1
|
Prasad D, Baldelli E, Blais EM, Davis J, El Gazzah E, Mueller C, Gomeiz A, Ibrahim A, Newrekar AV, Corgiat BA, Dunetz R, Petricoin Iii EF, Wei Q, Pierobon M. Functional activation of the AKT-mTOR signalling axis in a real-world metastatic breast cancer cohort. Br J Cancer 2024; 131:1543-1554. [PMID: 39322687 PMCID: PMC11519601 DOI: 10.1038/s41416-024-02852-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Mutations of the PIK3CA/AKT/mTOR axis are common events in metastatic breast cancers (MBCs). This study was designed to evaluate the extent to which genetic alterations of the PIK3CA/AKT/mTOR can predict protein activation of this signalling axis in MBCs. METHODS Molecular profiles were generated by CLIA-certified laboratories from a real-world evidence cohort of 171 MBC patients. Genetic alterations of the PIK3CA pathway were measured using next-generation sequencing. Activation levels of AKT and downstream signalling molecules were quantified using two orthogonal proteomic methods. Protein activity was correlated with underlying genomic profiles and response to CDK4/6 inhibition in combination with endocrine treatment (ET). RESULTS Oncogenic alterations of the PIK3CA/AKT/PTEN pathway were identified in 49.7% of cases. Genomic profiles emerged as poor predictors of protein activity (AUC:0.69), and AKT phosphorylation levels mimicked those of mutant lesions in 76.9% of wild-type tumours. High phosphorylation levels of the PI3K/AKT/mTOR downstream target p70S6 Kinase (T389) were associated with shorter PFS in patients treated with CDK4/6 inhibitors in combination with ET (HR:4.18 95%CI:1.19-14.63); this association was not seen when patients were classified by mutational status. CONCLUSIONS Phosphoprotein-based measurements of drug targets and downstream substrates should be captured along with genomic information to identify MBCs driven by the PI3K/AKT/mTOR signalling.
Collapse
Affiliation(s)
- Deepika Prasad
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | | | | | - Emna El Gazzah
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | | | - Alison Gomeiz
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Aisha Ibrahim
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | | | | | | | - Emanuel F Petricoin Iii
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Qi Wei
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Mariaelena Pierobon
- School of Systems Biology, George Mason University, Manassas, VA, USA.
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA.
| |
Collapse
|
2
|
Cascardo F, Vivanco M, Perrone MC, Werbach A, Enrico D, Mando P, Amat M, Martínez-Vazquez P, Burruchaga J, Mac Donnell M, Lanari C, Zwenger A, Waisberg F, Novaro V. Higher risk of recurrence in early-stage breast cancer patients with increased levels of ribosomal protein S6. Sci Rep 2024; 14:25136. [PMID: 39448637 PMCID: PMC11502685 DOI: 10.1038/s41598-024-75154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
PI3K/AKT/mTOR pathway is implicated in breast cancer progression and recurrence. The identification of PIK3CA and AKT1 mutations and loss of PTEN serve as selection criterion for targeted therapies involving selective inhibitors. However, they do not consistently align with pathway activation, and high-cost determinations limit their routine application. PI3K-downstream epigenetic regulatory mechanisms broaden the alterations that amplify pathway activity and, consequently, sensitivity to selective inhibitors. In this retrospective observational study, conducted within a cohort of early-stage breast cancer patients, we determined phosphorylated ribosomal protein S6 (pS6) at Ser240/244 by immunohistochemistry as an indicator of PI3K pathway activation. Log-Rank test and Cox proportional hazards regression were used to analyze the clinical relevance of pS6, alone and together with clinicopathological variables, regarding recurrence-free survival. ROC curves and the area under the curves were used to evaluate the calibration and discrimination properties of uni- and multivariate models. Our results show that a high percentage of pS6 positive tumor cells was associated with an unfavorable prognosis in a cohort of 129 hormone receptor positive/HER2 negative breast cancer patients (Hazard Ratio = 5.92; Log-Rank p = 9.5e-08; median follow-up = 53 months). When assessed in combination with lymph node status, the predictive capacity was higher compared to both univariate models individually. In conclusion, pS6 could represent a novel independent marker for predicting recurrence risk in luminal breast cancer.
Collapse
Affiliation(s)
- Florencia Cascardo
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Micaela Vivanco
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Perrone
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Werbach
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Enrico
- Instituto Alexander Fleming (IAF), Buenos Aires, Argentina
| | - Pablo Mando
- Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Mora Amat
- Instituto Alexander Fleming (IAF), Buenos Aires, Argentina
| | | | - Javier Burruchaga
- Hospital de Agudos "Magdalena V. de Martínez", General Pacheco, Buenos Aires, Argentina
| | - María Mac Donnell
- Hospital Provincial de Neuquén "Dr. Castro Rendón", Neuquén, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ariel Zwenger
- Hospital Provincial de Neuquén "Dr. Castro Rendón", Neuquén, Argentina
- Grupo Oncológico Cooperativo del Sur (GOCS), Neuquén, Argentina
| | | | - Virginia Novaro
- Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Ueda H, Ishiguro T, Mori Y, Yamawaki K, Okamoto K, Enomoto T, Yoshihara K. Glycolysis-mTORC1 crosstalk drives proliferation of patient-derived endometrial cancer spheroid cells with ALDH activity. Cell Death Discov 2024; 10:435. [PMID: 39394200 PMCID: PMC11470041 DOI: 10.1038/s41420-024-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
Cancer stem cells are associated with aggressive phenotypes of malignant tumors. A prominent feature of uterine endometrial cancer is the activation of the PI3K-Akt-mTOR pathway. In this study, we present variations in sensitivities to a PI3K-Akt-mTORC1 inhibitor among in vitro endometrial cancer stem cell-enriched spheroid cells from clinical specimens. The in vitro sensitivity was consistent with the effects observed in in vivo spheroid-derived xenograft tumor models. Our findings revealed a complementary suppressive effect on endometrial cancer spheroid cell growth with the combined use of aldehyde dehydrogenase (ALDH) and PI3K-Akt inhibitors. In the PI3K-Akt-mTORC1 signaling cascade, the influence of ALDH on mTORC1 was partially channeled through retinoic acid-induced lactate dehydrogenase A (LDHA) activation. LDHA inhibition was found to reduce endometrial cancer cell growth, aligning with the effects of mTORC1 inhibition. Building upon our previous findings highlighting ALDH-driven glycolysis through GLUT1 in uterine endometrial cancer spheroid cells, curbing mTORC1 enhanced glucose transport via GLUT1 activation. Notably, elevated LDHA expression correlated with adverse clinical survival and escalated tumor grade, especially in advanced stages. Collectively, our findings emphasize the pivotal role of ALDH-LDHA-mTORC1 cascade in the proliferation of endometrial cancer. Targeting the interaction between mTORC1 and ALDH-influenced glycolysis holds promise for developing novel strategies to combat this aggressive cancer.
