1
|
Wang Y, Hu M, Finn OJ, Wang XS. Tumor-Associated Antigen Burden Correlates with Immune Checkpoint Blockade Benefit in Tumors with Low Levels of T-cell Exhaustion. Cancer Immunol Res 2024; 12:1589-1602. [PMID: 39137006 PMCID: PMC11534523 DOI: 10.1158/2326-6066.cir-23-0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/20/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
Tumor-associated antigens (TAA) are important targets for cancer vaccines. However, TAA-based vaccines have not yet achieved their full potential in clinical trials. In contrast, immune checkpoint blockade (ICB) has emerged as an effective therapy, leading to durable responses in selected patients with cancer. To date, few generalizable associations between TAAs and ICB benefit have been reported, with most studies focusing on melanoma, which has the highest mutation rate in cancer. In this study, we developed a TAA burden (TAB) algorithm based on known and putative TAAs and investigated the association of TAB with ICB benefit. Analysis of the IMvigor210 patient cohort of urothelial carcinoma treated with anti-PDL1 revealed that high tumor mutation burden weakened the association of TAB with ICB benefit. Furthermore, TAB correlated with ICB efficacy in tumors characterized by negative PDL1 staining on immune cells; however, high levels of PDL1 staining on immune cells were linked to T-cell exhaustion. Validation across independent clinical datasets-including urothelial carcinoma cohorts treated with anti-PD1/PDL1 agents and neoadjuvant anti-PD1 trials for head and neck cancers-corroborated the finding that TAB correlates with ICB benefit in tumors with low T-cell exhaustion. Pan-cancer analyses revealed that in most cancer entities, tumors with higher T-cell exhaustion exhibited lower TAB levels, implying possible immunoediting of TAAs in tumors with established antitumor immunity. Our study challenges the prevailing notion of a lack of association between TAAs and ICB response. It also underscores the need for future investigations into the immunogenicity of TAAs and TAA-based vaccine strategies in tumors with low levels of T-cell exhaustion.
Collapse
Affiliation(s)
- Yue Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, U.S.A
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, U.S.A
| | - Mengying Hu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, U.S.A
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, U.S.A
| | - Olivera J Finn
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, U.S.A
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, U.S.A
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, U.S.A
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, U.S.A
| |
Collapse
|
2
|
Cheng L, Yang C, Lu J, Huang M, Xie R, Lynch S, Elfman J, Huang Y, Liu S, Chen S, He B, Lin T, Li H, Chen X, Huang J. Oncogenic SLC2A11-MIF fusion protein interacts with polypyrimidine tract binding protein 1 to facilitate bladder cancer proliferation and metastasis by regulating mRNA stability. MedComm (Beijing) 2024; 5:e685. [PMID: 39156764 PMCID: PMC11324686 DOI: 10.1002/mco2.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/20/2024] Open
Abstract
Chimeric RNAs, distinct from DNA gene fusions, have emerged as promising therapeutic targets with diverse functions in cancer treatment. However, the functional significance and therapeutic potential of most chimeric RNAs remain unclear. Here we identify a novel fusion transcript of solute carrier family 2-member 11 (SLC2A11) and macrophage migration inhibitory factor (MIF). In this study, we investigated the upregulation of SLC2A11-MIF in The Cancer Genome Atlas cohort and a cohort of patients from Sun Yat-Sen Memorial Hospital. Subsequently, functional investigations demonstrated that SLC2A11-MIF enhanced the proliferation, antiapoptotic effects, and metastasis of bladder cancer cells in vitro and in vivo. Mechanistically, the fusion protein encoded by SLC2A11-MIF interacted with polypyrimidine tract binding protein 1 (PTBP1) and regulated the mRNA half-lives of Polo Like Kinase 1, Roundabout guidance receptor 1, and phosphoinositide-3-kinase regulatory subunit 3 in BCa cells. Moreover, PTBP1 knockdown abolished the enhanced impact of SLC2A11-MIF on biological function and mRNA stability. Furthermore, the expression of SLC2A11-MIF mRNA is regulated by CCCTC-binding factor and stabilized through RNA N4-acetylcytidine modification facilitated by N-acetyltransferase 10. Overall, our findings revealed a significant fusion protein orchestrated by the SLC2A11-MIF-PTBP1 axis that governs mRNA stability during the multistep progression of bladder cancer.
