1
|
Chen YZ, Meng ZS, Xiang ZL. HMGB2 drives tumor progression and shapes the immunosuppressive microenvironment in hepatocellular carcinoma: insights from multi-omics analysis. Front Immunol 2024; 15:1415435. [PMID: 39247201 PMCID: PMC11380137 DOI: 10.3389/fimmu.2024.1415435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) poses a significant health burden globally, with high mortality rates despite various treatment options. Immunotherapy, particularly immune-checkpoint inhibitors (ICIs), has shown promise, but resistance and metastasis remain major challenges. Understanding the intricacies of the tumor microenvironment (TME) is imperative for optimizing HCC management strategies and enhancing patient prognosis. Methods This study employed a comprehensive approach integrating multi-omics approaches, including single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing (Bulk RNA-seq), and validation in clinical samples using spatial transcriptomics (ST) and multiplex immunohistochemistry (mIHC). The analysis aimed to identify key factors influencing the immunosuppressive microenvironment associated with HCC metastasis and immunotherapy resistance. Results HMGB2 is significantly upregulated in HCCTrans, a transitional subgroup associated with aggressive metastasis. Furthermore, HMGB2 expression positively correlates with an immunosuppressive microenvironment, particularly evident in exhausted T cells. Notably, HMGB2 expression correlated positively with immunosuppressive markers and poor prognosis in HCC patients across multiple cohorts. ST combined with mIHC validated the spatial expression patterns of HMGB2 within the TME, providing additional evidence of its role in HCC progression and immune evasion. Conclusion HMGB2 emerges as a critical player of HCC progression, metastasis, and immunosuppression. Its elevated expression correlates with aggressive tumor behavior and poor patient outcomes, suggesting its potential as both a therapeutic target and a prognostic indicator in HCC management.
Collapse
Affiliation(s)
- Yan-Zhu Chen
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi-Shang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Radiation Oncology, Shanghai East Hospital Ji'an hospital, Ji'an, China
| |
Collapse
|
2
|
Qiao W, Sheng S, Li J, Jin R, Hu C. Machine Learning-Based Nomogram for Predicting Overall Survival in Elderly Patients with Cirrhotic Hepatocellular Carcinoma Undergoing Ablation Therapy. J Hepatocell Carcinoma 2024; 11:509-523. [PMID: 38468611 PMCID: PMC10926877 DOI: 10.2147/jhc.s450825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose The aim of the study is to identify and evaluate multifaceted factors impacting the survival of elderly cirrhotic HCC patients following ablation therapy, with the goal of constructing a nomogram to predict their 3-, 5-, and 8-year overall survival (OS). Patients and Methods A retrospective analysis was conducted on 736 elderly cirrhotic HCC patients who underwent ablation therapy between 2014 and 2022. LASSO regression, random survival forest (RSF), and multivariate Cox analyses were employed to identify independent prognostic factors for OS, followed by the development and validation of a predictive nomogram. Harrell's concordance index (C-index), calibration plot and decision curve analysis (DCA) were used to assess the performance of the nomogram. The nomogram was finally utilized to stratify patients into low-, intermediate-, and high-risk groups, aiming to assess its efficacy in precisely discerning individuals with diverse overall survival outcomes. Results Alcohol drinking, tumor number, globulin (Glob) and prealbumin (Palb) were identified and integrated to establish a novel prognostic nomogram. The nomogram exhibited strong discriminative ability with C-indices of 0.723 (training cohort) and 0.693 (validation cohort), along with significant Area Under the Curve (AUC) values for 3-year, 5-year, and 8-year OS in both cohorts (0.758, 0.770, and 0.811 for training cohort; 0.744, 0.699 and 0.737 for validation cohort). Calibration plots substantiated its consistency, while DCA curves corroborated its clinical utility. The nomogram further demonstrated exceptional effectiveness in discerning distinct risk populations, highlighting its robust applicability for prognostic stratification. Conclusion Our study successfully developed and validated a robust nomogram model based on four key clinical parameters for predicting 3-, 5- and 8-year OS among elderly cirrhotic HCC patients following ablation therapy. The nomogram exhibited a remarkable capability in identifying high-risk patients, furnishing clinicians with invaluable insights for postoperative surveillance and tailored therapeutic interventions.
