1
|
Liu J, Lu J, Wu L, Zhang T, Wu J, Li L, Tai Z, Chen Z, Zhu Q. Targeting tumor-associated macrophages: Novel insights into immunotherapy of skin cancer. J Adv Res 2025; 67:231-252. [PMID: 38242529 DOI: 10.1016/j.jare.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The incidence of skin cancer is currently increasing, and conventional treatment options inadequately address the demands of disease management. Fortunately, the recent rapid advancement of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has ushered in a new era for numerous cancer patients. However, the efficacy of immunotherapy remains suboptimal due to the impact of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs), a major component of the TME, play crucial roles in tumor invasion, metastasis, angiogenesis, and immune evasion, significantly impacting tumor development. Consequently, TAMs have gained considerable attention in recent years, and their roles have been extensively studied in various tumors. However, the specific roles of TAMs and their regulatory mechanisms in skin cancer remain unclear. AIM OF REVIEW This paper aims to elucidate the origin and classification of TAMs, investigate the interactions between TAMs and various immune cells, comprehensively understand the precise mechanisms by which TAMs contribute to the pathogenesis of different types of skin cancer, and finally discuss current strategies for targeting TAMs in the treatment of skin cancer. KEY SCIENTIFIC CONCEPTS OF OVERVIEW With a specific emphasis on the interrelationship between TAMs and skin cancer, this paper posits that therapeutic modalities centered on TAMs hold promise in augmenting and harmonizing with prevailing clinical interventions for skin cancer, thereby charting a novel trajectory for advancing the landscape of immunotherapeutic approaches for skin cancer.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Ling Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
2
|
Zhang X, Ma J, Chen Y, Deng X, Zhang Y, Han Y, Tan J, Deng G, Ouyang Y, Zhou Y, Cai C, Zeng S, Shen H. FOS + B cells: Key mediators of immunotherapy resistance in diverse cancer types. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200895. [PMID: 39583007 PMCID: PMC11584611 DOI: 10.1016/j.omton.2024.200895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024]
Abstract
While immunotherapy has marked significant advances in cancer treatment, resistance remains a challenge. The complexity of the tumor microenvironment, particularly the role of B cell subpopulations, is a critical factor affecting treatment efficacy. In this study, we conducted analyses of single-cell RNA sequencing data from immunotherapy patients (n = 25) to explore the biomarker of immunotherapy resistance. Spatial transcriptome analysis, immunofluorescence analysis, and multi-cancer immunotherapy transcriptome analysis (n = 1,253) were used to validate our finding, and the potential mechanisms were explored. FOS+ B cells, identified across multiple cancer types, were associated with poor response to immunotherapy. FOS may form AP-1 (activator protein 1) with JUNB, thereby promoting the expression of Blimp-1 and subsequently facilitating the differentiation of B cells into immunosuppressive plasma cells. Furthermore, FOS+ B cells were linked to altered tumor necrosis factor signaling pathways, suggesting a mechanism for their immunosuppressive effects. Our findings highlight FOS+ B cells as important players in immunotherapy resistance, providing a novel biomarker for predicting treatment response. This study not only deepens our understanding of the immunological landscape influencing immunotherapy efficacy but also opens avenues for targeted interventions to overcome resistance.
Collapse
Affiliation(s)
- Xiangyang Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 518057, China
| | - Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiangying Deng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yan Zhang
- Department of Oncology, Yueyang People’s Hospital, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang 414022, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gongping Deng
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311 China
| | - Yanhong Ouyang
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311 China
| | - Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
3
|
Aasy NKA, Sallam MA, Ragab D, Abdelmonsif DA, Aly RG, Abdelfattah EZA, Elkhodairy KA. CD44-targeted hyaluronic acid coated imiquimod lipid nanocapsules foster the efficacy against skin cancer: Attempt to conquer unfavorable side effects. Int J Biol Macromol 2024; 290:138895. [PMID: 39701268 DOI: 10.1016/j.ijbiomac.2024.138895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
This study was executed to mitigate imiquimod (IMQ)-side effects and promote its anticancer potential against skin cancer via encapsulation in hyaluronic acid-coated lipid nanocapsules (HA-LNCs) for targeted topical delivery. The LNCs were prepared using the phase inversion technique. Optimized LNCs formulation was gained following 22 factorial design experiment to adjust the IMQ and CTAB concentrations. The two variables were found to significantly influence the dependent responses. The encapsulation efficiency of IMQ exceeded 97 %. HA coating provided a sustained release of IMQ from LNCs, with 63.81 ± 2.45 % of IMQ released after 24 h. Moreover, the ex-vivo human skin permeation study showed that 7.9-fold more IMQ was localized in all skin layers than that permeated. In vitro anticancer activity indicated that IMQ-HA-LNCs had higher cytotoxicity (IC50 = 22.39 μg/mL) compared to free IMQ (IC50 = 97.94 μg/mL). Further, in vivo studies revealed that encapsulation of IMQ in HA-LNCs enhanced its immunostimulatory potential and promoted its anti-tumor activity in competing skin cancer even in low doses compared to the untreated group and group treated with a brand product with no topical or systemic toxicity. The present study suggested that HA-LNCs with their mixed polymeric/lipophilic nature epitomize a promising strategy for safe topical delivery of poorly water-soluble candidates.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, University of Alexandria, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Kadria A Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