Collapse
Affiliation(s)
- Liang Cheng
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Chenwei Yang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Junlin Lu
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ming Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ruihui Xie
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Sarah Lynch
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Justin Elfman
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Yuhang Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Sen Liu
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Siting Chen
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Baoqing He
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Tianxin Lin
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hui Li
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Xu Chen
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jian Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
Qiao R, Zhu Q, Di F, Liu C, Song Y, Zhang J, Xu T, Wang Y, Dai L, Gu W, Han B, Yang R. Hypomethylation of DYRK4 in peripheral blood is associated with increased lung cancer risk. Mol Carcinog 2023; 62:1745-1754. [PMID: 37530470 DOI: 10.1002/mc.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. It is urgent to identify new biomarkers for the early detection of LC. DNA methylation in peripheral blood has been reported to be associated with cancers. We conducted two independent case-control studies and a nested case-control study (168 LC cases and 167 controls in study Ⅰ, 677 LC cases and 833 controls in study Ⅱ, 147 precancers and 21 controls in the nested case-control study). The methylation levels of DYRK4 CpG sites were measured using mass spectrometry and their correlations with LC were analyzed by logistic regression and nonparametric tests. Bonferroni correction was used for the multiple comparisons. LC-related decreased DYRK4 methylation was discovered in Study I and validated in Study II (the odds ratios [ORs] for the lowest vs. highest quartile of all three DYRK4 CpG sites ranged from 1.64 to 2.09, all p < 0.001). Combining the two studies, hypomethylation of DYRK4 was observed in stage I cases (ORs per -10% methylation ranged from 1.16 to 1.38, all p < 5.9E-04), and could be enhanced by male gender (ORs ranged from 1.77 to 4.17 via interquartile analyses, all p < 0.017). Hypomethylation of DYRK4_A_CpG_2 was significantly correlated with tumor size, length, and stage (p = 0.034, 0.002, and 0.002, respectively) in LC cases. Our study disclosed the association between DYRK4 hypomethylation in peripheral blood and LC, suggesting the feasibility of blood-based DNA methylation as new biomarker for LC detection.
Collapse
Affiliation(s)
- Rong Qiao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feifei Di
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yakang Song
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| | - Jin Zhang
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| | - Tian Xu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yue Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| |
Collapse
|
4
|
Du L, Wilson BAP, Li N, Shah R, Dalilian M, Wang D, Smith EA, Wamiru A, Goncharova EI, Zhang P, O’Keefe BR. Discovery and Synthesis of a Naturally Derived Protein Kinase Inhibitor that Selectively Inhibits Distinct Classes of Serine/Threonine Kinases. JOURNAL OF NATURAL PRODUCTS 2023; 86:2283-2293. [PMID: 37843072 PMCID: PMC10616853 DOI: 10.1021/acs.jnatprod.3c00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 10/17/2023]
Abstract
The DNAJB1-PRKACA oncogenic gene fusion results in an active kinase enzyme, J-PKAcα, that has been identified as an attractive antitumor target for fibrolamellar hepatocellular carcinoma (FLHCC). A high-throughput assay was used to identify inhibitors of J-PKAcα catalytic activity by screening the NCI Program for Natural Product Discovery (NPNPD) prefractionated natural product library. Purification of the active agent from a single fraction of an Aplidium sp. marine tunicate led to the discovery of two unprecedented alkaloids, aplithianines A (1) and B (2). Aplithianine A (1) showed potent inhibition against J-PKAcα with an IC50 of ∼1 μM in the primary screening assay. In kinome screening, 1 inhibited wild-type PKA with an IC50 of 84 nM. Further mechanistic studies including cocrystallization and X-ray diffraction experiments revealed that 1 inhibited PKAcα catalytic activity by competitively binding to the ATP pocket. Human kinome profiling of 1 against a panel of 370 kinases revealed potent inhibition of select serine/threonine kinases in the CLK and PKG families with IC50 values in the range ∼11-90 nM. An efficient, four-step total synthesis of 1 has been accomplished, enabling further evaluation of aplithianines as biologically relevant kinase inhibitors.
