfalen, Germany
| | - Wolfgang Huber
- Genome Biology Unit, EMBL, Heidelberg, Baden-Württemberg, Germany
| | - Paolo Ghia
- Division of Experimental Oncology and Department of Onco-Hematology, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology-Hellas, Thessaloniki, Central Macedonia, Greece
| | - Andreas Mackensen
- Department of Internal Medicine 5 for Hematology and Oncology, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5 for Hematology and Oncology, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| |
Collapse
|
22
|
Kater AP, Wu JQ, Kipps T, Eichhorst B, Hillmen P, D’Rozario J, Assouline S, Owen C, Robak T, de la Serna J, Jaeger U, Cartron G, Montillo M, Dubois J, Eldering E, Mellink C, Van Der Kevie-Kersemaekers AM, Kim SY, Chyla B, Punnoose E, Bolen CR, Assaf ZJ, Jiang Y, Wang J, Lefebure M, Boyer M, Humphrey K, Seymour JF. Venetoclax Plus Rituximab in Relapsed Chronic Lymphocytic Leukemia: 4-Year Results and Evaluation of Impact of Genomic Complexity and Gene Mutations From the MURANO Phase III Study. J Clin Oncol 2020; 38:4042-4054. [PMID: 32986498 PMCID: PMC7768340 DOI: 10.1200/jco.20.00948] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE In previous analyses of the MURANO study, fixed-duration venetoclax plus rituximab (VenR) resulted in improved progression-free survival (PFS) compared with bendamustine plus rituximab (BR) in patients with relapsed or refractory chronic lymphocytic leukemia (CLL). At the 4-year follow-up, we report long-term outcomes, response to subsequent therapies, and the predictive value of molecular and genetic characteristics. PATIENTS AND METHODS Patients with CLL were randomly assigned to 2 years of venetoclax (VenR for the first six cycles) or six cycles of BR. PFS, overall survival (OS), peripheral-blood minimal residual disease (MRD) status, genomic complexity (GC), and gene mutations were assessed. RESULTS Of 389 patients, 194 were assigned to VenR and 195 to BR. Four-year PFS and OS rates were higher with VenR than BR, at 57.3% and 4.6% (hazard ratio [HR], 0.19; 95% CI, 0.14 to 0.25), and 85.3% and 66.8% (HR, 0.41; 95% CI, 0.26 to 0.65), respectively. Undetectable MRD (uMRD) at end of combination therapy (EOCT) was associated with superior PFS compared with low MRD positivity (HR, 0.50) and high MRD positivity (HR, 0.15). Patients in the VenR arm who received ibrutinib as their first therapy after progression (n = 12) had a reported response rate of 100% (10 of 10 evaluable patients); patients subsequently treated with a venetoclax-based regimen (n = 14) had a reported response rate of 55% (six of 11 evaluable patients). With VenR, the uMRD rate at end of treatment (EOT) was lower in patients with GC than in those without GC (P = .042); higher GC was associated with shorter PFS. Higher MRD positivity rates were seen with BIRC3 and BRAF mutations at EOCT and with TP53, NOTCH1, XPO1, and BRAF mutations at EOT. CONCLUSION Efficacy benefits with fixed-duration VenR are sustained and particularly durable in patients who achieve uMRD. Salvage therapy with ibrutinib after VenR achieved high response rates. Genetic mutations and GC affected MRD rates and PFS.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/adverse effects
- Follow-Up Studies
- Humans
- Kaplan-Meier Estimate
- Karyopherins/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Mutation
- Progression-Free Survival
- Proto-Oncogene Proteins B-raf/genetics
- Receptor, Notch1/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Rituximab/administration & dosage
- Rituximab/adverse effects
- Sulfonamides/administration & dosage
- Sulfonamides/adverse effects
- Treatment Outcome
- Tumor Suppressor Protein p53/genetics
- Exportin 1 Protein
Collapse
Affiliation(s)
- Arnon P. Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Academic Medical Center, on behalf of Hovon Chronic Lymphocytic Leukemia Working Group, Amsterdam, the Netherlands
| | | | - Thomas Kipps
- University of California School of Medicine, San Diego, CA
| | | | - Peter Hillmen
- St James’s University Hospital, Leeds, United Kingdom
| | - James D’Rozario
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Sarit Assouline
- Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Tadeusz Robak
- Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | | | - Ulrich Jaeger
- Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Guillaume Cartron
- Department of Clinical Hematology, University Hospital Montpellier, Montpellier, France
| | - Marco Montillo
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Julie Dubois
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Academic Medical Center, on behalf of Hovon Chronic Lymphocytic Leukemia Working Group, Amsterdam, the Netherlands
| | - Eric Eldering
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Academic Medical Center, on behalf of Hovon Chronic Lymphocytic Leukemia Working Group, Amsterdam, the Netherlands
| | - Clemens Mellink
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Academic Medical Center, on behalf of Hovon Chronic Lymphocytic Leukemia Working Group, Amsterdam, the Netherlands
| | - Anne-Marie Van Der Kevie-Kersemaekers
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Academic Medical Center, on behalf of Hovon Chronic Lymphocytic Leukemia Working Group, Amsterdam, the Netherlands
| | | | | | | | | | | | | | - Jue Wang
- Genentech, South San Francisco, CA
| | | | - Michelle Boyer
- Roche Products Limited, Welwyn Garden City, United Kingdom
| | | | - John F. Seymour
- Royal Melbourne Hospital, Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Targeting Nuclear NOTCH2 by Gliotoxin Recovers a Tumor-Suppressor NOTCH3 Activity in CLL. Cells 2020; 9:cells9061484. [PMID: 32570839 PMCID: PMC7348714 DOI: 10.3390/cells9061484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
NOTCH signaling represents a promising therapeutic target in chronic lymphocytic leukemia (CLL). We compared the anti-neoplastic effects of the nuclear NOTCH2 inhibitor gliotoxin and the pan-NOTCH γ-secretase inhibitor RO4929097 in primary CLL cells with special emphasis on the individual roles of the different NOTCH receptors. Gliotoxin rapidly induced apoptosis in all CLL cases tested, whereas RO4929097 exerted a variable and delayed effect on CLL cell viability. Gliotoxin-induced apoptosis was associated with inhibition of the NOTCH2/FCER2 (CD23) axis together with concomitant upregulation of the NOTCH3/NR4A1 axis. In contrast, RO4929097 downregulated the NOTCH3/NR4A1 axis and counteracted the spontaneous and gliotoxin-induced apoptosis. On the cell surface, NOTCH3 and CD23 expression were mutually exclusive, suggesting that downregulation of NOTCH2 signaling is a prerequisite for NOTCH3 expression in CLL cells. ATAC-seq confirmed that gliotoxin targeted the canonical NOTCH signaling, as indicated by the loss of chromatin accessibility at the potential NOTCH/CSL site containing the gene regulatory elements. This was accompanied by a gain in accessibility at the NR4A1, NFκB, and ATF3 motifs close to the genes involved in B-cell activation, differentiation, and apoptosis. In summary, these data show that gliotoxin recovers a non-canonical tumor-suppressing NOTCH3 activity, indicating that nuclear NOTCH2 inhibitors might be beneficial compared to pan-NOTCH inhibitors in the treatment of CLL.
Collapse
|