4
|
Shafi H, Lora AJ, Donow HM, Dickinson SE, Wondrak GT, Chow HHS, Curiel-Lewandrowski C, Mansour HM. Comprehensive Advanced Physicochemical Characterization and In Vitro Human Cell Culture Assessment of BMS-202: A Novel Inhibitor of Programmed Cell Death Ligand. Pharmaceutics 2024; 16:1409. [PMID: 39598533 PMCID: PMC11597381 DOI: 10.3390/pharmaceutics16111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: BMS-202, is a potent small molecule with demonstrated antitumor activity. The study aimed to comprehensively characterize the physical and chemical properties of BMS-202 and evaluate its suitability for topical formulation, focusing on uniformity, stability and safety profiles. Methods: A range of analytical techniques were employed to characterize BMS-202. Scanning Electron Microscopy (SEM) was used to assess morphology, Differential Scanning Calorimetry (DSC) provided insights of thermal behavior, and Hot-Stage Microscopy (HSM) corroborated these thermal behaviors. Molecular fingerprinting was conducted using Raman spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy, with chemical uniformity of the batch further validated by mapping through FTIR and Raman microscopies. The residual water content was measured using Karl Fisher Coulometric titration, and vapor sorption isotherms examined moisture uptake across varying relative humidity levels. In vitro safety assessments involved testing with skin epithelial cell lines, such as HaCaT and NHEK, and Transepithelial Electrical Resistance (TEER) to evaluate barrier integrity. Results: SEM revealed a distinctive needle-like morphology, while DSC indicated a sharp melting point at 110.90 ± 0.54 ℃ with a high enthalpy of 84.41 ± 0.38 J/g. HSM confirmed the crystalline-to-amorphous transition at the melting point. Raman and FTIR spectroscopy, alongside chemical imaging, confirmed chemical uniformity as well as validated the batch consistency. A residual water content of 2.76 ± 1.37 % (w/w) and minimal moisture uptake across relative humidity levels demonstrated its low hygroscopicity and suitability for topical formulations. Cytotoxicity testing showed dose-dependent reduction in skin epithelial cell viability at high concentrations (100 µM and 500 µM), with lower doses (0.1 µM to 10 µM) demonstrating acceptable safety. TEER studies indicated that BMS-202 does not disrupt the HaCaT cell barrier function. Conclusions: The findings from this study establish that BMS-202 has promising physicochemical and in vitro characteristics at therapeutic concentrations for topical applications, providing a foundation for future formulation development focused on skin-related cancers or localized immune modulation.
Collapse
Affiliation(s)
- Hasham Shafi
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Andrea J. Lora
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Haley M. Donow
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Sally E. Dickinson
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Department of Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Georg T. Wondrak
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, AZ 85721, USA
| | - H.-H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Division of Hematology and Oncology, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Clara Curiel-Lewandrowski
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Division of Dermatology, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85724, USA
| | - Heidi M. Mansour
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33174, USA
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
5
|
Jordan Chou P, Mary Peter R, Shannar A, Pan Y, Dushyant Dave P, Xu J, Shahid Sarwar M, Kong AN. Epigenetics of Dietary Phytochemicals in Cancer Prevention: Fact or Fiction. Cancer J 2024; 30:320-328. [PMID: 39312452 PMCID: PMC11573353 DOI: 10.1097/ppo.0000000000000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT Cancer development takes 10 to 50 years, and epigenetics plays an important role. Recent evidence suggests that ~80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiation/chemotherapeutic drugs, cancer prevention by relatively nontoxic "epigenetic modifiers" will be logical. Many dietary phytochemicals possess powerful antioxidant and anti-inflammatory properties that are hallmarks of cancer prevention. Dietary phytochemicals can regulate gene expression of the cellular genome via epigenetic mechanisms. In this review, we will summarize preclinical studies that demonstrate epigenetic mechanisms of dietary phytochemicals in skin, colorectal, and prostate cancer prevention. Key examples of the importance of epigenetic regulation in carcinogenesis include hypermethylation of the NRF2 promoter region in cancer cells, resulting in inhibition of NRF2-ARE signaling. Many dietary phytochemicals demethylate NRF2 promoter region and restore NRF2 signaling. Phytochemicals can also inhibit inflammatory responses via hypermethylation of inflammation-relevant genes to block gene expression. Altogether, dietary phytochemicals are excellent candidates for cancer prevention due to their low toxicity, potent antioxidant and anti-inflammatory properties, and powerful epigenetic effects in reversing procarcinogenic events.