Collapse
Affiliation(s)
- Lin Du
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Brice A. P. Wilson
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ning Li
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Rohan Shah
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Masoumeh Dalilian
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dongdong Wang
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily A. Smith
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Antony Wamiru
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ekaterina I. Goncharova
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ping Zhang
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Barry R. O’Keefe
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural
Products Branch, Development Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
5
|
Mistretta B, Rankothgedera S, Castillo M, Rao M, Holloway K, Bhardwaj A, El Noafal M, Albarracin C, El-Zein R, Rezaei H, Su X, Akbani R, Shao XM, Czerniecki BJ, Karchin R, Bedrosian I, Gunaratne PH. Chimeric RNAs reveal putative neoantigen peptides for developing tumor vaccines for breast cancer. Front Immunol 2023; 14:1188831. [PMID: 37744342 PMCID: PMC10512078 DOI: 10.3389/fimmu.2023.1188831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/27/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction We present here a strategy to identify immunogenic neoantigen candidates from unique amino acid sequences at the junctions of fusion proteins which can serve as targets in the development of tumor vaccines for the treatment of breastcancer. Method We mined the sequence reads of breast tumor tissue that are usually discarded as discordant paired-end reads and discovered cancer specific fusion transcripts using tissue from cancer free controls as reference. Binding affinity predictions of novel peptide sequences crossing the fusion junction were analyzed by the MHC Class I binding predictor, MHCnuggets. CD8+ T cell responses against the 15 peptides were assessed through in vitro Enzyme Linked Immunospot (ELISpot). Results We uncovered 20 novel fusion transcripts from 75 breast tumors of 3 subtypes: TNBC, HER2+, and HR+. Of these, the NSFP1-LRRC37A2 fusion transcript was selected for further study. The 3833 bp chimeric RNA predicted by the consensus fusion junction sequence is consistent with a read-through transcription of the 5'-gene NSFP1-Pseudo gene NSFP1 (NSFtruncation at exon 12/13) followed by trans-splicing to connect withLRRC37A2 located immediately 3' through exon 1/2. A total of 15 different 8-mer neoantigen peptides discovered from the NSFP1 and LRRC37A2 truncations were predicted to bind to a total of 35 unique MHC class I alleles with a binding affinity of IC50<500nM.); 1 of which elicited a robust immune response. Conclusion Our data provides a framework to identify immunogenic neoantigen candidates from fusion transcripts and suggests a potential vaccine strategy to target the immunogenic neopeptides in patients with tumors carrying the NSFP1-LRRC37A2 fusion.
Collapse
Affiliation(s)
- Brandon Mistretta
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Sakuni Rankothgedera
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Micah Castillo
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Mitchell Rao
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Kimberly Holloway
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Anjana Bhardwaj
- Department of Breast Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Maha El Noafal
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Constance Albarracin
- Department of Pathology, The UT MD Anderson Cancer Center, Houston, TX, United States
| | - Randa El-Zein
- Department of Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Hengameh Rezaei
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Xiaoping Su
- Department of Bioinformatics & Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Rehan Akbani
- Department of Bioinformatics & Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaoshan M. Shao
- Biomedical Engineering Department, Institute for Computational Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Brian J. Czerniecki
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Rachel Karchin
- Biomedical Engineering Department, Institute for Computational Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Isabelle Bedrosian
- Department of Breast Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Preethi H. Gunaratne
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
6
|
Liu CC, Wang XS. Are cis-spliced fusion proteins pathological in more aggressive luminal breast cancer? Oncotarget 2023; 14:595-596. [PMID: 37306551 PMCID: PMC10259257 DOI: 10.18632/oncotarget.28438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
| | - Xiao-Song Wang
- Correspondence to:Xiao-Song Wang, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232, USA email
| |
Collapse
|
7
|
Das KK, Brown JW. 3'-sulfated Lewis A/C: An oncofetal epitope associated with metaplastic and oncogenic plasticity of the gastrointestinal foregut. Front Cell Dev Biol 2023; 11:1089028. [PMID: 36866273 PMCID: PMC9971977 DOI: 10.3389/fcell.2023.1089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Metaplasia, dysplasia, and cancer arise from normal epithelia via a plastic cellular transformation, typically in the setting of chronic inflammation. Such transformations are the focus of numerous studies that strive to identify the changes in RNA/Protein expression that drive such plasticity along with the contributions from the mesenchyme and immune cells. However, despite being widely utilized clinically as biomarkers for such transitions, the role of glycosylation epitopes is understudied in this context. Here, we explore 3'-Sulfo-Lewis A/C, a clinically validated biomarker for high-risk metaplasia and cancer throughout the gastrointestinal foregut: esophagus, stomach, and pancreas. We discuss the clinical correlation of sulfomucin expression with metaplastic and oncogenic transformation, as well as its synthesis, intracellular and extracellular receptors and suggest potential roles for 3'-Sulfo-Lewis A/C in contributing to and maintaining these malignant cellular transformations.