Collapse
Affiliation(s)
- Wenying Qiao
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- Interventional Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shugui Sheng
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Junnan Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ronghua Jin
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
| | - Caixia Hu
- Interventional Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Zhang N, Yang X, Piao M, Xun Z, Wang Y, Ning C, Zhang X, Zhang L, Wang Y, Wang S, Chao J, Lu Z, Yang X, Wang H, Zhao H. Biomarkers and prognostic factors of PD-1/PD-L1 inhibitor-based therapy in patients with advanced hepatocellular carcinoma. Biomark Res 2024; 12:26. [PMID: 38355603 PMCID: PMC10865587 DOI: 10.1186/s40364-023-00535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024] Open
Abstract
Systemic therapies using programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors have demonstrated commendable efficacy in some patients with advanced hepatocellular carcinoma (HCC); however, other individuals do not respond favorably. Hence, identifying the biomarkers, the prognostic factors, and their underlying mechanisms is crucial. In this review, we summarized the latest advancements in this field. Within the tumor microenvironment, PD-L1 expression is commonly utilized to predict response. Moreover, the characteristics of tumor-infiltrating lymphocytes are associated with the effectiveness of immunotherapy. Preclinical studies have identified stimulatory dendritic cells, conventional dendritic cells, and macrophages as potential biomarkers. The emergence of single-cell sequencing and spatial transcriptomics has provided invaluable insights into tumor heterogeneity through the lens of single-cell profiling and spatial distribution. With the widespread adoption of next-generation sequencing, certain genomic characteristics, including tumor mutational burden, copy number alterations, specific genes (TP53, CTNNB1, and GZMB), and signaling pathways (WNT/β-catenin) have been found to correlate with prognosis. Furthermore, clinical features such as tumor size, number, and metastasis status have demonstrated prognostic value. Notably, common indicators such as the Child-Pugh score and Eastern Cooperative Oncology Group score, which are used in patients with liver diseases, have shown potential. Similarly, commonly employed laboratory parameters such as baseline transforming growth factor beta, lactate dehydrogenase, dynamic changes in alpha-fetoprotein (AFP) and abnormal prothrombin, CRAFITY score (composed of C-reactive protein and AFP), and immune adverse events have been identified as predictive biomarkers. Novel imaging techniques such as EOB-MRI and PET/CT employing innovative tracers also have potential. Moreover, liquid biopsy has gained widespread use in biomarker studies owing to its non-invasive, convenient, and highly reproducible nature, as well as its dynamic monitoring capabilities. Research on the gut microbiome, including its composition, dynamic changes, and metabolomic analysis, has gained considerable attention. Efficient biomarker discovery relies on continuous updating of treatment strategies. Next, we summarized recent advancements in clinical research on HCC immunotherapy and provided an overview of ongoing clinical trials for contributing to the understanding and improvement of HCC immunotherapy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
| | - Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yunchao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Cong Ning
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xinmu Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Longhao Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yanyu Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Shanshan Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Jiashuo Chao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Zhenhui Lu
- Hepatobiliary and Pancreatic Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, No.36 Industrial 8 Road, Nanshan District, Shenzhen City, Guangdong province, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| | - Hanping Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
4
|
Wang X, Yang T, Shi S, Xu C, Wang F, Dai D, Guan G, Zhang Y, Wang S, Wang J, Zhang B, Liu P, Bai X, Jin Y, Li X, Zhu C, Chen D, Xu Q, Guo Y. Heterogeneity-induced NGF-NGFR communication inefficiency promotes mitotic spindle disorganization in exhausted T cells through PREX1 suppression to impair the anti-tumor immunotherapy with PD-1 mAb in hepatocellular carcinoma. Cancer Med 2024; 13:e6736. [PMID: 38204220 PMCID: PMC10905245 DOI: 10.1002/cam4.6736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The mechanism of decreased T cells infiltrating tumor tissues in hepatocellular carcinoma is poorly understood. METHODS Cells were separated from the single-cell RNA-sequence dataset of hepatocellular carcinoma patients (GSE149614) for cell-cell communication. Flow cytometry, EDU staining, H3-Ser28 staining, confocal immunofluorescence staining, western blotting and naked microsubcutaneous tumors were performed for the mechanism of NGF-NGFR promoting proliferation. RESULTS The present study has revealed that during the process of T-cell infiltration from adjacent tissues to tumor tissues, an inefficiency in NGF-NGFR communication occurs in the tumor tissues. Importantly, NGF secreted by tumor cells interacts with NGFR present on the membranes of the infiltrated T cells, thereby promoting the proliferation through the activation of mitotic spindle signals. Mechanistically, the mediation of mitotic spindle signal activation promoting proliferation is executed by HDAC1-mediated inhibition of unclear trans-localization of PREX1. Furthermore, PD-1 mAb acts synergistically with the NGF-NGFR communication to suppress tumor progression in both mouse models and HCC patients. Additionally, NGF-NGFR communication was positively correlates with the PD-1/PDL-1 expression. However, expressions of NGF and NGFR are low in tumor tissues, which is responsible for the invasive clinicopathological features and the disappointing prognosis in HCC patients. CONCLUSION Inefficiency in NGF-NGFR communication impairs PD-1 mAb immunotherapy and could thus be utilized as a novel therapeutic target in the treatment of HCC patients in clinical practice.
Collapse
Affiliation(s)
- Xin Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tongwang Yang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Academician WorkstationChangsha Medical UniversityChangshaChina
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical PreparationsChangsha Medical UniversityChangshaChina
| | - Shangheng Shi
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chuanshen Xu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Feng Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Deshu Dai
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ge Guan
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yong Zhang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shuxian Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jianhong Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Bingliang Zhang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Peng Liu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaoshuai Bai
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yan Jin
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xinqiang Li