Collapse
Affiliation(s)
- Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
4
|
Duan JL, Yang J, Zhang YL, Huang WT. Amelanotic primary cervical malignant melanoma: A case report and review of literature. World J Clin Oncol 2024; 15:953-960. [PMID: 39071457 PMCID: PMC11271727 DOI: 10.5306/wjco.v15.i7.953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Primary malignant melanoma of the cervix (PMMC) is an extremely rare disease that originates from primary cervical malignant melanoma and frequently represents a challenge in disease diagnosis due to unclarified clinical and histological presentations, particularly those without melanin. CASE SUMMARY Here, we report a case of amelanotic PMMC, with a history of breast cancer and thyroid carcinoma. The patient was finally diagnosed by immunohistochemical staining and staged as IB2 based on the International Federation of Gynecology and Obstetrics with reference to National Comprehensive Cancer Network guidelines and was treated with radical hysterectomy, bilateral salpingo-oophorectomy and pelvic lymphadenectomy. She then received combination therapy consisting of immunotherapy with tislelizumab and radiofrequency hyperthermia. She has remained free of disease for more than 1 year. CONCLUSION The differential diagnosis process reenforced the notion that immunohistochemical staining is the most reliable approach for amelanotic PMMC diagnosis. Due to the lack of established therapeutic guidelines, empirical information from limited available studies does not provide the rationale for treatment-decision making. By integrating 'omics' technologies and patient-derived xenografts or mini-patient-derived xenograft models this will help to identify selective therapeutic window(s) and screen the appropriate therapeutics for targeted therapies, immune checkpoint blockade or combination therapy strategies effectively and precisely that will ultimately improve patient survival.
Collapse
Affiliation(s)
- Jin-Lin Duan
- Department of Pathology, The Affiliated Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200332, China
| | - Jing Yang
- Department of Pathology, The Affiliated Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200332, China
| | - Yong-Long Zhang
- Laboratory of Targeted Therapy and Precision Medicine, Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wen-Tao Huang
- Department of Pathology, The Affiliated Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200332, China
| |
Collapse
|
5
|
Eberlein C, Williamson SC, Hopcroft L, Ros S, Moss JI, Kerr J, van Weerden WM, de Bruin EC, Dunn S, Willis B, Ross SJ, Rooney C, Barry ST. Capivasertib combines with docetaxel to enhance anti-tumour activity through inhibition of AKT-mediated survival mechanisms in prostate cancer. Br J Cancer 2024; 130:1377-1387. [PMID: 38396173 PMCID: PMC11014923 DOI: 10.1038/s41416-024-02614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND/OBJECTIVE To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3β, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3β as a GSK3β inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3β.
Collapse
Affiliation(s)
- Cath Eberlein
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | | | | | - Susana Ros
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | - James Kerr
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Wytske M van Weerden
- Department of Experimental Urology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Shanade Dunn
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Brandon Willis
- Bioscience, Early Oncology, AstraZeneca, Boston, MA, USA
| | - Sarah J Ross
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| |
Collapse
|
6
|
Pervanidis KA, D'Angelo GD, Weisner J, Brandherm S, Rauh D. Akt Inhibitor Advancements: From Capivasertib Approval to Covalent-Allosteric Promises. J Med Chem 2024; 67:6052-6063. [PMID: 38592948 DOI: 10.1021/acs.jmedchem.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Akt kinase is vital in cell growth, survival, metabolism, and migration. Dysregulation of Akt signaling is implicated in cancer and metabolic disorders. In the context of cancer, overactive Akt promotes cell survival and proliferation. This has spurred extensive research into developing Akt inhibitors as potential therapeutic agents to disrupt aberrant Akt signaling. Akt inhibitors are classified into three main types: ATP-competitive, allosteric, and covalent-allosteric inhibitors (CAAIs). ATP-competitive inhibitors compete with ATP for binding to Akt, allosteric inhibitors interact with the Pleckstrin homology (PH) domain, and covalent-allosteric inhibitors form covalent bonds, making them more potent and selective. Notably, capivasertib (AZD5363), a potent ATP-competitive Akt inhibitor, received FDA approval in November 2023 for use in combination with the estrogen receptor degrader fulvestrant to treat breast cancer. Challenges remain, including improving selectivity, identifying biomarkers to tailor treatments, and enhancing therapeutic efficacy while minimizing adverse effects. Particularly covalent-allosteric inhibitors hold promise for future more effective and personalized treatments.
Collapse
Affiliation(s)
- Kosmas Alexandros Pervanidis
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Giovanni Danilo D'Angelo
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Jörn Weisner
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- KyDo Therapeutics, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Sven Brandherm
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- KyDo Therapeutics, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
7
|
Bullock KK, Shattuck-Brandt R, Scalise C, Luo W, Chen SC, Saleh N, Gonzalez-Ericsson PI, Garcia G, Sanders ME, Ayers GD, Yan C, Richmond A. Endogenous pAKT activity is associated with response to AKT inhibition alone and in combination with immune checkpoint inhibition in murine models of TNBC. Cancer Lett 2024; 586:216681. [PMID: 38311054 PMCID: PMC11622984 DOI: 10.1016/j.canlet.2024.216681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous and challenging-to-treat breast cancer subtype. The clinical introduction of immune checkpoint inhibitors (ICI) for TNBC has had mixed results, and very few patients achieved a durable response. The PI3K/AKT pathway is frequently mutated in breast cancer. Given the important roles of the PI3K pathway in immune and tumor cell signaling, there is an interest in using inhibitors of this pathway to increase the response to ICI. This study sought to determine if AKT inhibition could enhance the response to ICI in murine TNBC models. We further sought to understand underlying mechanisms of response or non-response to AKT inhibition in combination with ICI. Using four murine TNBC-like cell lines and corresponding orthotopic mouse tumor models, we found that hyperactivity of the PI3K pathway, as evidenced by levels of phospho-AKT rather than PI3K pathway mutational status, was associated with response to AKT inhibition alone and in combination with ICI. Additional mutations in other growth regulatory pathways could override the response of PI3K pathway mutant tumors to AKT inhibition. Furthermore, we observed that AKT inhibition enhanced the response to ICI in an already sensitive model. However, AKT inhibition failed to convert ICI-resistant tumors, to responsive tumors. These findings suggest that analysis of both the mutational status and phospho-AKT protein levels may be beneficial in predicting which TNBC tumors will respond to AKT inhibition in combination with ICI.
