1
|
Garcia-Moure M, Laspidea V, Gupta S, Gillard AG, Khatua S, Parthasarathy A, He J, Lang FF, Fueyo J, Alonso MM, Gomez-Manzano C. The emerging field of viroimmunotherapy for pediatric brain tumors. Neuro Oncol 2024; 26:1981-1993. [PMID: 39148489 PMCID: PMC11534321 DOI: 10.1093/neuonc/noae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Indexed: 08/17/2024] Open
Abstract
Pediatric brain tumors are the most common solid tumors in children. Even to date, with the advances in multimodality therapeutic management, survival outcomes remain dismal in some types of tumors, such as pediatric-type diffuse high-grade gliomas or central nervous system embryonal tumors. Failure to understand the complex molecular heterogeneity and the elusive tumor and microenvironment interplay continues to undermine therapeutic efficacy. Developing a strategy that would improve survival for these fatal tumors remains unmet in pediatric neuro-oncology. Oncolytic viruses (OVs) are emerging as a feasible, safe, and promising therapy for brain tumors. The new paradigm in virotherapy implies that the direct cytopathic effect is followed, under certain circumstances, by an antitumor immune response responsible for the partial or complete debulking of the tumor mass. OVs alone or combined with other therapeutic modalities have been primarily used in adult neuro-oncology. A surge in encouraging preclinical studies in pediatric brain tumor models recently led to the clinical translation of OVs with encouraging results in these tumors. In this review, we summarize the different virotherapy tested in preclinical and clinical studies in pediatric brain tumors, and we discuss the limitations and future avenues necessary to improve the response of these tumors to this type of therapy.
Collapse
Affiliation(s)
- Marc Garcia-Moure
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Virginia Laspidea
- Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Spain
| | - Sumit Gupta
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew G Gillard
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Soumen Khatua
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhila Parthasarathy
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiasen He
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marta M Alonso
- Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Spain
- Program of Solid Tumors, Center for the Applied Medical Research, Pamplona, Spain
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
de la Nava D, Ausejo-Mauleon I, Laspidea V, Gonzalez-Huarriz M, Lacalle A, Casares N, Zalacain M, Marrodan L, García-Moure M, Ochoa MC, Tallon-Cobos AC, Hernandez-Osuna R, Marco-Sanz J, Dhandapani L, Hervás-Corpión I, Becher OJ, Nazarian J, Mueller S, Phoenix TN, van der Lugt J, Hernaez M, Guruceaga E, Koschmann C, Venneti S, Allen JE, Dun MD, Fueyo J, Gomez-Manzano C, Gallego Perez-Larraya J, Patiño-García A, Labiano S, Alonso MM. The oncolytic adenovirus Delta-24-RGD in combination with ONC201 induces a potent antitumor response in pediatric high-grade and diffuse midline glioma models. Neuro Oncol 2024; 26:1509-1525. [PMID: 38554031 PMCID: PMC11300018 DOI: 10.1093/neuonc/noae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Pediatric high-grade gliomas (pHGGs), including diffuse midline gliomas (DMGs), are aggressive pediatric tumors with one of the poorest prognoses. Delta-24-RGD and ONC201 have shown promising efficacy as single agents for these tumors. However, the combination of both agents has not been evaluated. METHODS The production of functional viruses was assessed by immunoblotting and replication assays. The antitumor effect was evaluated in a panel of human and murine pHGG and DMG cell lines. RNAseq, the seahorse stress test, mitochondrial DNA content, and γH2A.X immunofluorescence were used to perform mechanistic studies. Mouse models of both diseases were used to assess the efficacy of the combination in vivo. The tumor immune microenvironment was evaluated using flow cytometry, RNAseq, and multiplexed immunofluorescence staining. RESULTS The Delta-24-RGD/ONC201 combination did not affect the virus replication capability in human pHGG and DMG models in vitro. Cytotoxicity analysis showed that the combination treatment was either synergistic or additive. Mechanistically, the combination treatment increased nuclear DNA damage and maintained the metabolic perturbation and mitochondrial damage caused by each agent alone. Delta-24-RGD/ONC201 cotreatment extended the overall survival of mice implanted with human and murine pHGG and DMG cells, independent of H3 mutation status and location. Finally, combination treatment in murine DMG models revealed a reshaping of the tumor microenvironment to a proinflammatory phenotype. CONCLUSIONS The Delta-24-RGD/ONC201 combination improved the efficacy compared to each agent alone in in vitro and in vivo models by potentiating nuclear DNA damage and in turn improving the antitumor (immune) response to each agent alone.