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Cunle Zhu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Dexi Chen
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Beijing Institute of HepatologyCapital Medical UniversityBeijingChina
| | - Qingguo Xu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Academician WorkstationChangsha Medical UniversityChangshaChina
| | - Yuan Guo
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
5
|
Li Y, Shen Z, Chai Z, Zhan Y, Zhang Y, Liu Z, Liu Y, Li Z, Lin M, Zhang Z, Liu W, Guan S, Zhang J, Qian J, Ding Y, Li G, Fang Y, Deng H. Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity. Gut 2023; 72:2307-2320. [PMID: 37507218 PMCID: PMC10715532 DOI: 10.1136/gutjnl-2022-329147] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVE Checkpoint immunotherapy unleashes T-cell control of tumours but is suppressed by immunosuppressive myeloid cells. The transmembrane protein MS4A4A is selectively highly expressed in tumour-associated macrophages (TAMs). Here, we aimed to reveal the role of MS4A4A+ TAMs in regulating the immune escape of tumour cells and to develop novel therapeutic strategies targeting TAMs to enhance the efficacy of immune checkpoint inhibitor (ICI) in colorectal cancer. DESIGN The inhibitory effect of MS4A4A blockade alone or combined with ICI treatment on tumour growth was assessed using murine subcutaneous tumour or orthotopic transplanted models. The effect of MS4A4A blockade on the tumour immune microenvironment was assessed by flow cytometry and mass cytometry. RNA sequencing and western blot analysis were used to further explore the molecular mechanism by which MS4A4A promoted macrophages M2 polarisation. RESULTS MS4A4A is selectively expressed by TAMs in different types of tumours, and was associated with adverse clinical outcome in patients with cancer. In vivo inhibition of MS4A4A and anti-MS4A4A monoclonal antibody treatment both curb tumour growth and improve the effect of ICI therapy. MS4A4A blockade treatment reshaped the tumour immune microenvironment, resulting in reducing the infiltration of M2-TAMs and exhausted T cells, and increasing the infiltration of effector CD8+ T cells. Anti-MS4A4A plus anti-programmed cell death protein 1 (PD-1) therapy remained effective in large, treatment-resistant tumours and could induce complete regression when further combined with radiotherapy. Mechanistically, MS4A4A promoted M2 polarisation of macrophages by activating PI3K/AKT pathway and JAK/STAT6 pathway. CONCLUSION Targeting MS4A4A could enhance the ICI efficacy and represent a new anticancer immunotherapy.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhiyong Shen
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhen Chai
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yizhi Zhan
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yaowei Zhang
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhengyu Liu
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yuechen Liu
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhenkang Li
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Mingdao Lin
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhanqiao Zhang
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Wei Liu
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Shenyuan Guan
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Jinchao Zhang
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Junying Qian
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yi Ding
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Guoxin Li
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yuan Fang
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Haijun Deng
- Department of General Surgery, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Huang H, Li N, Liang Y, Li R, Tong X, Xiao J, Tang H, Jiang D, Xie K, Fang C, Chen S, Li G, Wang B, Wang J, Luo H, Guo L, Ma H, Jiang W, Feng Y. Multi-omics analyses reveal spatial heterogeneity in primary and metastatic oesophageal squamous cell carcinoma. Clin Transl Med 2023; 13:e1493. [PMID: 38009315 PMCID: PMC10679972 DOI: 10.1002/ctm2.1493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Biopsies obtained from primary oesophageal squamous cell carcinoma (ESCC) guide diagnosis and treatment. However, spatial intra-tumoral heterogeneity (ITH) influences biopsy-derived information and patient responsiveness to therapy. Here, we aimed to elucidate the spatial ITH of ESCC and matched lymph node metastasis (LNmet ). METHODS Primary tumour superficial (PTsup ), deep (PTdeep ) and LNmet subregions of patients with locally advanced resectable ESCC were evaluated using whole-exome sequencing (WES), whole-transcriptome sequencing and spatially resolved digital spatial profiling (DSP). To validate the findings, immunohistochemistry was conducted and a single-cell transcriptomic dataset was analysed. RESULTS WES revealed 15.72%, 5.02% and 32.00% unique mutations in PTsup , PTdeep and LNmet , respectively. Copy number alterations and phylogenetic trees showed spatial ITH among subregions both within and among patients. Driver mutations had a mixed intra-tumoral clonal status among subregions. Transcriptome data showed distinct differentially expressed genes among subregions. LNmet exhibited elevated expression of immunomodulatory genes and enriched immune cells, particularly when compared with PTsup (all P < .05). DSP revealed orthogonal support of bulk transcriptome results, with differences in protein and immune cell abundance between subregions in a spatial context. The integrative analysis of multi-omics data revealed complex heterogeneity in mRNA/protein levels and immune cell abundance within each subregion. CONCLUSIONS This study comprehensively characterised spatial ITH in ESCC, and the findings highlight the clinical significance of unbiased molecular classification based on multi-omics data and their potential to improve the understanding and management of ESCC. The current practices for tissue sampling are insufficient for guiding precision medicine for ESCC, and routine profiling of PTdeep and/or LNmet should be systematically performed to obtain a more comprehensive understanding of ESCC and better inform treatment decisions.
Collapse
Affiliation(s)
- Haitao Huang
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Yingkuan Liang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Rutao Li
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Xing Tong
- Department of Pathologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jinyuan Xiao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Hongzhen Tang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Dong Jiang
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Kai Xie
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chen Fang
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shaomu Chen
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Guangbin Li
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bin Wang
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Jiaqian Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Lingchuan Guo
- Department of Pathologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haitao Ma
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Wei Jiang
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Yu Feng
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
7
|
Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, Ruppin E, Wang XW. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol 2023; 20:780-798. [PMID: 37726418 DOI: 10.1038/s41571-023-00816-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Immune-checkpoint inhibitors (ICIs) are now widely used for the treatment of patients with advanced-stage hepatocellular carcinoma (HCC). Two different ICI-containing regimens, atezolizumab plus bevacizumab and tremelimumab plus durvalumab, are now approved standard-of-care first-line therapies in this setting. However, and despite substantial improvements in survival outcomes relative to sorafenib, most patients with advanced-stage HCC do not derive durable benefit from these regimens. Advances in genome sequencing including the use of single-cell RNA sequencing (both of tumour material and blood samples), as well as immune cell identification strategies and other techniques such as radiomics and analysis of the microbiota, have created considerable potential for the identification of novel predictive biomarkers enabling the accurate selection of patients who are most likely to derive benefit from ICIs. In this Review, we summarize data on the immunology of HCC and the outcomes in patients receiving ICIs for the treatment of this disease. We then provide an overview of current biomarker use and developments in the past 5 years, including gene signatures, circulating tumour cells, high-dimensional flow cytometry, single-cell RNA sequencing as well as approaches involving the microbiome, radiomics and clinical markers. Novel concepts for further biomarker development in HCC are then discussed including biomarker-driven trials, spatial transcriptomics and integrated 'big data' analysis approaches. These concepts all have the potential to better identify patients who are most likely to benefit from ICIs and to promote the development of new treatment approaches.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Augusto Villanueva
- Divisions of Liver Disease and Hematology/Medical Oncology, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xin W Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Lin ZY, Yeh ML, Liang PC, Hsu PY, Huang CF, Huang JF, Dai CY, Yu ML, Chuang WL. Dose Consideration of Lenvatinib's Anti-Cancer Effect on Hepatocellular Carcinoma and the Potential Benefit of Combined Colchicine Therapy. Cancers (Basel) 2023; 15:5097. [PMID: 37894463 PMCID: PMC10605131 DOI: 10.3390/cancers15205097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE The dose-dependent anti-cancer effect of lenvatinib on hepatocellular carcinoma (HCC) cells and the potential benefit of combined colchicine therapy were investigated. METHODS Four primary cultured HCC (S103, S143, S160, S176) cell lines were investigated by differential expressions of genes (11 lenvatinib target genes and NANOG) and anti-proliferative effect using clinically achievable plasma lenvatinib (250, 350 ng/mL) and colchicine (4 ng/mL) concentrations. RESULTS Colchicine showed an anti-proliferative effect on all cell lines. Lenvatinib at 250 ng/mL inhibited proliferation in all cell lines, but 350 ng/mL inhibited only three cell lines. For lenvatinib target genes, colchicine down-regulated more genes and up-regulated less genes than lenvatinib did in three cell lines. Lenvatinib up-regulated NANOG in all cell lines. Colchicine down-regulated NANOG in three cell lines but up-regulated NANOG with less magnitude than lenvatinib did in S103. Overall, combined colchicine and 250 ng/mL lenvatinib had the best anti-cancer effects in S143, with similar effects with combined colchicine and 350 ng/mL lenvatinib in S176 but less effects than combined colchicine and 350 ng/mL lenvatinib in S103 and S160. CONCLUSIONS Lenvatinib does not show a dose-dependent anti-cancer effect on HCC. Combined colchicine and lenvatinib can promote the total anti-cancer effects on HCC.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lun Yeh
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Cheng Liang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
| | - Po-Yao Hsu
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
| | - Chung-Feng Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yen Dai
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lung Yu
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine, Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (M.-L.Y.); (P.-C.L.); (P.-Y.H.); (C.-F.H.); (J.-F.H.); (C.-Y.D.); (M.-L.Y.); (W.-L.C.)
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Chen Y, Yang C, Sheng L, Jiang H, Song B. The Era of Immunotherapy in Hepatocellular Carcinoma: The New Mission and Challenges of Magnetic Resonance Imaging. Cancers (Basel) 2023; 15:4677. [PMID: 37835371 PMCID: PMC10572030 DOI: 10.3390/cancers15194677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, significant advancements in immunotherapy for hepatocellular carcinoma (HCC) have shown the potential to further improve the prognosis of patients with advanced HCC. However, in clinical practice, there is still a lack of effective biomarkers for identifying the patient who would benefit from immunotherapy and predicting the tumor response to immunotherapy. The immune microenvironment of HCC plays a crucial role in tumor development and drug responses. However, due to the complexity of immune microenvironment, currently, no single pathological or molecular biomarker can effectively predict tumor responses to immunotherapy. Magnetic resonance imaging (MRI) images provide rich biological information; existing studies suggest the feasibility of using MRI to assess the immune microenvironment of HCC and predict tumor responses to immunotherapy. Nevertheless, there are limitations, such as the suboptimal performance of conventional MRI sequences, incomplete feature extraction in previous deep learning methods, and limited interpretability. Further study needs to combine qualitative features, quantitative parameters, multi-omics characteristics related to the HCC immune microenvironment, and various deep learning techniques in multi-center research cohorts. Subsequently, efforts should also be undertaken to construct and validate a visual predictive tool of tumor response, and assess its predictive value for patient survival benefits. Additionally, future research endeavors must aim to provide an accurate, efficient, non-invasive, and highly interpretable method for predicting the effectiveness of immune therapy.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Chongtu Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Liuji Sheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
- Department of Radiology, Sanya People’s Hospital, Sanya 572000, China
| |
Collapse
|
10
|
Laface C, Ranieri G, Maselli FM, Ambrogio F, Foti C, Ammendola M, Laterza M, Cazzato G, Memeo R, Mastrandrea G, Lioce M, Fedele P. Immunotherapy and the Combination with Targeted Therapies for Advanced Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:654. [PMID: 36765612 PMCID: PMC9913568 DOI: 10.3390/cancers15030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