Collapse
Affiliation(s)
- Kennady K Bullock
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Rebecca Shattuck-Brandt
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Carly Scalise
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Weifeng Luo
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nabil Saleh
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Paula I Gonzalez-Ericsson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guadalupe Garcia
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melinda E Sanders
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chi Yan
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA.
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Shi L, Wang X, Guo S, Gou H, Shang H, Jiang X, Wei C, Wang J, Li C, Wang L, Zhao Z, Yu W, Yu J. TMEM65 promotes gastric tumorigenesis by targeting YWHAZ to activate PI3K-Akt-mTOR pathway and is a therapeutic target. Oncogene 2024; 43:931-943. [PMID: 38341472 PMCID: PMC10959749 DOI: 10.1038/s41388-024-02959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Copy number alterations are crucial for the development of gastric cancer (GC). Here, we identified Transmembrane Protein 65 (TMEM65) amplification by genomic hybridization microarray to profile copy-number variations in GC. TMEM65 mRNA level was significantly up-regulated in GC compared to adjacent normal tissues, and was positively associated with TMEM65 amplification. High TMEM65 expression or DNA copy number predicts poor prognosis (P < 0.05) in GC. Furtherly, GC patients with TMEM65 amplification (n = 129) or overexpression (n = 78) significantly associated with shortened survival. Ectopic expression of TMEM65 significantly promoted cell proliferation, cell cycle progression and cell migration/invasion ability, but inhibited apoptosis (all P < 0.05). Conversely, silencing of TMEM65 in GC cells showed opposite abilities on cell function in vitro and suppressed tumor growth and lung metastasis in vivo (all P < 0.01). Moreover, TMEM65 depletion by VNP-encapsulated TMEM65-siRNA significantly suppressed tumor growth in subcutaneous xenograft model. Mechanistically, TMEM65 exerted oncogenic effects through activating PI3K-Akt-mTOR signaling pathway, as evidenced of increased expression of key regulators (p-Akt, p-GSK-3β, p-mTOR) by Western blot. YWHAZ (Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase) was identified as a direct downstream effector of TMEM65. Direct binding of TMEM65 with YWHAZ in the cytoplasm inhibited ubiquitin-mediated degradation of YWHAZ. Moreover, oncogenic effect of TMEM65 was partly dependent on YWHAZ. In conclusion, TMEM65 promotes gastric tumorigenesis by activating PI3K-Akt-mTOR signaling via cooperating with YWHAZ. TMEM65 overexpression may serve as an independent new biomarker and is a therapeutic target in GC.
Collapse
Affiliation(s)
- Lingxue Shi
- Departments of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohong Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Shang Guo
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Gastrointestinal Disease Centre, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haiyun Shang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaojia Jiang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunxian Wei
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jia Wang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Li
- Departments of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihong Wang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zengren Zhao
- The First Hospital of Hebei Medical University, Shijiazhuang, China.
- Gastrointestinal Disease Centre, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Weifang Yu
- Departments of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China.
- The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Ciscar M, Trinidad EM, Perez‐Chacon G, Alsaleem M, Jimenez M, Jimenez‐Santos MJ, Perez‐Montoyo H, Sanz‐Moreno A, Vethencourt A, Toss M, Petit A, Soler‐Monso MT, Lopez V, Gomez‐Miragaya J, Gomez‐Aleza C, Dobrolecki LE, Lewis MT, Bruna A, Mouron S, Quintela‐Fandino M, Al‐Shahrour F, Martinez‐Aranda A, Sierra A, Green AR, Rakha E, Gonzalez‐Suarez E. RANK is a poor prognosis marker and a therapeutic target in ER-negative postmenopausal breast cancer. EMBO Mol Med 2023; 15:e16715. [PMID: 36880458 PMCID: PMC10086586 DOI: 10.15252/emmm.202216715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Despite strong preclinical data, the therapeutic benefit of the RANKL inhibitor, denosumab, in breast cancer patients, beyond the bone, is unclear. Aiming to select patients who may benefit from denosumab, we hereby analyzed RANK and RANKL protein expression in more than 2,000 breast tumors (777 estrogen receptor-negative, ER- ) from four independent cohorts. RANK protein expression was more frequent in ER- tumors, where it associated with poor outcome and poor response to chemotherapy. In ER- breast cancer patient-derived orthoxenografts (PDXs), RANKL inhibition reduced tumor cell proliferation and stemness, regulated tumor immunity and metabolism, and improved response to chemotherapy. Intriguingly, tumor RANK protein expression associated with poor prognosis in postmenopausal breast cancer patients, activation of NFKB signaling, and modulation of immune and metabolic pathways, suggesting that RANK signaling increases after menopause. Our results demonstrate that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and ER- breast cancer patients and support the therapeutic benefit of RANK pathway inhibitors, such as denosumab, in breast cancer patients with RANK+ ER- tumors after menopause.