Collapse
Affiliation(s)
- Daniel de la Nava
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Iker Ausejo-Mauleon
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Virginia Laspidea
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Marisol Gonzalez-Huarriz
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Andrea Lacalle
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Noelia Casares
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Marta Zalacain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Lucía Marrodan
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Marc García-Moure
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Maria C Ochoa
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Antonio Carlos Tallon-Cobos
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Reyes Hernandez-Osuna
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Javier Marco-Sanz
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Laasya Dhandapani
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Irati Hervás-Corpión
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Oren J Becher
- Jack Martin Fund Division of Pediatric Hematology-oncology, Mount Sinai, New York, USA
| | - Javad Nazarian
- Division of Oncology and Children’s Research Center, DIPG/DMG Research Center Zurich, University Children’s Hospital Zurich, Zurich, Switzerland
- Virginia Tech University, Washington, District of Columbia, USA
- Children’s National Health System, Center for Genetic Medicine Research, Washington, District of Columbia, USA
| | - Sabine Mueller
- University of California, San FranciscoSan Francisco, California, USA
- Division of Oncology and Children’s Research Center, DIPG/DMG Research Center Zurich, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Mikel Hernaez
- Bioinformatics Platform, Center for Applied Medical Research, University of Navarra (CIMA), Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Elizabeth Guruceaga
- Bioinformatics Platform, Center for Applied Medical Research, University of Navarra (CIMA), Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sriram Venneti
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Matthew D Dun
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaime Gallego Perez-Larraya
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Ana Patiño-García
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Sara Labiano
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | - Marta M Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
3
|
Vazaios K, Stavrakaki Ε, Vogelezang LB, Ju J, Waranecki P, Metselaar DS, Meel MH, Kemp V, van den Hoogen BG, Hoeben RC, Chiocca EA, Goins WF, Stubbs A, Li Y, Alonso MM, Calkoen FG, Hulleman E, van der Lugt J, Lamfers ML. The heterogeneous sensitivity of pediatric brain tumors to different oncolytic viruses is predicted by unique gene expression profiles. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200804. [PMID: 38694569 PMCID: PMC11060958 DOI: 10.1016/j.omton.2024.200804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/04/2024]
Abstract
Despite decades of research, the prognosis of high-grade pediatric brain tumors (PBTs) remains dismal; however, recent cases of favorable clinical responses were documented in clinical trials using oncolytic viruses (OVs). In the current study, we employed four different species of OVs: adenovirus Delta24-RGD, herpes simplex virus rQNestin34.5v1, reovirus R124, and the non-virulent Newcastle disease virus rNDV-F0-GFP against three entities of PBTs (high-grade gliomas, atypical teratoid/rhabdoid tumors, and ependymomas) to determine their in vitro efficacy. These four OVs were screened on 14 patient-derived PBT cell cultures and the degree of oncolysis was assessed using an ATP-based assay. Subsequently, the observed viral efficacies were correlated to whole transcriptome data and Gene Ontology analysis was performed. Although no significant tumor type-specific OV efficacy was observed, the analysis revealed the intrinsic biological processes that associated with OV efficacy. The predictive power of the identified expression profiles was further validated in vitro by screening additional PBTs. In summary, our results demonstrate OV susceptibility of multiple patient-derived PBT entities and the ability to predict in vitro responses to OVs using unique expression profiles. Such profiles may hold promise for future OV preselection with effective oncolytic potency in a specific tumor, therewith potentially improving OV responses.