One of the most important abilities of a tumor is to establish a state of immunosuppression inside the tumor microenvironment. This is made possible through numerous mechanisms of tumor immune escape that have been identified in experimental studies during the last decades. In addition, the hepatic microenvironment is commonly oriented towards a state of immune tolerance because the liver receives blood from the hepatic arteries and portal veins containing a variety of endogenous antigens. Therefore, the hepatic microenvironment establishes an autoimmune tolerance, preventing an autoimmune reaction in the liver. On this basis, hepatic tumor cells may escape the immune system, avoiding being recognized and destroyed by immune cells. Moreover, since the etiology of Hepatocellular Carcinoma (HCC) is often related to cirrhosis, and hepatitis B or C, this tumor develops in the context of chronic inflammation. Thus, the HCC microenvironment is characterized by important immune cell infiltration. Given these data and the poor prognosis of advanced HCC, different immunotherapeutic strategies have been developed and evaluated for these patients. In this review, we describe all the clinical applications of immunotherapy for advanced HCC, from the drugs that have already been approved to the ongoing clinical trials.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | | | | | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Caterina Foti
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Michele Ammendola
- Department of Health Science, General Surgery, Medicine School of Germaneto, Magna Graecia University, 88100 Catanzaro, Italy
| | - Marigia Laterza
- Division of Cardiac Surgery, University of Bari, 70124 Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, “F. Miulli” General Regional Hospital, 70021 Acquaviva Delle Fonti, Italy
| | | | - Marco Lioce
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
11
|
Li W, Cheng N, Zhao Z, Zheng B, Yang Z, Xu Y, Shao Y, Song Y, Lu N, Xue L. Molecular characteristics of multifocal esophageal squamous cell carcinomas to discriminate multicentric origin from intramural metastasis. J Pathol 2022; 258:395-407. [PMID: 36098222 DOI: 10.1002/path.6010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 01/19/2023]
Abstract
Multifocal esophageal squamous cell carcinomas (ESCCs) can be diagnosed as of multicentric origin (MO) or intramural metastasis (IMM). We aimed here to accurately discriminate MO from IMM and explore the tumor immune microenvironment of multifocal ESCCs. Multifocal ESCCs were identified in 333 ESCC patients, and in 145 patients discrimination between MO and IMM was not possible by histopathological examination. Of the 145 patients, tissues of 14 were analyzed by whole-exome sequencing (WES) of 71 different tumor regions, and MO, IMM, and MO/IMM mixed groups were identified in three, ten, and one cases, respectively, based on the similarity of genomic architecture between or among different tumors from one patient. Further phylogenetic analyses revealed complex clonal evolution patterns in IMM cases, and tumor cells disseminated from the primary tumors to IMM tumors were independent of lymph node metastasis. The NanoString-based assay showed that immune cell infiltrates were significantly enriched, and that the immune and proliferation pathways were more activated, in large tumors than in small ones in MO but not IMM cases. Similarly, PD-L1 expression and the density of paratumoral CD8+ T cells were higher in large tumors than in small tumors in MO. Taken together, through analysis of the genomic and immune landscapes, our study has comprehensively characterized the heterogeneity and clonal relationship of multifocal ESCCs, which may be helpful in distinguishing MO from IMM, and for interpreting the immunotherapy responses for multifocal ESCC patients. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Na Cheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhaoyang Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yang Xu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, PR China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, PR China.,School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ning Lu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.,Center for Cancer Precision Medicine, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
12
|
He P, Wan H, Wan J, Jiang H, Yang Y, Xie K, Wu H. Systemic therapies in hepatocellular carcinoma: Existing and emerging biomarkers for treatment response. Front Oncol 2022; 12:1015527. [PMID: 36483039 PMCID: PMC9723250 DOI: 10.3389/fonc.2022.1015527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/28/2022] [Indexed: 07/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third most common cause of cancer-related death worldwide. Due to asymptomatic patients in the early stage, most patients are diagnosed at an advanced stage and lose the opportunity for radical resection. In addition, for patients who underwent procedures with curative intent for early-stage HCC, up to 70% of patients may have disease recurrence within 5 years. With the advent of an increasing number of systemic therapy medications, we now have more options for the treatment of HCC. However, data from clinical studies show that with different combinations of regimens, the objective response rate is approximately 40%, and most patients will not respond to treatment. In this setting, biomarkers for predicting treatment response are of great significance for precise treatment, reducing drug side effects and saving medical resources. In this review, we summarized the existing and emerging biomarkers in the literature, with special emphasis on the pathways and mechanism underlying the prediction value of those biomarkers for systemic treatment response.
Collapse
Affiliation(s)
- Penghui He
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haifeng Wan
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Wan
- Department of Pancreatitis Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yang
- Department of Abdominal Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Kunlin Xie
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Wu
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Fu J, Cao Z, Zhang J, Chen Q, Wang Y, Wang S, Fang X, Xu X. Identification of two immune-related risk score signatures through integrated analysis of multi-omics data in hepatocellular carcinoma. Gene X 2022; 829:146519. [PMID: 35447248 DOI: 10.1016/j.gene.2022.146519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Immunotherapy has become a major treatment for advanced HCC, but the therapeutic effects remain unsatisfactory. In this study, we constructed an immune cell risk score (ICS) and an immune cell-related gene risk score (ICRGS) for the prognosis prediction of HCC through integrated analysis of bulk and single-cell RNA (scRNA) sequencing data. These two risk score signatures both showed good predictive values in the training and validation cohorts. The potential interactions among these prognostic immune cell types were elucidated by cell-cell communication analysis. The results of enrichment analysis and gene set enrichment analysis (GSEA) of the prognostic genes showed that metabolic-related processes were involved in the immune response of HCC. Furthermore, the results of correlation analyses further confirmed the hub genes that were strongly correlated with immune cells. Finally, potential therapeutic drugs targeting these hub genes were screened by CellMiner based on NCI-60 cell line set. Taken together, two useful models for the prognosis prediction of HCC patients were constructed in this study. The functional differences between the two groups of HCC patients separated by ICS or ICRGS provide fundamental knowledge for finding synergistic therapeutic targets for HCC immunotherapy.