Collapse
Affiliation(s)
- Marina Ciscar
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO)MadridSpain
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Eva M Trinidad
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Gema Perez‐Chacon
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO)MadridSpain
| | - Mansour Alsaleem
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of MedicineUniversity of Nottingham Biodiscovery Institute, University ParkNottinghamUK
- Present address:
Department of Applied Medical Science, Applied CollegeQassim UniversityUnayzahSaudi Arabia
| | - Maria Jimenez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO)MadridSpain
| | - Maria J Jimenez‐Santos
- Bioinformatics Unit, Structural Biology, Spanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Adrian Sanz‐Moreno
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Andrea Vethencourt
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
- Medical Oncology, Breast Unit, Catalan Institute of Oncology (ICO)University Hospital of BellvitgeBarcelonaSpain
| | - Michael Toss
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of MedicineUniversity of Nottingham Biodiscovery Institute, University ParkNottinghamUK
| | - Anna Petit
- Pathology DepartmentUniversity Hospital of Bellvitge, IDIBELLBarcelonaSpain
| | | | - Victor Lopez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Clara Gomez‐Aleza
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Lacey E Dobrolecki
- Molecular and Cellular Biology and RadiologyThe Lester and Sue Smith Breast Center, Baylor College of MedicineHoustonTexasUSA
| | - Michael T Lewis
- Molecular and Cellular Biology and RadiologyThe Lester and Sue Smith Breast Center, Baylor College of MedicineHoustonTexasUSA
| | - Alejandra Bruna
- Cancer Research UK Cambridge CentreCambridgeUK
- Present address:
Molecular Pathology DivisionCentre for Paediatric Oncology Experimental MedicineCentre for Cancer EvolutionThe Institute of Cancer ResearchLondonUK
| | - Silvana Mouron
- Breast Cancer Clinical Research Unit, Clinical Research ProgramSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Miguel Quintela‐Fandino
- Breast Cancer Clinical Research Unit, Clinical Research ProgramSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Fatima Al‐Shahrour
- Bioinformatics Unit, Structural Biology, Spanish National Cancer Research Centre (CNIO)MadridSpain
| | - Antonio Martinez‐Aranda
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
- Medical Oncology, Breast Unit, Catalan Institute of Oncology (ICO)University Hospital of BellvitgeBarcelonaSpain
| | - Angels Sierra
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
- Present address:
Laboratory of Experimental Oncological Neurosurgery, Neurosurgery ServiceHospital Clinic de Barcelona‐FCRBBarcelonaSpain
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of MedicineUniversity of Nottingham Biodiscovery Institute, University ParkNottinghamUK
| | - Emad Rakha
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of MedicineUniversity of Nottingham Biodiscovery Institute, University ParkNottinghamUK
| | - Eva Gonzalez‐Suarez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO)MadridSpain
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| |
Collapse
|
10
|
Alves CL, Ditzel HJ. Drugging the PI3K/AKT/mTOR Pathway in ER+ Breast Cancer. Int J Mol Sci 2023; 24:4522. [PMID: 36901954 PMCID: PMC10003259 DOI: 10.3390/ijms24054522] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The frequent activation of the PI3K/AKT/mTOR pathway and its crucial role in estrogen receptor-positive (ER+) breast cancer tumorigenesis and drug resistance has made it a highly attractive therapeutic target in this breast cancer subtype. Consequently, the number of new inhibitors in clinical development targeting this pathway has drastically increased. Among these, the PIK3CA isoform-specific inhibitor alpelisib and the pan-AKT inhibitor capivasertib were recently approved in combination with the estrogen receptor degrader fulvestrant for the treatment of ER+ advanced breast cancer after progression on an aromatase inhibitor. Nevertheless, the clinical development of multiple inhibitors of the PI3K/AKT/mTOR pathway, in parallel with the incorporation of CDK4/6 inhibitors into the standard of care treatment in ER+ advanced breast cancer, has led to a multitude of available therapeutic agents and many possible combined strategies which complicate personalizing treatment. Here, we review the role of the PI3K/AKT/mTOR pathway in ER+ advanced breast cancer, highlighting the genomic contexts in which the various inhibitors of this pathway may have superior activity. We also discuss selected trials with agents targeting the PI3K/AKT/mTOR and related pathways as well as the rationale supporting the clinical development of triple combination therapy targeting ER, CDK4/6 and PI3K/AKT/mTOR in ER+ advanced breast cancer.
Collapse
Affiliation(s)
- Carla L. Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, 5000 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
11
|
Targeting mTOR to overcome resistance to hormone and CDK4/6 inhibitors in ER-positive breast cancer models. Sci Rep 2023; 13:2710. [PMID: 36792625 PMCID: PMC9932145 DOI: 10.1038/s41598-023-29425-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Resistance to therapy remains a major obstacle in cancer management. Although treatment with hormone and CDK4/6 inhibitors is successful in luminal breast cancer, resistance to these treatments is frequent, highlighting the need for novel therapeutic strategies to delay disease progression and improve patient survival. Here, we assessed the mechanisms of acquired resistance using T47D and MCF-7 tamoxifen- and palbociclib-resistant cell-line variants in culture and as xenografts, and patient-derived cells (PDCs) obtained from sensitive or resistant patient-derived xenografts (PDXs). In these models, we analyzed the effect of specific kinase inhibitors on survival, signaling and cellular aggressiveness. Our results revealed that mTOR inhibition is more effective than PI3K inhibition in overcoming resistance, irrespective of PIK3CA mutation status, by decreasing cell proliferation and tumor growth, as well as reducing cell migration and stemness. Moreover, a combination of mTOR and CDK4/6 inhibitors may prevent pathway reactivation downstream of PI3K, interfering with the survival of resistant cells and consequent tumor escape. In conclusion, we highlight the benefits of incorporating mTOR inhibitors into the current therapy in ER + breast cancer. This alternative therapeutic strategy not only enhances the antitumor response but may also delay the emergence of resistance and tumor recurrence.
Collapse
|
12
|
Palafox M, Monserrat L, Bellet M, Villacampa G, Gonzalez-Perez A, Oliveira M, Brasó-Maristany F, Ibrahimi N, Kannan S, Mina L, Herrera-Abreu MT, Òdena A, Sánchez-Guixé M, Capelán M, Azaro A, Bruna A, Rodríguez O, Guzmán M, Grueso J, Viaplana C, Hernández J, Su F, Lin K, Clarke RB, Caldas C, Arribas J, Michiels S, García-Sanz A, Turner NC, Prat A, Nuciforo P, Dienstmann R, Verma CS, Lopez-Bigas N, Scaltriti M, Arnedos M, Saura C, Serra V. High p16 expression and heterozygous RB1 loss are biomarkers for CDK4/6 inhibitor resistance in ER + breast cancer. Nat Commun 2022; 13:5258. [PMID: 36071033 PMCID: PMC9452562 DOI: 10.1038/s41467-022-32828-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/17/2022] [Indexed: 12/27/2022] Open
Abstract
CDK4/6 inhibitors combined with endocrine therapy have demonstrated higher antitumor activity than endocrine therapy alone for the treatment of advanced estrogen receptor-positive breast cancer. Some of these tumors are de novo resistant to CDK4/6 inhibitors and others develop acquired resistance. Here, we show that p16 overexpression is associated with reduced antitumor activity of CDK4/6 inhibitors in patient-derived xenografts (n = 37) and estrogen receptor-positive breast cancer cell lines, as well as reduced response of early and advanced breast cancer patients to CDK4/6 inhibitors (n = 89). We also identified heterozygous RB1 loss as biomarker of acquired resistance and poor clinical outcome. Combination of the CDK4/6 inhibitor ribociclib with the PI3K inhibitor alpelisib showed antitumor activity in estrogen receptor-positive non-basal-like breast cancer patient-derived xenografts, independently of PIK3CA, ESR1 or RB1 mutation, also in drug de-escalation experiments or omitting endocrine therapy. Our results offer insights into predicting primary/acquired resistance to CDK4/6 inhibitors and post-progression therapeutic strategies.
