1
|
Moaveni AK, Amiri M, Shademan B, Farhadi A, Behroozi J, Nourazarian A. Advances and challenges in gene therapy strategies for pediatric cancer: a comprehensive update. Front Mol Biosci 2024; 11:1382190. [PMID: 38836106 PMCID: PMC11149429 DOI: 10.3389/fmolb.2024.1382190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 06/06/2024] Open
Abstract
Pediatric cancers represent a tragic but also promising area for gene therapy. Although conventional treatments have improved survival rates, there is still a need for targeted and less toxic interventions. This article critically analyzes recent advances in gene therapy for pediatric malignancies and discusses the challenges that remain. We explore the innovative vectors and delivery systems that have emerged, such as adeno-associated viruses and non-viral platforms, which show promise in addressing the unique pathophysiology of pediatric tumors. Specifically, we examine the field of chimeric antigen receptor (CAR) T-cell therapies and their adaptation for solid tumors, which historically have been more challenging to treat than hematologic malignancies. We also discuss the genetic and epigenetic complexities inherent to pediatric cancers, such as tumor heterogeneity and the dynamic tumor microenvironment, which pose significant hurdles for gene therapy. Ethical considerations specific to pediatric populations, including consent and long-term follow-up, are also analyzed. Additionally, we scrutinize the translation of research from preclinical models that often fail to mimic pediatric cancer biology to the regulatory landscapes that can either support or hinder innovation. In summary, this article provides an up-to-date overview of gene therapy in pediatric oncology, highlighting both the rapid scientific progress and the substantial obstacles that need to be addressed. Through this lens, we propose a roadmap for future research that prioritizes the safety, efficacy, and complex ethical considerations involved in treating pediatric patients. Our ultimate goal is to move from incremental advancements to transformative therapies.
Collapse
Affiliation(s)
- Amir Kian Moaveni
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amiri
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Behroozi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
2
|
Zhou R, Huang D, Fu W, Shu F. Comprehensive exploration of the involvement of cuproptosis in tumorigenesis and progression of neuroblastoma. BMC Genomics 2023; 24:715. [PMID: 38012558 PMCID: PMC10680286 DOI: 10.1186/s12864-023-09699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/26/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Copper-induced cell death, or "cuproptosis," as an apoptotic process, has recently received much attention in human diseases. Recent studies on cuproptosis have provided novel insights into the pathogenesis of various diseases, especially cancers. However, the association between neuroblastoma (NB) and cuproptosis in terms of their clinical outcomes, tumorigenesis, and treatment response remains unclear. METHODS To determine the role of cuproptosis in NB tumorigenesis and progression, this study employed a systematic technique to explore the characteristic patterns of 10 key cuproptosis-related genes (CUGs) in NB. Consensus clustering analysis of the TARGET and GEO databases divided the NB patients into two subgroups that showed different clinicopathological attributes, molecular patterns, survival outcomes, disease-associated pathways, tumor immune microenvironment (TIME) features, and treatment responses. Moreover, a cuproptosis scoring scheme was established, which divided the patients with NB into two groups with high scores and low scores as per the median score. Furthermore, this research developed a nomogram and risk signature on the basis of this cuproptosis score to better elucidate its function in predicting NB prognosis. In vitro experiments were carried out using Transwell Assay, HLECs tube formation assay, Colony formation assay, Western Blotting Assay, Immunohistochemical (IHC) Staining, Immunofluorescence (IF) Staining and Flow Cytometry Analysis. RESULTS The results demonstrated that the established cuproptosis score and prediction model could effectively distinguish between the individuals in low and high-risk groups and had a high predictive value. Lastly, bioinformatics analysis and in vitro experiments enabled the identification of PDHA1, a key CUG, which was involved in both DNA replication-related pathways and the cell cycle. It was also associated with tumorigenesis and progression of NB. CONCLUSION Cuproptosis, especially PDHA1, play a crucial role in the TIME characteristics, tumor progression, and long-term prognosis of NB. The patterns of cuproptosis assessed in this research may improve the understanding of the overall concept of NB tumorigenesis, thus facilitating the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Urology, Zhujiang Hospital, Souther Medical University, Guangzhou, Guangdong, China