Collapse
Affiliation(s)
- Jie Fu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenyu Cao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ju Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sixue Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xundi Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China; Department of General Surgery, South China Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
14
|
Xia Y, Tang W, Qian X, Li X, Cheng F, Wang K, Zhang F, Zhang C, Li D, Song J, Zhang H, Zhao J, Yao A, Wu X, Wu C, Ji G, Liu X, Zhu F, Qin L, Xiao X, Deng Z, Kong X, Li S, Yu Y, Xi W, Deng W, Qi C, Liu H, Pu L, Wang P, Wang X. Efficacy and safety of camrelizumab plus apatinib during the perioperative period in resectable hepatocellular carcinoma: a single-arm, open label, phase II clinical trial. J Immunother Cancer 2022; 10:jitc-2022-004656. [PMID: 35379737 PMCID: PMC8981365 DOI: 10.1136/jitc-2022-004656] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
ObjectiveThis study aimed to assess the efficacy and safety of camrelizumab plus apatinib in patients with resectable hepatocellular carcinoma (HCC) as neoadjuvant therapy.MethodsInitially, 20 patients with HCC were screened and 18 patients with resectable HCC were enrolled in this open-label, single-arm, phase II clinical trial. Patients received three cycles of neoadjuvant therapy including three doses of camrelizumab concurrent with apatinib for 21 days followed by surgery. Four to 8 weeks after surgery, patients received eight cycles of adjuvant therapy with camrelizumab in combination with apatinib. Major pathological reactions (MPR), complete pathological reactions (pCR), objective response rate (ORR), relapse-free survival (RFS), and adverse events (AE) were assessed. In addition, cancer tissue and plasma samples were collected before and after treatment, and genetic differences between responding and non-responding lesions were compared by tumor immune microenvironment (TIME) analysis, circulating tumor DNA (ctDNA) analysis and proteomics analysis.ResultsIn 18 patients with HCC who completed neoadjuvant therapy, 3 (16.7%) and 6 (33.3%) patients with HCC reached ORR based on Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1 and modified RECIST criteria, respectively. Of the 17 patients with HCC who received surgical resection, 3 (17.6%) patients with HCC reported MPR and 1 (5.9%) patient with HCC achieved pCR. The 1-year RFS rate of the enrolled patients was 53.85% (95% CI: 24.77% to 75.99%). Grade 3/4 AEs were reported in 3 (16.7%) of the 18 patients, with the most common AEs being rash (11.1%), hypertension (5.6%), drug-induced liver damage (5.6%), and neutropenia (5.6%) in the preoperative phase. The 289 NanoString panel RNA sequencing showed that TIME cell infiltration especially dendritic cells (DCs) infiltration was better in responding tumors than in non-responding tumors. Our results of ctDNA revealed a higher positive rate (100%) among patients with HCC with stage IIb–IIIa disease. When comparing patients with pCR/MPR and non-MPR, we observed more mutations in patients who achieved pCR/MPR at baseline (6 mutations vs 2.5 mutations, p=0.025). Patients who were ctDNA positive after adjuvant therapy presented a trend of shorter RFS than those who were ctDNA negative. Proteomic analysis suggested that abnormal glucose metabolism in patients with multifocal HCC might be related to different sensitivity of treatment in different lesions.ConclusionPerioperative camrelizumab plus apatinib displays a promising efficacy and manageable toxicity in patients with resectable HCC. DCs infiltration might be a predictive marker of response to camrelizumab and apatinib as well as patients’ recurrence. ctDNA as a compose biomarker can predict pathological response and relapse. Abnormal glucose metabolism in patients with multifocal HCC may be related to different sensitivity of treatment in different lesions.Trial registration numberNCT04297202.
Collapse
Affiliation(s)
- Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xiaofeng Qian
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Feng Cheng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ke Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Feng Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Donghua Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Hui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jie Zhao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Aihua Yao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chen Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Guwei Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xisheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feipeng Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lang Qin
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Xiao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenhua Deng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Si Li
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Yangyang Yu
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Wenjing Xi
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Wanglong Deng
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Chuang Qi
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Hanyuan Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ping Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| |
Collapse
|
15
|
Yin X, Wu T, Lan Y, Yang W. Current progress of immune checkpoint inhibitors in the treatment of advanced hepatocellular carcinoma. Biosci Rep 2022; 42:BSR20212304. [PMID: 35075482 PMCID: PMC8821949 DOI: 10.1042/bsr20212304] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide. The onset of the disease is occult and develops rapidly. As a result, the disease is often detected when it is already in advanced stages, resulting in patients losing the best opportunity for liver transplantation and surgical treatment. Therefore, effective treatment of HCC is particularly important in clinical practice. During the past decades, there have been considerable advances in the treatment of HCC, and immunotherapy is increasingly recognized as a promising approach in clinical trials. In this review, an overview of immune checkpoint (ICP) inhibitors (ICIs) and their role in the treatment of liver cancers, particularly advanced HCC, is presented and the recent therapeutic progress with treatment with different ICIs alone or in combination with other methods/therapeutic agents is summarized. In addition, the identification of biomarkers to predict treatment response and the limitations of current ICIs are analyzed, and future directions for ICI treatment are discussed.