Collapse
Affiliation(s)
- Marta Palafox
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Laia Monserrat
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Meritxell Bellet
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Guillermo Villacampa
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mafalda Oliveira
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Nusaibah Ibrahimi
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
- Oncostat U1018, Inserm, University Paris-Saclay, Villejuif, France
| | | | - Leonardo Mina
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
| | | | - Andreu Òdena
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mònica Sánchez-Guixé
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Capelán
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Analía Azaro
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Alejandra Bruna
- Preclinical Modelling of Pediatric Cancer Evolution Group, The Institute of Cancer Research, London, UK
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Guzmán
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Viaplana
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Javier Hernández
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Faye Su
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | - Kui Lin
- Genentech, Inc., South San Francisco, California, USA
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Manchester, UK
| | | | - Joaquín Arribas
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Stefan Michiels
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
- Oncostat U1018, Inserm, University Paris-Saclay, Villejuif, France
| | | | | | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
- SOLTI Breast Cancer Research Group, Barcelona, Spain
- Department of Oncology, IOB Institute of Oncology, Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Chandra S Verma
- Bioinformatics Institute (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maurizio Scaltriti
- Departments of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Monica Arnedos
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
- Inserm Unit U981, Villejuif, France
| | - Cristina Saura
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| |
Collapse
|
13
|
Stamou MI, Chen C, Wander SA, Supko JG, Juric D, Bardia A, Wexler DJ. Severe Lactic Acidosis Complicated by Insulin-Resistant Hyperosmolar Hyperglycemic Syndrome in a Patient With Metastatic Breast Cancer Undergoing AKT-Inhibitor Therapy. JCO Precis Oncol 2022; 6:e2100428. [PMID: 35700410 PMCID: PMC9384915 DOI: 10.1200/po.21.00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/23/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Maria I. Stamou
- Endocrine Division, Massachusetts General Hospital, Boston, MA
| | - Christopher Chen
- Department of Medicine, Stanford University School of Medicine,Palo Alto, CA
| | - Seth A. Wander
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA
| | - Jeffrey G. Supko
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA
| | - Aditya Bardia
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA
| | - Deborah J. Wexler
- Harvard Medical School, Boston, MA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
14
|
Andrikopoulou A, Chatzinikolaou S, Panourgias E, Kaparelou M, Liontos M, Dimopoulos MA, Zagouri F. "The emerging role of capivasertib in breast cancer". Breast 2022; 63:157-167. [PMID: 35398754 PMCID: PMC9011110 DOI: 10.1016/j.breast.2022.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Over 50% of breast tumors harbor alterations in one or more genes of the phosphatidylinositol 3-kinase (PI3K) pathway including PIK3CA mutations (31%), PTEN loss (34%), PTEN mutations (5%) and AKT1 mutations (3%). While PI3K and mTOR inhibitors are already approved in advanced breast cancer, AKT inhibitors have been recently developed as a new therapeutic approach. Capivasertib (AZD5363) is a novel, selective ATP-competitive pan-AKT kinase inhibitor that exerts similar activity against the three AKT isoforms, AKT1, AKT2, and AKT3. Preclinical studies demonstrated efficacy of capivasertib in breast cancer cell lines as a single agent or in combination with anti-HER2 agents and endocrine treatment, especially in tumors with PIK3CA or MTOR alterations. Phase I/II studies demonstrated greater efficacy when capivasertib was co-administered with paclitaxel, fulvestrant in hormone receptor (HR)-positive, HER2-negative breast cancer or olaparib. The recommended phase II dose of capivasertib as monotherapy was 480 mg bid on a 4-days-on, 3-days-off dosing schedule. Toxicity profile proved to be manageable with hyperglycemia (20–24%), diarrhea (14–17%) and maculopapular rash (11–16%) being the most common grade ≥3 adverse events. Ongoing Phase III trials of capivasertib in combination with fulvestrant (CAPItello-291), CDK4/6 inhibitor palbociclib (CAPItello-292) and paclitaxel (CAPItello- 290) will better clarify the therapeutic role of capivasertib in breast cancer. Phosphatidylinositol-3-kinase (PI3K)/Akt (PI3K/AKT) pathway is one of the most commonly altered pathways in breast cancer. Capivasertib (AZD5363) is a highly potent Akt kinase inhibitor with activity against the three isoforms AKT1, AKT2, and AKT3. Preclinical studies demonstrated efficacy of capivasertib either alone or in combination with anti-HER2 agents, chemotherapy and endocrine treatment. Dose-limiting toxicities include hyperglycemia (20–24%), diarrhea (14–17%) and maculopapular rash (11–16%). Capivasertib increased susceptibility to paclitaxel (PAKT, BEECH), fulvestrant (NCT01226316, FAKTION) or Olaparib (ComPAKT).
Collapse
Affiliation(s)
- Angeliki Andrikopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece.
| | | | - Evangelia Panourgias
- Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Aretaieion hospital, 76, Vassilisis-Sofias Ave., 11528 Athens, Greece.
| | - Maria Kaparelou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece.