| | - Dongmei Huang
- Department of Thoracic Surgery, Nanfang Hospital, Souther Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Thoracic Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen Fu
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Altun Z, Yuan H, Baran B, Aktaş S, Sönmez EE, Küçük C, Olgun N. Whole-exome sequencing reveals genetic variants in low-risk and high-risk neuroblastoma. Gene 2023; 860:147233. [PMID: 36736507 DOI: 10.1016/j.gene.2023.147233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate the genetic aberrations in neuroblastoma (NB) by comparing high and low-risk NB patients by whole-exome sequencing (WES) and to reveal the heterogeneity and association between somatic variants and clinical features. Seven NB patients with available clinical data were included in the study (4 in the low-risk group and 3 in the high-risk group). WES was performed and somatic variants associated with NB genes in the COSMIC database were selected through bioinformatics pipeline analysis. Variants were determined using the Integrative Genomics Viewer (IGV). Some gene variations were found in both groups, including variations in oncogene and tumor suppressor genes. In general, candidate gene variations were associated with chromatin remodeling complexes, the RAS pathway, cell proliferation, and DNA repair mechanism. Some variations in CSF1R, MSH6, PTPN11, SOX9, RET, TSC1, and DNMT1 genes were detected only in high-risk patients, while EP300, TET2, MYCN, PRDM1, and ARID2 gene variations were detected only in low-risk patients. When high-risk gene variants were compared with the cBioportal cancer genomic database, two common gene variants (ARID1A and NCOR2) were identified. However, when low-risk gene variants were compared with the cBioportal cancer genomic database, no common genes were found. GO/KEGG enrichment analysis was performed to find relevant biological processes and molecular pathways related to gene variants, which will help to decipher the molecular mechanisms of NB tumorigenesis and the phenotypic differences between high-risk and low-risk patients.
Collapse
Affiliation(s)
- Zekiye Altun
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Turkey.
| | - Hongling Yuan
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Turkey
| | - Burçin Baran
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Turkey
| | - Safiye Aktaş
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Turkey
| | - Esra Esmeray Sönmez
- İzmir Biomedicine and Genome Center, İzmir, Turkey; İzmir Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | - Can Küçük
- İzmir Biomedicine and Genome Center, İzmir, Turkey; İzmir Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey; Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Nur Olgun
- Department of Pediatric Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
4
|
Gomez RL, Ibragimova S, Ramachandran R, Philpott A, Ali FR. Tumoral heterogeneity in neuroblastoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188805. [PMID: 36162542 DOI: 10.1016/j.bbcan.2022.188805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022]
Abstract
Neuroblastoma is a solid, neuroendocrine tumor with divergent clinical behavior ranging from asymptomatic to fatal. The diverse clinical presentations of neuroblastoma are directly linked to the high intra- and inter-tumoral heterogeneity it presents. This heterogeneity is strongly associated with therapeutic resistance and continuous relapses, often leading to fatal outcomes. The development of successful risk assessment and tailored treatment strategies lies in evaluating the extent of heterogeneity via the accurate genetic and epigenetic profiling of distinct cell subpopulations present in the tumor. Recent studies have focused on understanding the molecular mechanisms that drive tumoral heterogeneity in pursuing better therapeutic and diagnostic approaches. This review describes the cellular, genetic, and epigenetic aspects of neuroblastoma heterogeneity. In addition, we summarize the recent findings on three crucial factors that can lead to heterogeneity in solid tumors: the inherent diversity of the progenitor cells, the presence of cancer stem cells, and the influence of the tumor microenvironment.