Collapse
Affiliation(s)
- Konstantinos Vazaios
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Εftychia Stavrakaki
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Lisette B. Vogelezang
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Jie Ju
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Dennis S. Metselaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Michaël H. Meel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | | | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - William F. Goins
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Dr, Pittsburgh, PA 15219, USA
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Yunlei Li
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marta M. Alonso
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Avda. de Pío XII, 55, 31008 Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), Av. de Pío XII, 36, 31008 Pamplona, Spain
| | - Friso G. Calkoen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
4
|
Vazaios K, van Berkum RE, Calkoen FG, van der Lugt J, Hulleman E. OV Modulators of the Paediatric Brain TIME: Current Status, Combination Strategies, Limitations and Future Directions. Int J Mol Sci 2024; 25:5007. [PMID: 38732225 PMCID: PMC11084613 DOI: 10.3390/ijms25095007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Oncolytic viruses (OVs) are characterised by their preference for infecting and replicating in tumour cells either naturally or after genetic modification, resulting in oncolysis. Furthermore, OVs can elicit both local and systemic anticancer immune responses while specifically infecting and lysing tumour cells. These characteristics render them a promising therapeutic approach for paediatric brain tumours (PBTs). PBTs are frequently marked by a cold tumour immune microenvironment (TIME), which suppresses immunotherapies. Recent preclinical and clinical studies have demonstrated the capability of OVs to induce a proinflammatory immune response, thereby modifying the TIME. In-depth insights into the effect of OVs on different cell types in the TIME may therefore provide a compelling basis for using OVs in combination with other immunotherapy modalities. However, certain limitations persist in our understanding of oncolytic viruses' ability to regulate the TIME to enhance anti-tumour activity. These limitations primarily stem from the translational limitations of model systems, the difficulties associated with tracking reliable markers of efficacy throughout the course of treatment and the role of pre-existing viral immunity. In this review, we describe the different alterations observed in the TIME in PBTs due to OV treatment, combination therapies of OVs with different immunotherapies and the hurdles limiting the development of effective OV therapies while suggesting future directions based on existing evidence.
Collapse
Affiliation(s)
| | | | | | | | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.V.); (F.G.C.); (J.v.d.L.)
| |
Collapse
|
5
|
Stavrakaki E, van den Bossche WBL, Vogelezang LB, Teodosio C, Mustafa DM, van Dongen JJM, Dirven CMF, Balvers RK, Lamfers ML. An autologous ex vivo model for exploring patient-specific responses to viro-immunotherapy in glioblastoma. CELL REPORTS METHODS 2024; 4:100716. [PMID: 38430913 PMCID: PMC10985229 DOI: 10.1016/j.crmeth.2024.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Oncolytic virus (OV) clinical trials have demonstrated remarkable efficacy in subsets of patients with glioblastoma (GBM). However, the lack of tools to predict this response hinders the advancement of a more personalized application of OV therapy. In this study, we characterize an ex vivo co-culture system designed to examine the immune response to OV infection of patient-derived GBM neurospheres in the presence of autologous peripheral blood mononuclear cells (PBMCs). Co-culture conditions were optimized to retain viability and functionality of both tumor cells and PBMCs, effectively recapitulating the well-recognized immunosuppressive effects of GBM. Following OV infection, we observed elevated secretion of pro-inflammatory cytokines and chemokines, including interferon γ, tumor necrosis factor α, CXCL9, and CXCL10, and marked changes in immune cell activation markers. Importantly, OV treatment induced unique patient-specific immune responses. In summary, our co-culture platform presents an avenue for personalized screening of viro-immunotherapies in GBM, offering promise as a potential tool for future patient stratification in OV therapy.
Collapse
Affiliation(s)
- Eftychia Stavrakaki
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands.
| | | | - Lisette B Vogelezang
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Cristina Teodosio
- Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Dana M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jacques J M van Dongen
- Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rutger K Balvers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martine L Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Ausejo-Mauleon I, Labiano S, Alonso MM. Characterization of immune populations in the tumor microenvironment of diffuse midline glioma orthotopic mouse models by flow cytometry. STAR Protoc 2024; 5:102803. [PMID: 38159270 PMCID: PMC10805702 DOI: 10.1016/j.xpro.2023.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
The immune response is a fundamental process in the treatment of solid tumors. Here, we present a protocol for implanting diffuse midline glioma cells in the brain of immune-competent mice and characterizing the different immune populations in the tumor microenvironment in a flow cytometry panel. We describe steps for processing of brain tumors, isolating the immune cells, and subsequent staining with antibodies for flow cytometry. We then detail procedures for implementing the gating strategy. For complete details on the use and execution of this protocol, please refer to Ausejo-Mauleon et al.1.