Collapse
Affiliation(s)
- Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
8
|
LINC00589-dominated ceRNA networks regulate multiple chemoresistance and cancer stem cell-like properties in HER2 + breast cancer. NPJ Breast Cancer 2022; 8:115. [PMID: 36309503 PMCID: PMC9617889 DOI: 10.1038/s41523-022-00484-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Resistance to human epidermal growth factor receptor 2 (HER2)-targeted therapy (trastuzumab), cancer stem cell (CSC)-like properties and multiple chemoresistance often concur and intersect in breast cancer, but molecular links that may serve as effective therapeutic targets remain largely unknown. Here, we identified the long noncoding RNA, LINC00589 as a key regulatory node for concurrent intervention of these processes in breast cancer cells in vitro and in vivo. We demonstrated that the expression of LINC00589 is clinically valuable as an independent prognostic factor for discriminating trastuzumab responders. Mechanistically, LINC00589 serves as a ceRNA platform that simultaneously sponges miR-100 and miR-452 and relieves their repression of tumor suppressors, including discs large homolog 5 (DLG5) and PR/SET domain 16 (PRDM16, a transcription suppressor of mucin4), thereby exerting multiple cancer inhibitory functions and counteracting drug resistance. Collectively, our results disclose two LINC00589-initiated ceRNA networks, the LINC00589-miR-100-DLG5 and LINC00589-miR-452-PRDM16- mucin4 axes, which regulate trastuzumab resistance, CSC-like properties and multiple chemoresistance of breast cancer, thus providing potential diagnostic and prognostic markers and therapeutic targets for HER2-positive breast cancer.
Collapse
|
9
|
Loo SK, Yates ME, Yang S, Oesterreich S, Lee AV, Wang X. Fusion-associated carcinomas of the breast: Diagnostic, prognostic, and therapeutic significance. Genes Chromosomes Cancer 2022; 61:261-273. [PMID: 35106856 PMCID: PMC8930468 DOI: 10.1002/gcc.23029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/11/2022] Open
Abstract
Recurrent gene fusions comprise a class of viable genetic targets in solid tumors that have culminated several recent breakthrough cancer therapies. Their role in breast cancer, however, remains largely underappreciated due to the complexity of genomic rearrangements in breast malignancy. Just recently, we and others have identified several recurrent gene fusions in breast cancer with important clinical and biological implications. Examples of the most significant recurrent gene fusions to date include (1) ESR1::CCDC170 gene fusions in luminal B and endocrine-resistant breast cancer that exert oncogenic function via modulating the HER2/HER3/SRC Proto-Oncogene (SRC) complex, (2) ESR1 exon 6 fusions in metastatic disease that drive estrogen-independent estrogen-receptor transcriptional activity, (3) BCL2L14::ETV6 fusions in a more aggressive form of the triple-negative subtype that prime epithelial-mesenchymal transition and endow paclitaxel resistance, (4) the ETV6::NTRK3 fusion in secretory breast carcinoma that constitutively activates NTRK3 kinase, (5) the oncogenic MYB-NFIB fusion as a genetic driver underpinning adenoid cystic carcinomas of the breast that activates MYB Proto-Oncogene (MYB) pathway, and (6) the NOTCH/microtubule-associated serine-threonine (MAST) kinase gene fusions that activate NOTCH and MAST signaling. Importantly, these fusions are enriched in more aggressive and lethal breast cancer presentations and appear to confer therapeutic resistance. Thus, these gene fusions could be utilized as genetic biomarkers to identify patients who require more intensive treatment and surveillance. In addition, kinase fusions are currently being evaluated in breast cancer clinical trials and ongoing mechanistic investigation is exposing therapeutic vulnerabilities in patients with fusion-positive disease.