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece.
| | | | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece.
| |
Collapse
|
15
|
Pellegrino B, Herencia-Ropero A, Llop-Guevara A, Pedretti F, Moles-Fernández A, Viaplana C, Villacampa G, Guzmán M, Rodríguez O, Grueso J, Jiménez J, Arenas EJ, Degasperi A, Dias JML, Forment JV, O’Connor MJ, Déas O, Cairo S, Zhou Y, Musolino A, Caldas C, Nik-Zainal S, Clarke RB, Nuciforo P, Díez O, Serres-Créixams X, Peg V, Espinosa-Bravo M, Macarulla T, Oaknin A, Mateo J, Arribas J, Dienstmann R, Bellet M, Oliveira M, Saura C, Gutiérrez-Enríquez S, Balmaña J, Serra V. Preclinical In Vivo Validation of the RAD51 Test for Identification of Homologous Recombination-Deficient Tumors and Patient Stratification. Cancer Res 2022; 82:1646-1657. [PMID: 35425960 PMCID: PMC7612637 DOI: 10.1158/0008-5472.can-21-2409] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/24/2021] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
PARP inhibitors (PARPi) are approved drugs for platinum-sensitive, high-grade serous ovarian cancer (HGSOC) and for breast, prostate, and pancreatic cancers (PaC) harboring genetic alterations impairing homologous recombination repair (HRR). Detection of nuclear RAD51 foci in tumor cells is a marker of HRR functionality, and we previously established a test to detect RAD51 nuclear foci. Here, we aimed to validate the RAD51 score cut off and compare the performance of this test to other HRR deficiency (HRD) detection methods. Laboratory models from BRCA1/BRCA2-associated breast cancer, HGSOC, and PaC were developed and evaluated for their response to PARPi and cisplatin. HRD in these models and patient samples was evaluated by DNA sequencing of HRR genes, genomic HRD tests, and RAD51 foci detection. We established patient-derived xenograft models from breast cancer (n = 103), HGSOC (n = 4), and PaC (n = 2) that recapitulated patient HRD status and treatment response. The RAD51 test showed higher accuracy than HRR gene mutations and genomic HRD analysis for predicting PARPi response (95%, 67%, and 71%, respectively). RAD51 detection captured dynamic changes in HRR status upon acquisition of PARPi resistance. The accuracy of the RAD51 test was similar to HRR gene mutations for predicting platinum response. The predefined RAD51 score cut off was validated, and the high predictive value of the RAD51 test in preclinical models was confirmed. These results collectively support pursuing clinical assessment of the RAD51 test in patient samples from randomized trials testing PARPi or platinum-based therapies. SIGNIFICANCE This work demonstrates the high accuracy of a histopathology-based test based on the detection of RAD51 nuclear foci in predicting response to PARPi and cisplatin.
Collapse
Affiliation(s)
- Benedetta Pellegrino
- Department of Medicine and Surgery, University of Parma, Italy
- Medical Oncology and Breast Unit, University Hospital of Parma, Italy
| | - Andrea Herencia-Ropero
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Flaminia Pedretti
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Cristina Viaplana
- Oncology Data Science Group (ODysSey Group), Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Guillermo Villacampa
- Oncology Data Science Group (ODysSey Group), Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Guzmán
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Jose Jiménez
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Enrique J. Arenas
- Growth Factors Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- CIBERONC, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Andrea Degasperi
- Academic Department of Medical Genetics, University of Cambridge, Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XZ, UK
| | - João M. L. Dias
- Academic Department of Medical Genetics, University of Cambridge, Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XZ, UK
| | | | - Mark J. O’Connor
- DDR Biology Group, Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Yinghui Zhou
- TESARO: A GSK company, 1000 Winter Street, Waltham, MA, 02451, USA
| | - Antonino Musolino
- Department of Medicine and Surgery, University of Parma, Italy
- Medical Oncology and Breast Unit, University Hospital of Parma, Italy
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Breast Cancer Programme, Cancer Research UK (CRUK) Cambridge Cancer Centre, Cambridge, UK
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, University of Cambridge, Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Robert B. Clarke
- Manchester Breast Centre, Division of Cancer Sciences, University of Manchester, Oglesby Cancer Research Building, Manchester, UK
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Orland Díez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Xavier Serres-Créixams
- Department of Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Vicente Peg
- Pathology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Martín Espinosa-Bravo
- Breast Surgical Unit, Breast Cancer Center, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Teresa Macarulla
- Gastrointestinal and Endocrine Tumors Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Ana Oaknin
- Department of Medical Oncology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Gynecological Malignancies Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Joaquin Mateo
- Department of Medical Oncology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Prostate Cancer Translational Research Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Joaquín Arribas
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
- Growth Factors Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- CIBERONC, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science Group (ODysSey Group), Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Meritxell Bellet
- Department of Medical Oncology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mafalda Oliveira
- Department of Medical Oncology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Saura
- Department of Medical Oncology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- CIBERONC, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| |
Collapse
|
16
|
Sanaei MJ, Razi S, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Transl Oncol 2022; 18:101364. [PMID: 35168143 PMCID: PMC8850794 DOI: 10.1016/j.tranon.2022.101364] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/15/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the most common and deadliest human malignancies. The alterations of PI3K/Akt/mTOR pathway are related to lung cancer progression. PI3K axis regulates proliferation, apoptosis, metastasis, and EMT of lung cancer. Agents inhibiting components of PI3K axis diminish lung tumor growth and invasion. Low efficacy and off-target toxicity could be improved by nanoparticle application.
Lung cancer is the leading cause of cancer-related mortality worldwide. Although the PI3K/Akt/mTOR signaling pathway has recently been considered as one of the most altered molecular pathways in this malignancy, few articles reviewed the task. In this review, we aim to summarize the original data obtained from international research laboratories on the oncogenic alterations in each component of the PI3K/Akt/mTOR pathway in lung cancer. This review also responds to questions on how aberrant activation in this axis contributes to uncontrolled growth, drug resistance, sustained angiogenesis, as well as tissue invasion and metastatic spread. Besides, we provide a special focus on pharmacologic inhibitors of the PI3K/Akt/mTOR axis, either as monotherapy or in a combined-modal strategy, in the context of lung cancer. Despite promising outcomes achieved by using these agents, however, the presence of drug resistance as well as treatment-related adverse events is the other side of the coin. The last section allocates a general overview of the challenges associated with the inhibitors of the PI3K pathway in lung cancer patients. Finally, we comment on the future research aspects, especially in which nano-based drug delivery strategies might increase the efficacy of the therapy in this malignancy.