Collapse
Affiliation(s)
- Iker Ausejo-Mauleon
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain.
| | - Marta M Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
7
|
Tran S, Plant-Fox AS, Chi SN, Narendran A. Current advances in immunotherapy for atypical teratoid rhabdoid tumor (ATRT). Neurooncol Pract 2023; 10:322-334. [PMID: 37457224 PMCID: PMC10346396 DOI: 10.1093/nop/npad005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRT) are rare and aggressive embryonal tumors of central nervous system that typically affect children younger than 3 years of age. Given the generally poor outcomes of patients with ATRT and the significant toxicities associated with conventional multi-modal therapies, there is an urgent need for more novel approaches to treat ATRT, one such approach being immunotherapy. The recent rise of large-scale, multicenter interdisciplinary studies has delineated several molecular and genetic characteristics unique to ATRT. This review aims to describe currently available data on the tumor immune microenvironment of ATRT and its specific subtypes and to summarize the emerging clinical and preclinical results of immunotherapy-based approaches. It will also highlight the evolving knowledge of epigenetics on immunomodulation in this epigenetically influenced tumor, which may help guide the development of effective immunotherapeutic approaches in the future.
Collapse
Affiliation(s)
- Son Tran
- Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ashley S Plant-Fox
- Division of Hematology, Stem Cell Transplant, and Neuro-Oncology, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan N Chi
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Aru Narendran
- Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Parodi M, Astigiano S, Carrega P, Pietra G, Vitale C, Damele L, Grottoli M, Guevara Lopez MDLL, Ferracini R, Bertolini G, Roato I, Vitale M, Orecchia P. Murine models to study human NK cells in human solid tumors. Front Immunol 2023; 14:1209237. [PMID: 37388731 PMCID: PMC10301748 DOI: 10.3389/fimmu.2023.1209237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Since the first studies, the mouse models have provided crucial support for the most important discoveries on NK cells, on their development, function, and circulation within normal and tumor tissues. Murine tumor models were initially set to study murine NK cells, then, ever more sophisticated human-in-mice models have been developed to investigate the behavior of human NK cells and minimize the interferences from the murine environment. This review presents an overview of the models that have been used along time to study NK cells, focusing on the most popular NOG and NSG models, which work as recipients for the preparation of human-in-mice tumor models, the study of transferred human NK cells, and the evaluation of various enhancers of human NK cell function, including cytokines and chimeric molecules. Finally, an overview of the next generation humanized mice is also provided along with a discussion on how traditional and innovative in-vivo and in-vitro approaches could be integrated to optimize effective pre-clinical studies.
Collapse
Affiliation(s)
- Monica Parodi
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Simonetta Astigiano
- Animal Facility, IRCCS Ospedale Policlinico San Martino Genova, Genova, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Gabriella Pietra
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Chiara Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Laura Damele
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Melania Grottoli
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | | | - Riccardo Ferracini
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
- Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Giulia Bertolini
- “Epigenomics and Biomarkers of Solid Tumors”, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Roato
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
| | - Massimo Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Orecchia
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
9
|
Foster JB, Alonso MM, Sayour E, Davidson TB, Persson ML, Dun MD, Kline C, Mueller S, Vitanza NA, van der Lugt J. Translational considerations for immunotherapy clinical trials in pediatric neuro-oncology. Neoplasia 2023; 42:100909. [PMID: 37244226 DOI: 10.1016/j.neo.2023.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
While immunotherapy for pediatric cancer has made great strides in recent decades, including the FDA approval of agents such as dinutuximab and tisgenlecleucel, these successes have rarely impacted children with pediatric central nervous system (CNS) tumors. As our understanding of the biological underpinnings of these tumors evolves, new immunotherapeutics are undergoing rapid clinical translation specifically designed for children with CNS tumors. Most recently, there have been notable clinical successes with oncolytic viruses, vaccines, adoptive cellular therapy, and immune checkpoint inhibition. In this article, the immunotherapy working group of the Pacific Pediatric Neuro-Oncology Consortium (PNOC) reviews the current and future state of immunotherapeutic CNS clinical trials with a focus on clinical trial development. Based on recent therapeutic trials, we discuss unique immunotherapy clinical trial challenges, including toxicity considerations, disease assessment, and correlative studies. Combinatorial strategies and future directions will be addressed. Through internationally collaborative efforts and consortia, we aim to direct this promising field of immuno-oncology to the next frontier of successful application against pediatric CNS tumors.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.