Collapse
Affiliation(s)
- PoChung Jordan Chou
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rebecca Mary Peter
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuxin Pan
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Parv Dushyant Dave
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jiawei Xu
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
7
|
Nassief G, Anaeme A, Moussa K, Chen D, Ansstas G. Where Are We Now with Oncolytic Viruses in Melanoma and Nonmelanoma Skin Malignancies? Pharmaceuticals (Basel) 2024; 17:916. [PMID: 39065766 PMCID: PMC11279659 DOI: 10.3390/ph17070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Skin cancer prognosis has greatly improved recently due to the introduction of immune checkpoint inhibitors (ICIs). However, many patients with advanced skin cancer still experience immunotherapy resistance and disease progression during ICI treatment, thus calling for novel therapeutics which address this treatment gap. Talimogene laherparepvec (T-VEC) has gained popularity in recent years as a viable treatment option for patients with skin cancer. In preclinical studies, T-VEC demonstrated both a direct anti-tumor effect in injected lesions as well as a systemic immune-mediated effect in non-injected lesions, which could pose additional benefits when combined with ICI therapy. Following promising results from the OPTiM trial, the Food and Drug Administration (FDA) approved the usage of T-VEC as a single agent in advanced melanoma. However, the MASTERKEY-265 trial demonstrated that adding T-VEC to pembrolizumab did not offer additional clinical benefit in patients with melanoma. Nevertheless, the promising efficacy of T-VEC and its approval by the FDA helped oncolytic viruses (OVs) gain wide attention in cancer therapy, and extensive research has been undertaken to evaluate the usage of OVs in other tumors such as sarcomas and breast cancers. Here, we provide a review of clinical results from 2022 to 2024 that investigate the efficacy and safety of OVs as a monotherapy or in combination with other therapies in skin malignancies. Furthermore, we delineate the current limitations in OV utilization and outline future directions to enhance clinical outcomes for patients with skin malignancies receiving OV-based therapies.
Collapse
Affiliation(s)
- George Nassief
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - Angela Anaeme
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - Karen Moussa
- UMKC School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - David Chen
- Division of Dermatology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| |
Collapse
|
8
|
Cerezuela-Fuentes P, Gonzalez-Cao M, Puertolas T, Manzano JL, Maldonado C, Yelamos O, Berciano-Guerrero MA, Martin-Liberal J, Muñoz-Couselo E, Espinosa E, Drozdowskyj A, Berrocal A, Soria A, Marquez-Rodas I, Martin-Algarra S, Quindos M, Puig S. Access to systemic treatment of non-melanoma skin cancer in Spain: a survey analysis. Clin Transl Oncol 2024:10.1007/s12094-024-03583-5. [PMID: 38951438 DOI: 10.1007/s12094-024-03583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Novel and highly effective drugs for non-melanoma skin cancer (NMSC) improve patient outcomes, but their high cost strains healthcare systems. Spain's decentralized public health system, managed by 17 autonomous communities (AaCc), raises concerns about equitable access. METHODS A cross-sectional survey (July-September 2023) was sent to Spanish Multidisciplinary Melanoma Group (GEM Group) members to assess access to new drugs. FINDINGS Fifty physicians from 15 Spanish AaCc responded to the survey. Access for drug with approved public reimbursement, Hedgehog inhibitors in basal-cell carcinoma and anti PD-L1 antibody in Merkel carcinoma, was observed in 84% and 86% of centers, respectively. For other EMA-approved treatments, but without reimbursement in Spain access decreased to 78% of centers. Heterogeneity in access was mainly observed intra regions. CONCLUSION Unequal financial support for drugs for NMSC with creates a patchwork of access across Spanish hospitals, with variations even within the same AaCc.