Collapse
Affiliation(s)
- Suet Kee Loo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Megan E. Yates
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| | - Sichun Yang
- Center for Proteomics and Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Steffi Oesterreich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Adrian V. Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Xiaosong Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| |
Collapse
|
10
|
Safarpour AR, Askari H, Ejtehadi F, Azarnezhad A, Raeis-Abdollahi E, Tajbakhsh A, Abazari MF, Tarkesh F, Shamsaeefar A, Niknam R, Sivandzadeh GR, Lankarani KB, Ejtehadi F. Cholangiocarcinoma and liver transplantation: What we know so far? World J Gastrointest Pathophysiol 2021; 12:84-105. [PMID: 34676129 PMCID: PMC8481789 DOI: 10.4291/wjgp.v12.i5.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/28/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a type of cancer with increasing prevalence around the world that originates from cholangiocytes, the epithelial cells of the bile duct. The tumor begins insidiously and is distinguished by high grade neoplasm, poor outcome, and high risk for recurrence. Liver transplantation has become broadly accepted as a treatment option for CCA. Liver transplantation is expected to play a crucial role as palliative and curative therapy for unresectable hilar CCA and intrahepatic CCA. The purpose of this study was to determine which cases with CCA should be subjected to liver transplantation instead of resection, although reported post-transplant recurrence rate averages approximately 20%. This review also aims to highlight the molecular current frontiers of CCA and directions of liver transplantation for CCA.
Collapse
Affiliation(s)
- Ali Reza Safarpour
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Hassan Askari
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Farshid Ejtehadi
- The Princess Alexandra Hospital HNS Trust, Harlow, Essex CM20 1QX, United Kingdom
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 6617913446, Iran
| | - Ehsan Raeis-Abdollahi
- Department of Basic Medical Sciences, Qom Medical Branch, Islamic Azad University, Qom, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Firoozeh Tarkesh
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Alireza Shamsaeefar
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| | - Ramin Niknam
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Gholam Reza Sivandzadeh
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | | | - Fardad Ejtehadi
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| |
Collapse
|
11
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
12
|
Dual Specificity Kinase DYRK3 Promotes Aggressiveness of Glioblastoma by Altering Mitochondrial Morphology and Function. Int J Mol Sci 2021; 22:ijms22062982. [PMID: 33804169 PMCID: PMC8000785 DOI: 10.3390/ijms22062982] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor with poor patient prognosis. Although the standard treatment of GBM is surgery followed by chemotherapy and radiotherapy, often a small portion of surviving tumor cells acquire therapeutic resistance and become more aggressive. Recently, altered kinase expression and activity have been shown to determine metabolic flux in tumor cells and metabolic reprogramming has emerged as a tumor progression regulatory mechanism. Here we investigated novel kinase-mediated metabolic alterations that lead to acquired GBM radioresistance and malignancy. We utilized transcriptomic analyses within a radioresistant GBM orthotopic xenograft mouse model that overexpresses the dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3). We find that within GBM cells, radiation exposure induces DYRK3 expression and DYRK3 regulates mammalian target of rapamycin complex 1 (mTORC1) activity through phosphorylation of proline-rich AKT1 substrate 1 (PRAS40). We also find that DYRK3 knockdown inhibits dynamin-related protein 1 (DRP1)-mediated mitochondrial fission, leading to increased oxidative phosphorylation (OXPHOS) and reduced glycolysis. Importantly, enforced DYRK3 downregulation following irradiation significantly impaired GBM cell migration and invasion. Collectively, we suggest DYRK3 suppression may be a novel strategy for preventing GBM malignancy through regulating mitochondrial metabolism.
Collapse
|