| | - Marta M Alonso
- Department of Pediatrics, Program of Solid Tumors, University Clinic of Navarra, Center for the Applied Medical Research (CIMA), Pamplona, Spain
| | - Elias Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
| | - Tom B Davidson
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Mark Hughes Foundation Centre for Brain Cancer Research, Paediatric Program, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Cassie Kline
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Sabine Mueller
- Department of Neurology, Department of Neurosurgery and Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
10
|
Ding T, Yu Y, Pan X, Chen H. Establishment of humanized mice and its application progress in cancer immunotherapy. Immunotherapy 2023; 15:679-697. [PMID: 37096919 DOI: 10.2217/imt-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The current high prevalence of malignant tumors has attracted considerable attention, and treating advanced malignancies is becoming increasingly difficult. Although immunotherapy is a hopeful alternative, it is effective in only a few people. Thus, development of preclinical animal models is needed. Humanized xenotransplantation mouse models can help with selecting treatment protocols, evaluating curative effects and assessing prognosis. This review discusses the establishment of humanized mouse models and their application prospects in cancer immunotherapy to identify tailored therapies for individual patients.
Collapse
Affiliation(s)
- Tianlong Ding
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
| | - Xiaoyuan Pan
- Department of Vision Rehabilitation, Gansu Province Hospital Rehabilitation Center, Lanzhou, 730030, PR China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| |
Collapse
|
11
|
Current landscape and perspective of oncolytic viruses and their combination therapies. Transl Oncol 2022; 25:101530. [PMID: 36095879 PMCID: PMC9472052 DOI: 10.1016/j.tranon.2022.101530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Oncolytic virotherapy has become an important branch of cancer immunotherapy in clinical practice. Multiple viruses can be engineered to be OVs and armed with anticancer genes to enhance their efficacy. OVs can reshape TME and produce synergistic anticancer efficacy when combined with other therapies. Safety and effectiveness are the main direction of future research and development of OVs.
Oncolytic virotherapy has become an important strategy in cancer immunotherapy. Oncolytic virus (OV) can reshape the tumor microenvironment (TME) through its replication-mediated oncolysis and transgene-produced anticancer effect, inducing an antitumor immune response and creating favorable conditions for the combination of other therapeutic measures. Extensive preclinical and clinical data have suggested that OV-based combination therapy has definite efficacy and promising prospects. Recently, several clinical trials of oncolytic virotherapy combined with immunotherapy have made breakthroughs. This review comprehensively elaborates the OV types and their targeting mechanisms, the selection of anticancer genes armed in OVs, and the therapeutic modes of action and strategies of OVs to provide a theoretical basis for the better design and construction of OVs and the optimization of OV-based therapeutic strategies.
Collapse
|
12
|
de la Nava D, Selvi KM, Alonso MM. Immunovirotherapy for Pediatric Solid Tumors: A Promising Treatment That is Becoming a Reality. Front Immunol 2022; 13:866892. [PMID: 35493490 PMCID: PMC9043602 DOI: 10.3389/fimmu.2022.866892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has seen tremendous strides in the last decade, acquiring a prominent position at the forefront of cancer treatment since it has been proven to be efficacious for a wide variety of tumors. Nevertheless, while immunotherapy has changed the paradigm of adult tumor treatment, this progress has not yet been translated to the pediatric solid tumor population. For this reason, alternative curative therapies are urgently needed for the most aggressive pediatric tumors. In recent years, oncolytic virotherapy has consolidated as a feasible strategy for cancer treatment, not only for its tumor-specific effects and safety profile but also for its capacity to trigger an antitumor immune response. This review will summarize the current status of immunovirotherapy to treat cancer, focusing on pediatric solid malignancies. We will revisit previous basic, translational, and clinical research and discuss advances in overcoming the existing barriers and limitations to translate this promising therapeutic as an every-day cancer treatment for the pediatric and young adult populations.