Collapse
Affiliation(s)
- Roshna Lawrence Gomez
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Shakhzada Ibragimova
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates.
| |
Collapse
|
5
|
Bonilla M, Jhaveri KD, Izzedine H. Anaplastic lymphoma kinase inhibitors and their effect on the kidney. Clin Kidney J 2022; 15:1475-1482. [PMID: 35892021 PMCID: PMC9308093 DOI: 10.1093/ckj/sfac062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality and approximately 5% of non–small-cell lung cancer (NSCLC) patients are positive for anaplastic lymphoma kinase (ALK) gene rearrangement or fusion with echinoderm microtubule-associated protein-like 4. ALK inhibitors are the mainstay treatment for patients with NSCLC harboring a rearrangement of the ALK gene or the ROS1 oncogenes. With the recent publication of pivotal trials leading to the approval of these compounds in different indications, their toxicity profile warrants an update. Several ALK-1 inhibitors are used in clinical practice, including crizotinib, ceritinib and alectinib. According to the package insert and published literature, treatment with several ALK-1 inhibitors appears to be associated with the development of peripheral edema and rare electrolyte disorders, kidney failure, proteinuria and an increased risk for the development and progression of renal cysts. This review introduces the different types of ALK inhibitors, focusing on their detailed kidney-related side effects in clinical practice.
Collapse
Affiliation(s)
- Marco Bonilla
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra Northwell, 100 Community Drive, Great Neck, NY, USA
| | - Kenar D Jhaveri
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra Northwell, 100 Community Drive, Great Neck, NY, USA
| | - Hassan Izzedine
- Department of Nephrology, Peupliers Private Hospital, Ramsay Générale de Santé, Paris, France
| |
Collapse
|
6
|
Schmelz K, Toedling J, Huska M, Cwikla MC, Kruetzfeldt LM, Proba J, Ambros PF, Ambros IM, Boral S, Lodrini M, Chen CY, Burkert M, Guergen D, Szymansky A, Astrahantseff K, Kuenkele A, Haase K, Fischer M, Deubzer HE, Hertwig F, Hundsdoerfer P, Henssen AG, Schwarz RF, Schulte JH, Eggert A. Spatial and temporal intratumour heterogeneity has potential consequences for single biopsy-based neuroblastoma treatment decisions. Nat Commun 2021; 12:6804. [PMID: 34815394 PMCID: PMC8611017 DOI: 10.1038/s41467-021-26870-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 10/18/2021] [Indexed: 01/12/2023] Open
Abstract
Intratumour heterogeneity is a major cause of treatment failure in cancer. We present in-depth analyses combining transcriptomic and genomic profiling with ultra-deep targeted sequencing of multiregional biopsies in 10 patients with neuroblastoma, a devastating childhood tumour. We observe high spatial and temporal heterogeneity in somatic mutations and somatic copy-number alterations which are reflected on the transcriptomic level. Mutations in some druggable target genes including ALK and FGFR1 are heterogeneous at diagnosis and/or relapse, raising the issue whether current target prioritization and molecular risk stratification procedures in single biopsies are sufficiently reliable for therapy decisions. The genetic heterogeneity in gene mutations and chromosome aberrations observed in deep analyses from patient courses suggest clonal evolution before treatment and under treatment pressure, and support early emergence of metastatic clones and ongoing chromosomal instability during disease evolution. We report continuous clonal evolution on mutational and copy number levels in neuroblastoma, and detail its implications for therapy selection, risk stratification and therapy resistance.
Collapse
Affiliation(s)
- Karin Schmelz
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
- The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joern Toedling
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
- The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matt Huska
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Maja C Cwikla
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Jutta Proba
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter F Ambros
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090, Vienna, Austria
| | - Inge M Ambros
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090, Vienna, Austria
| | - Sengül Boral
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Lodrini
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
- The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Celine Y Chen
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Martin Burkert
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Dennis Guergen
- Experimental Pharmacology and Oncology Berlin-Buch GmbH (EPO), Berlin, Germany
| | | | | | - Annette Kuenkele
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
- The German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Kerstin Haase
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
- The German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, Medical Faculty, University Children's Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hedwig E Deubzer
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
- The German Cancer Research Center (DKFZ), Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the Charité and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Falk Hertwig
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- The German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
- The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Hundsdoerfer
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Anton G Henssen
- Charité-Universitätsmedizin Berlin, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany.
- The German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Experimental and Clinical Research Center (ECRC) of the Charité and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| | - Roland F Schwarz
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- BIFOLD-Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
| | - Johannes H Schulte
- Charité-Universitätsmedizin Berlin, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany.
- The German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| | - Angelika Eggert
- Charité-Universitätsmedizin Berlin, Berlin, Germany.
- The German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany.
- The German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|