Collapse
Affiliation(s)
- Xiaoqiang Yin
- Department of Hepatobiliary Surgery, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Tongchui Wu
- Department of Hepatobiliary Surgery, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Yadong Lan
- Department of Hepatobiliary Surgery, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
- Medical Pathology Centre, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| |
Collapse
|
16
|
Immunotherapy of HBV-related advanced hepatocellular carcinoma with short-term HBV-specific TCR expressed T cells: results of dose escalation, phase I trial. Hepatol Int 2021; 15:1402-1412. [PMID: 34850325 PMCID: PMC8651587 DOI: 10.1007/s12072-021-10250-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Background & aims Immunotherapy with hepatitis B virus (HBV)-specific TCR redirected T (HBV-TCR-T) cells in HBV-related hepatocellular carcinoma (HBV-HCC) patients after liver transplantation was reported to be safe and had potential therapeutic efficacy. We aim to investigate the safety of HBV-TCR-T-cell immunotherapy in advanced HBV-HCC patients who had not met the criteria for liver transplantation. Methods We enrolled eight patients with advanced HBV-HCC and adoptively transferred short-lived autologous T cells expressing HBV-specific TCR to perform an open-label, phase 1 dose-escalation study (NCT03899415). The primary endpoint was to evaluate the safety of HBV-TCR-T-cell therapy according to National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.03) during the dose-escalation process. The secondary endpoint was to assess the efficacy of HBV-TCR-T-cell therapy by evaluating the anti-tumor responses using RECIST criteria (version 1.1) and the overall survival. Results Adverse events were observed in two participants among the 8 patients enrolled. Only one patient experienced a Grade 3 liver-related adverse event after receiving a dose of 1 × 105 HBV-TCR-T cells/kg, then normalized without interventions with immunosuppressive agents. Among the patients, one achieved a partial response lasting for 27.7 months. Importantly, most of the patients exhibited a reduction or stabilization of circulating HBsAg and HBV DNA levels after HBV-TCR-T-cell infusion, indicating the on-target effects. Conclusions The adoptive transfer of HBV-TCR-T cells into advanced HBV-HCC patients were generally safe and well-tolerated. Observations of clinical efficacy support the continued development and eventual application of this treatment strategy in patients with advanced HBV-related HCC. Clinical trials registration This study was registered at ClinicalTrials.gov (NCT03899415).
Collapse
|
17
|
He Y, Lu M, Che J, Chu Q, Zhang P, Chen Y. Biomarkers and Future Perspectives for Hepatocellular Carcinoma Immunotherapy. Front Oncol 2021; 11:716844. [PMID: 34552872 PMCID: PMC8450565 DOI: 10.3389/fonc.2021.716844] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular cancer is the sixth most frequently diagnosed malignant disease worldwide, and was responsible for tens of millions of deaths in 2020; however, treatment options for patients with advanced hepatocellular carcinoma remain limited. Immunotherapy has undergone rapid development over recent years, especially in the field of immune checkpoint inhibitors (ICIs). These drugs aim to activate and enhance antitumor immunity and represent a new prospect for the treatment of patients with advanced cancer. Nevertheless, only a small proportion of liver cancer patients currently benefit from ICI-based treatment, highlighting the need to better understand how ICIs and tumors interact, as well as identify predictive biomarkers for immunotherapeutic responses. In this review, we highlight clinical trials and basic research in hepatocellular carcinoma, with a particular focus on predictive biomarkers for the therapeutic efficacy of ICIs. Predictive biomarkers for immune-related adverse events are also discussed.
Collapse
Affiliation(s)
- Yuqing He
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyao Lu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Che
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Qiao Y, Liu C, Zhang X, Zhou Q, Li Y, Xu Y, Gao Z, Xu Y, Kong L, Yang A, Mei M, Ren Y, Wang X, Zhou X. PD-L2 based immune signature confers poor prognosis in HNSCC. Oncoimmunology 2021; 10:1947569. [PMID: 34377590 PMCID: PMC8344752 DOI: 10.1080/2162402x.2021.1947569] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PD-L2 expression is an important predictor of anti-PD-1 therapy efficacy in patients with head and neck squamous cell carcinoma (HNSCC). However, whether the PD-L2-based immune signature can serve as a prognostic biomarker for patients with HNSCC remains unclear. Here, we reported that PD-L2 was positively stained in 62.7% of tumors, which was more than twice as that of PD-L1, and in 61.4% of patients with PD-L1-negative tumors. Survival tree analysis (STA) revealed that PD-L2high was an independent predictor of poor overall survival (OS). Six patterns were generated from STA, demonstrating that patients with PD-L2lowCD3high were associated with an improved median OS of 72 months and prognostic index (PI) of -3.95 (95% CI, -5.14 to -2.76), whereas patients with PD-L2highCD3lowCD8low to a median OS of 10 months and PI of 1.43 (95% CI, 0.56 to 2.30). Analysis of single-cell RNA sequencing showed that PD-L2 expression was associated with IL-6 expression. We confirmed that IL-6 augments PD-L2 expression in HNSCC cell lines. The PD-L2-based immune signature can serve as an effective biomarker for anti-PD-1 therapy. In addition, PD-L2 may serve as a potential immunotherapeutic target, and we propose anti-IL6 therapy in the adjuvant setting for patients with HNSCC with high PD-L2 expression.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xiaoyue Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Yatian Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yini Xu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Zhenyue Gao
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiqi Xu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingping Kong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Aifeng Yang
- Department of Second General Surgery, Shuangyashan People's Hospital, Heilongjiang, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
19
|
Xue D, Han J, Liu Y, Tuo H, Peng Y. Current perspectives on exosomes in the diagnosis and treatment of hepatocellular carcinoma (review). Cancer Biol Ther 2021; 22:279-290. [PMID: 33847207 PMCID: PMC8183537 DOI: 10.1080/15384047.2021.1898728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC), a malignant tumor, is poor. Tumor recurrence and metastasis are the major challenges for the treatment of HCC. Various studies have demonstrated that exosomes, which are loaded with various biomolecules including nucleic acids, lipids, and proteins are involved in the recurrence and metastasis of HCC. Additionally, exosomes mediate various biological processes, such as immune response, cell apoptosis, angiogenesis, thrombosis, autophagy, and intercellular signal transduction. In cancer, exosomes regulate cancer cell differentiation, development, and drug resistance. Circular RNAs, microRNAs, and proteins in the exosomes can serve as early diagnostic and prognostic markers for HCC. As exosomes are characterized by low immunogenicity and high stability in the tissues and circulation, they can be used to deliver the drugs in cancer therapies.