Collapse
Affiliation(s)
- Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Kadir Mert Selvi
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta M. Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
13
|
Martínez-Vélez N, Laspidea V, Zalacain M, Labiano S, Garcia-Moure M, Puigdelloses M, Marrodan L, Gonzalez-Huarriz M, Herrador G, de la Nava D, Ausejo-Mauleon I, Fueyo J, Gomez-Manzano C, Patiño-García A, Alonso MM. Local treatment of a pediatric osteosarcoma model with a 4-1BBL armed oncolytic adenovirus results in an antitumor effect and leads to immune memory. Mol Cancer Ther 2021; 21:471-480. [PMID: 34965961 DOI: 10.1158/1535-7163.mct-21-0565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is an aggressive bone tumor occurring primarily in pediatric patients. Despite years of intensive research, the outcomes of patients with metastatic disease or who do not respond to therapy have remained poor and have not changed in the last 30 years. Oncolytic virotherapy is becoming a reality to treat local and metastatic tumors while maintaining a favorable safety profile. Delta-24-ACT is a replicative oncolytic adenovirus engineered to selectively target cancer cells and to potentiate immune responses through expression of the immune costimulatory ligand 4-1BB. This work aimed to assess the antisarcoma effect of Delta-24-ACT. MTS and replication assays were used to quantify the antitumor effects of Delta-24-ACT in vitro in osteosarcoma human and murine cell lines. Evaluation of the in vivo antitumor effect and immune response to Delta-24-ACT was performed in immunocompetent mice bearing orthotopic K7M2 cell line. Immunophenotyping of the tumor microenvironment was characterized by immunohistochemistry and flow cytometry. In vitro, Delta-24-ACT killed osteosarcoma cells and triggered the production of danger signals. In vivo, local treatment with Delta-24-ACT led to antitumor effects against both the primary tumor and spontaneous metastases in a murine osteosarcoma model. Viral treatment was safe, with no noted toxicity. Delta-24-ACT significantly increased the median survival time of treated mice. Collectively, our data identify Delta-24-ACT administration as an effective and safe therapeutic strategy for local and metastatic osteosarcoma. These results support clinical translation of this viral immunotherapy approach.
Collapse
Affiliation(s)
| | | | | | - Sara Labiano
- Program in Solid Tumors and Biomarkers, Foundation for Applied Medical Research, University of Navarra
| | | | | | | | | | | | | | | | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center
| | | | - Ana Patiño-García
- Laboratory of Advanced Therapies for Pediatric Solid Tumors, University Clinic of Navarra
| | | |
Collapse
|
14
|
Melcher V, Kerl K. The Growing Relevance of Immunoregulation in Pediatric Brain Tumors. Cancers (Basel) 2021; 13:5601. [PMID: 34830753 PMCID: PMC8615622 DOI: 10.3390/cancers13225601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
Pediatric brain tumors are genetically heterogeneous solid neoplasms. With a prevailing poor prognosis and widespread resistance to conventional multimodal therapy, these aggressive tumors are the leading cause of childhood cancer-related deaths worldwide. Advancement in molecular research revealed their unique genetic and epigenetic characteristics and paved the way for more defined prognostication and targeted therapeutic approaches. Furthermore, uncovering the intratumoral metrics on a single-cell level placed non-malignant cell populations such as innate immune cells into the context of tumor manifestation and progression. Targeting immune cells in pediatric brain tumors entails unique challenges but promising opportunities to improve outcome. Herein, we outline the current understanding of the role of the immune regulation in pediatric brain tumors.