Collapse
|
17
|
Shi Z, Wulfkuhle J, Nowicka M, Gallagher RI, Saura C, Nuciforo PG, Calvo I, Andersen J, Passos-Coelho JL, Gil-Gil MJ, Bermejo B, Pratt DA, Ciruelos EM, Villagrasa P, Wongchenko MJ, Petricoin EF, Oliveira M, Isakoff SJ. Functional Mapping of AKT Signaling and Biomarkers of Response from the FAIRLANE Trial of Neoadjuvant Ipatasertib plus Paclitaxel for Triple-Negative Breast Cancer. Clin Cancer Res 2022; 28:993-1003. [PMID: 34907082 PMCID: PMC9377742 DOI: 10.1158/1078-0432.ccr-21-2498] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Despite extensive genomic and transcriptomic profiling, it remains unknown how signaling pathways are differentially activated and how tumors are differentially sensitized to certain perturbations. Here, we aim to characterize AKT signaling activity and its association with other genomic or IHC-based PI3K/AKT pathway biomarkers as well as the clinical activity of ipatasertib (AKT inhibitor) in the FAIRLANE trial. EXPERIMENTAL DESIGN In FAIRLANE, 151 patients with early triple-negative breast cancer (TNBC) were randomized 1:1 to receive paclitaxel with ipatasertib or placebo for 12 weeks prior to surgery. Adding ipatasertib did not increase pathologic complete response rate and numerically improved overall response rate by MRI. We used reverse-phase protein microarrays (RPPA) to examine the total level and/or phosphorylation states of over 100 proteins in various signaling or cell processes including PI3K/AKT and mTOR signaling. One hundred and twenty-five baseline and 127 on-treatment samples were evaluable by RPPA, with 110 paired samples at both time points. RESULTS Tumors with genomic/protein alterations in PIK3CA/AKT1/PTEN were associated with higher levels of AKT phosphorylation. In addition, phosphorylated AKT (pAKT) levels exhibited a significant association with enriched clinical benefit of ipatasertib, and identified patients who received benefit in the absence of PIK3CA/AKT1/PTEN alterations. Ipatasertib treatment led to a downregulation of AKT/mTORC1 signaling, which was more pronounced among the tumors with PIK3CA/AKT1/PTEN alterations or among the responders to the treatment. CONCLUSIONS We showed that the high baseline pAKT levels are associated with the alterations of PI3K/AKT pathway components and enriched benefit of ipatasertib in TNBC.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Oncology Biomarker, Genentech Inc., South San Francisco, California
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | | | - Rosa I. Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Cristina Saura
- Medical Oncology Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Breast Cancer Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - Paolo G. Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Isabel Calvo
- Breast Cancer Unit, Centro Integral Oncologico Clara Campal (CIOCC), Madrid, Spain
| | - Jay Andersen
- Medical Oncology/Hematology, Compass Oncology, Tigard, Oregon
| | | | - Miguel J. Gil-Gil
- SOLTI Breast Cancer Research Group, Barcelona, Spain
- Medical Oncology Service, Institut Català d’Oncologia, L’Hospitalet, Barcelona, Spain
- Institut d'Investigació Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Begoña Bermejo
- Hospital Clinico Universitario de Valencia, Valencia, Spain
| | - Debra A. Pratt
- Texas Oncology Cancer Center, US Oncology, Austin, Texas
| | - Eva M. Ciruelos
- SOLTI Breast Cancer Research Group, Barcelona, Spain
- Medical Oncology Department, University Hospital 12 de Octubre, Madrid, Spain
| | | | | | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Mafalda Oliveira
- Medical Oncology Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Breast Cancer Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - Steven J. Isakoff
- Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
18
|
Wang Z, Cai H, Zhao E, Cui H. The Diverse Roles of Histone Demethylase KDM4B in Normal and Cancer Development and Progression. Front Cell Dev Biol 2022; 9:790129. [PMID: 35186950 PMCID: PMC8849108 DOI: 10.3389/fcell.2021.790129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023] Open
Abstract
Histone methylation status is an important process associated with cell growth, survival, differentiation and gene expression in human diseases. As a member of the KDM4 family, KDM4B specifically targets H1.4K26, H3K9, H3K36, and H4K20, which affects both histone methylation and gene expression. Therefore, KDM4B is often regarded as a key intermediate protein in cellular pathways that plays an important role in growth and development as well as organ differentiation. However, KDM4B is broadly defined as an oncoprotein that plays key roles in processes related to tumorigenesis, including cell proliferation, cell survival, metastasis and so on. In this review, we discuss the diverse roles of KDM4B in contributing to cancer progression and normal developmental processes. Furthermore, we focus on recent studies highlighting the oncogenic functions of KDM4B in various kinds of cancers, which may be a novel therapeutic target for cancer treatment. We also provide a relatively complete report of the progress of research related to KDM4B inhibitors and discuss their potential as therapeutic agents for overcoming cancer.
Collapse
Affiliation(s)
- Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China
| | - Huarui Cai
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China
- *Correspondence: Erhu Zhao, ; Hongjuan Cui,
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China
- *Correspondence: Erhu Zhao, ; Hongjuan Cui,
| |
Collapse
|
19
|
The Discovery of New Drug-Target Interactions for Breast Cancer Treatment. Molecules 2021; 26:molecules26247474. [PMID: 34946556 PMCID: PMC8704452 DOI: 10.3390/molecules26247474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023] Open
Abstract
Drug–target interaction (DTIs) prediction plays a vital role in probing new targets for breast cancer research. Considering the multifaceted challenges associated with experimental methods identifying DTIs, the in silico prediction of such interactions merits exploration. In this study, we develop a feature-based method to infer unknown DTIs, called PsePDC-DTIs, which fuses information regarding protein sequences extracted by pseudo-position specific scoring matrix (PsePSSM), detrended cross-correlation analysis coefficient (DCCA coefficient), and an FP2 format molecular fingerprint descriptor of drug compounds. In addition, the synthetic minority oversampling technique (SMOTE) is employed for dealing with the imbalanced data after Lasso dimensionality reduction. Then, the processed feature vectors are put into a random forest classifier to perform DTIs predictions on four gold standard datasets, including nuclear receptors (NR), G-protein-coupled receptors (GPCR), ion channels (IC), and enzymes (E). Furthermore, we explore new targets for breast cancer treatment using its risk genes identified from large-scale genome-wide genetic studies using PsePDC-DTIs. Through five-fold cross-validation, the average values of accuracy in NR, GPCR, IC, and E datasets are 95.28%, 96.19%, 96.74%, and 98.22%, respectively. The PsePDC-DTIs model provides us with 10 potential DTIs for breast cancer treatment, among which erlotinib (DB00530) and FGFR2 (hsa2263), caffeine (DB00201) and KCNN4 (hsa3783), as well as afatinib (DB08916) and FGFR2 (hsa2263) are found with direct or inferred evidence. The PsePDC-DTIs model has achieved good prediction results, establishing the validity and superiority of the proposed method.