Collapse
Affiliation(s)
- Dongdong Xue
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| | - Jingzhao Han
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China.,Department of Graduate School, Hebei Medical University, Shijiazhuang, P. R. China
| | - Yifan Liu
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China.,Department of Graduate School, Hebei Medical University, Shijiazhuang, P. R. China
| | - Hongfang Tuo
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| | - Yanhui Peng
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
20
|
Peng X, Chen R, Cai S, Lu S, Zhang Y. SLC1A4: A Powerful Prognostic Marker and Promising Therapeutic Target for HCC. Front Oncol 2021; 11:650355. [PMID: 33777811 PMCID: PMC7991385 DOI: 10.3389/fonc.2021.650355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
SLC1A4, a Na-dependent neutral amino acid transporter, was considered to participate in the various pathobiological process, including tumorigenesis. However, the correlation between SLC1A4 and Hepatocellular Carcinoma (HCC) remains unclear. In our study, integrative bioinformatics and functional profiling were performed to reveal the prognosis and potential function of SLC1A4 in HCC. The results showed that the mRNA and protein levels of SLC1A4 were elevated in HCC, and it was a powerful independent prognostic marker for overall survival (OS). The co-expressed genes analysis and GSEA analysis showed that SLC1A4 was related to cell cycle, metabolism, cancer-related pathway. Furthermore, the functional analysis revealed that silenced SLC1A4 inhibited cell proliferation, migration, cell cycle, and promoted cell apoptosis in HCC. Next, immune analysis showed that SLC1A4 expression was positively associated with immune infiltration and immune-related chemokine expression in HCC. Silenced SLC1A4 evidently reduced these chemokines expression in HCC cells. Finally, drug sensitivity analysis revealed potential five sensitivity drugs for HCC patients with high-expressed SLC1A4. In conclusion, our results suggested that SLCIA4 could be a novel predictor prognosis and immunotherapeutic targets of HCC, and the sensitivity drugs may be effective therapeutic strategy for HCC patients with high-expressed SLC1A4.
Collapse
Affiliation(s)
- Xiaozhen Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Huaihua Key Laboratory of Research and Application of Novel Molecular Diagnostic Techniques, School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shenglan Cai
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Lu
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Li D, Chen B, Zeng Y, Wang H. UHRF1 Could Be a Prognostic Biomarker and Correlated with Immune Cell Infiltration in Hepatocellular Carcinoma. Int J Gen Med 2021; 14:6769-6776. [PMID: 34675635 PMCID: PMC8520845 DOI: 10.2147/ijgm.s335016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE This study was performed to investigate the relationship among UHRF1 expression, its biological function and immune infiltration in human hepatocellular carcinoma (HCC). METHODS Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine, and The Cancer Genome Atlas (TCGA) databases were used to analyze UHRF1 expression between HCC and normal tissues. Subsequently, GEPIA, TCGA-Portal, Kaplan-Meier Plotter, Protein Atlas and SurvExpress databases were utilized for survival analysis. UHRF1 co-expression genes were identified via the cBioPortal and LinkedOmics databases. Further, gene ontology (GO) analysis as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. Protein-protein interaction (PPI) networks was constructed by STRING database and Cytoscape 3.7.1. Single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithm were employed to assess the correlation between UHRF1 and tumor immune infiltrates on TCGA database. TIMER 2.0 database was used to explore the correlation of UHRF1 expression and immune infiltration level in HCC. Additionally, RT-qPCR was used to analyze the expression of UHRF1 and the relative genes in HCC cell lines. RESULTS Expression level of UHRF1 was upregulated in HCC tissues compared with paired normal tissues (P < 0.05 in GEPIA; P = 1.78E-6 in Oncomine; and P < 0.0001 in TCGA). Its high expression was significantly related with a shorter overall survival in five databases (P < 0.05). Function enrichment analysis demonstrated that functions of UHRF1 concentrated in cell division process and cell cycle (P < 0.05). High UHRF1 expression exhibited dysregulated immune infiltration (ie, neutrophils, eosinophils, dendritic cells resting, macrophages M2, macrophages M0) and poor survival of high UHRF1 expression was tight correlated with immune infiltration status. Moreover, TP53 mutation can lead to high expression of UHRF1 (P = 4.2E-10). CONCLUSION UHRF1 might function as an oncogene via inducing dysregulated immune infiltration in HCC and was identified as a novel prognostic biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Danfeng Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Binlie Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Medical college, Shantou University, Shantou, Guangdong, People’s Republic of China
| | - Yongming Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Huaiming Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Correspondence: Huaiming Wang Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, People’s Republic of ChinaTel +86 13750417745Fax +86 0754-88259850 Email
| |
Collapse
|
22
|
Zhang Q, Chen Y, Bai X, Liang T. Immune Checkpoint Blockade Therapy for Hepatocellular Carcinoma: Clinical Challenges and Considerations. Front Oncol 2020; 10:590058. [PMID: 33178615 PMCID: PMC7593704 DOI: 10.3389/fonc.2020.590058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Although many approaches have been developed for the treatment of hepatocellular carcinoma (HCC) that has both high incidence and high mortality especially in Asian countries, the prognosis of HCC patients is still dismal. Immunotherapy, particularly immune checkpoint inhibitors show encouraging efficacy and have already been widely applied in clinic. However, in contrast to traditional therapies, immunotherapy brings many challenges when using in a real world, including biomarker discovery, response evaluation, adverse event treatment, etc. In this review, we proposed some important and intractable issues in current clinical practice regarding the strategy of immune checkpoint blockade, collected current evidence, and discuss the critical challenges and possible approaches to a bright future.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China
| | - Yiwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China
| |
Collapse
|