Collapse
Affiliation(s)
- Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
15
|
A new insight into aggregation of oncolytic adenovirus Ad5-delta-24-RGD during CsCl gradient ultracentrifugation. Sci Rep 2021; 11:16088. [PMID: 34373477 PMCID: PMC8352973 DOI: 10.1038/s41598-021-94573-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Two-cycle cesium chloride (2 × CsCl) gradient ultracentrifugation is a conventional approach for purifying recombinant adenoviruses (rAds) for research purposes (gene therapy, vaccines, and oncolytic vectors). However, rAds containing the RGD-4C peptide in the HI loop of the fiber knob domain tend to aggregate during 2 × CsCl gradient ultracentrifugation resulting in a low infectious titer yield or even purification failure. An iodixanol-based purification method preventing aggregation of the RGD4C-modified rAds has been proposed. However, the reason explaining aggregation of the RGD4C-modified rAds during 2 × CsCl but not iodixanol gradient ultracentrifugation has not been revealed. In the present study, we showed that rAds with the RGD-4C peptide in the HI loop but not at the C-terminus of the fiber knob domain were prone to aggregate during 2 × CsCl but not iodixanol gradient ultracentrifugation. The cysteine residues with free thiol groups after the RGD motif within the inserted RGD-4C peptide were responsible for formation of the interparticle disulfide bonds under atmospheric oxygen and aggregation of Ad5-delta-24-RGD4C-based rAds during 2 × CsCl gradient ultracentrifugation, which could be prevented using iodixanol gradient ultracentrifugation, most likely due to antioxidant properties of iodixanol. A cysteine-to-glycine substitution of the cysteine residues with free thiol groups (RGD-2C2G) prevented aggregation during 2 × CsCl gradient purification but in coxsackie and adenovirus receptor (CAR)-low/negative cancer cell lines of human and rodent origin, this reduced cytolytic efficacy to the levels observed for a fiber non-modified control vector. However, both Ad5-delta-24-RGD4C and Ad5-delta-24-RGD2C2G were equally effective in the murine immunocompetent CT-2A glioma model due to a primary role of antitumor immune responses in the therapeutic efficacy of oncolytic virotherapy.
Collapse
|
16
|
Zhao Y, Liu Z, Li L, Wu J, Zhang H, Zhang H, Lei T, Xu B. Oncolytic Adenovirus: Prospects for Cancer Immunotherapy. Front Microbiol 2021; 12:707290. [PMID: 34367111 PMCID: PMC8334181 DOI: 10.3389/fmicb.2021.707290] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/21/2021] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy has moved to the forefront of modern oncologic treatment in the past few decades. Various forms of immunotherapy currently are emerging, including oncolytic viruses. In this therapy, viruses are engineered to selectively propagate in tumor cells and reduce toxicity for non-neoplastic tissues. Adenovirus is one of the most frequently employed oncolytic viruses because of its capacity in tumor cell lysis and immune response stimulation. Upregulation of immunostimulatory signals induced by oncolytic adenoviruses (OAds) might significantly remove local immune suppression and amplify antitumor immune responses. Existing genetic engineering technology allows us to design OAds with increasingly better tumor tropism, selectivity, and antitumor efficacy. Several promising strategies to modify the genome of OAds have been applied: capsid modifications, small deletions in the pivotal viral genes, insertion of tumor-specific promoters, and addition of immunostimulatory transgenes. OAds armed with tumor-associated antigen (TAA) transgenes as cancer vaccines provide additional therapeutic strategies to trigger tumor-specific immunity. Furthermore, the combination of OAds and immune checkpoint inhibitors (ICIs) increases clinical benefit as evidence shown in completed and ongoing clinical trials, especially in the combination of OAds with antiprogrammed death 1/programed death ligand 1 (PD-1/PD-L1) therapy. Despite remarkable antitumor potency, oncolytic adenovirus immunotherapy is confronted with tough challenges such as antiviral immune response and obstruction of tumor microenvironment (TME). In this review, we focus on genomic modification strategies of oncolytic adenoviruses and applications of OAds in cancer immunotherapy.
Collapse
Affiliation(s)
- Yaqi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huibo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianyu Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|