Collapse
|
20
|
Alves CL, Ehmsen S, Terp MG, Portman N, Tuttolomondo M, Gammelgaard OL, Hundebøl MF, Kaminska K, Johansen LE, Bak M, Honeth G, Bosch A, Lim E, Ditzel HJ. Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nat Commun 2021; 12:5112. [PMID: 34433817 PMCID: PMC8387387 DOI: 10.1038/s41467-021-25422-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) combined with endocrine therapy have shown impressive efficacy in estrogen receptor-positive advanced breast cancer. However, most patients will eventually experience disease progression on this combination, underscoring the need for effective subsequent treatments or better initial therapies. Here, we show that triple inhibition with fulvestrant, CDK4/6i and AKT inhibitor (AKTi) durably impairs growth of breast cancer cells, prevents progression and reduces metastasis of tumor xenografts resistant to CDK4/6i-fulvestrant combination or fulvestrant alone. Importantly, switching from combined fulvestrant and CDK4/6i upon resistance to dual combination with AKTi and fulvestrant does not prevent tumor progression. Furthermore, triple combination with AKTi significantly inhibits growth of patient-derived xenografts resistant to combined CDK4/6i and fulvestrant. Finally, high phospho-AKT levels in metastasis of breast cancer patients treated with a combination of CDK4/6i and endocrine therapy correlates with shorter progression-free survival. Our findings support the clinical development of ER, CDK4/6 and AKT co-targeting strategies following progression on CDK4/6i and endocrine therapy combination, and in tumors exhibiting high phospho-AKT levels, which are associated with worse clinical outcome.
Collapse
Affiliation(s)
- Carla L Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sidse Ehmsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Martina Tuttolomondo
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Odd L Gammelgaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Monique F Hundebøl
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kamila Kaminska
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lene E Johansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Bak
- Department of Pathology, Sydvestjysk Sygehus, Esbjerg, Denmark
| | - Gabriella Honeth
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ana Bosch
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
21
|
Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting Akt in cancer for precision therapy. J Hematol Oncol 2021; 14:128. [PMID: 34419139 PMCID: PMC8379749 DOI: 10.1186/s13045-021-01137-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Biomarkers-guided precision therapeutics has revolutionized the clinical development and administration of molecular-targeted anticancer agents. Tailored precision cancer therapy exhibits better response rate compared to unselective treatment. Protein kinases have critical roles in cell signaling, metabolism, proliferation, survival and migration. Aberrant activation of protein kinases is critical for tumor growth and progression. Hence, protein kinases are key targets for molecular targeted cancer therapy. The serine/threonine kinase Akt is frequently activated in various types of cancer. Activation of Akt promotes tumor progression and drug resistance. Since the first Akt inhibitor was reported in 2000, many Akt inhibitors have been developed and evaluated in either early or late stage of clinical trials, which take advantage of liquid biopsy and genomic or molecular profiling to realize personalized cancer therapy. Two inhibitors, capivasertib and ipatasertib, are being tested in phase III clinical trials for cancer therapy. Here, we highlight recent progress of Akt signaling pathway, review the up-to-date data from clinical studies of Akt inhibitors and discuss the potential biomarkers that may help personalized treatment of cancer with Akt inhibitors. In addition, we also discuss how Akt may confer the vulnerability of cancer cells to some kinds of anticancer agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingzhu Chen
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieya Liu
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Guerra B, Recio C, Aranda-Tavío H, Guerra-Rodríguez M, García-Castellano JM, Fernández-Pérez L. The Mevalonate Pathway, a Metabolic Target in Cancer Therapy. Front Oncol 2021; 11:626971. [PMID: 33718197 PMCID: PMC7947625 DOI: 10.3389/fonc.2021.626971] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
A hallmark of cancer cells includes a metabolic reprograming that provides energy, the essential building blocks, and signaling required to maintain survival, rapid growth, metastasis, and drug resistance of many cancers. The influence of tumor microenviroment on cancer cells also results an essential driving force for cancer progression and drug resistance. Lipid-related enzymes, lipid-derived metabolites and/or signaling pathways linked to critical regulators of lipid metabolism can influence gene expression and chromatin remodeling, cellular differentiation, stress response pathways, or tumor microenviroment, and, collectively, drive tumor development. Reprograming of lipid metabolism includes a deregulated activity of mevalonate (MVA)/cholesterol biosynthetic pathway in specific cancer cells which, in comparison with normal cell counterparts, are dependent of the continuous availability of MVA/cholesterol-derived metabolites (i.e., sterols and non-sterol intermediates) for tumor development. Accordingly, there are increasing amount of data, from preclinical and epidemiological studies, that support an inverse association between the use of statins, potent inhibitors of MVA biosynthetic pathway, and mortality rate in specific cancers (e.g., colon, prostate, liver, breast, hematological malignances). In contrast, despite the tolerance and therapeutic efficacy shown by statins in cardiovascular disease, cancer treatment demands the use of relatively high doses of single statins for a prolonged period, thereby limiting this therapeutic strategy due to adverse effects. Clinically relevant, synergistic effects of tolerable doses of statins with conventional chemotherapy might enhance efficacy with lower doses of each drug and, probably, reduce adverse effects and resistance. In spite of that, clinical trials to identify combinatory therapies that improve therapeutic window are still a challenge. In the present review, we revisit molecular evidences showing that deregulated activity of MVA biosynthetic pathway has an essential role in oncogenesis and drug resistance, and the potential use of MVA pathway inhibitors to improve therapeutic window in cancer.
Collapse
Affiliation(s)
- Borja Guerra
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Haidée Aranda-Tavío
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miguel Guerra-Rodríguez
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José M García-Castellano
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Leandro Fernández-Pérez
- Molecular and Translational Pharmacology Lab, Institute for Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|