Collapse
Affiliation(s)
- Pablo Cerezuela-Fuentes
- Oncology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Ciudad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dr. Rosell Oncology Institute (IOR), Dexeus University Hospital, C/Sabino Arana, 5, 080028, Barcelona, Spain.
| | | | - Jose Luis Manzano
- Catalan Institute of Oncology (ICO-Badalona), Hospital Germans Trias i Pujol, Badalona, Spain
| | - Cayetana Maldonado
- Dermatology Department, Hospital Universitario de Asturias, Oviedo, Spain
| | - Oriol Yelamos
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Miguel A Berciano-Guerrero
- Oncology Department Hospitales, Universitarios Regional y Virgen de la Victoria (HURyVV), Instituto de Investigaciones Biomédicas de Málaga (IBIMA), Málaga, Spain
| | - Juan Martin-Liberal
- Catalan Institute of Oncology (ICO-Hospitalet), Hospital Duran i Reynals, Barcelona, Spain
| | | | - Enrique Espinosa
- Oncology Department, Hospital Universitario la Paz, Madrid, Spain
- CIBERER, Barcelona, Spain
| | - Ana Drozdowskyj
- Oncology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Ciudad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Alfonso Berrocal
- Oncology Department, Hospital General de Valencia, Valencia, Spain
| | - Ainara Soria
- Oncology Department, Hospital Ramon y Cajal, Madrid, Spain
| | - Ivan Marquez-Rodas
- Oncology Department, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | | | - Maria Quindos
- Medical Oncology Department, Complexo Hospitalario Universitario de A Coruña. Biomedical Research Institute (INIBIC), A Coruña, Spain
| | - Susana Puig
- CIBERER, Barcelona, Spain.
- Dermatology Department, Hospital Clinic Barcelona, University of Barcelona, IDIBAPS, C Villrroel, 08023, Barcelona, Spain.
| |
Collapse
|
9
|
Kowalski S, Karska J, Tota M, Skinderowicz K, Kulbacka J, Drąg-Zalesińska M. Natural Compounds in Non-Melanoma Skin Cancer: Prevention and Treatment. Molecules 2024; 29:728. [PMID: 38338469 PMCID: PMC10856721 DOI: 10.3390/molecules29030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The elevated occurrence of non-melanoma skin cancer (NMSC) and the adverse effects associated with available treatments adversely impact the quality of life in multiple dimensions. In connection with this, there is a necessity for alternative approaches characterized by increased tolerance and lower side effects. Natural compounds could be employed due to their safety profile and effectiveness for inflammatory and neoplastic skin diseases. These anti-cancer drugs are often derived from natural sources such as marine, zoonotic, and botanical origins. Natural compounds should exhibit anti-carcinogenic actions through various pathways, influencing apoptosis potentiation, cell proliferation inhibition, and metastasis suppression. This review provides an overview of natural compounds used in cancer chemotherapies, chemoprevention, and promotion of skin regeneration, including polyphenolic compounds, flavonoids, vitamins, alkaloids, terpenoids, isothiocyanates, cannabinoids, carotenoids, and ceramides.
Collapse
Affiliation(s)
- Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland;
| | - Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Małgorzata Drąg-Zalesińska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubińskiego 6a, 50-368 Wroclaw, Poland;
| |
Collapse
|
10
|
Surkov YI, Serebryakova IA, Kuzinova YK, Konopatskova OM, Safronov DV, Kapralov SV, Genina EA, Tuchin VV. Multimodal Method for Differentiating Various Clinical Forms of Basal Cell Carcinoma and Benign Neoplasms In Vivo. Diagnostics (Basel) 2024; 14:202. [PMID: 38248078 PMCID: PMC10814941 DOI: 10.3390/diagnostics14020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Correct classification of skin lesions is a key step in skin cancer screening, which requires high accuracy and interpretability. This paper proposes a multimodal method for differentiating various clinical forms of basal cell carcinoma and benign neoplasms that includes machine learning. This study was conducted on 37 neoplasms, including benign neoplasms and five different clinical forms of basal cell carcinoma. The proposed multimodal screening method combines diffuse reflectance spectroscopy, optical coherence tomography and high-frequency ultrasound. Using diffuse reflectance spectroscopy, the coefficients of melanin pigmentation, erythema, hemoglobin content, and the slope coefficient of diffuse reflectance spectroscopy in the wavelength range 650-800 nm were determined. Statistical texture analysis of optical coherence tomography images was used to calculate first- and second-order statistical parameters. The analysis of ultrasound images assessed the shape of the tumor according to parameters such as area, perimeter, roundness and other characteristics. Based on the calculated parameters, a machine learning algorithm was developed to differentiate the various clinical forms of basal cell carcinoma. The proposed algorithm for classifying various forms of basal cell carcinoma and benign neoplasms provided a sensitivity of 70.6 ± 17.3%, specificity of 95.9 ± 2.5%, precision of 72.6 ± 14.2%, F1 score of 71.5 ± 15.6% and mean intersection over union of 57.6 ± 20.1%. Moreover, for differentiating basal cell carcinoma and benign neoplasms without taking into account the clinical form, the method achieved a sensitivity of 89.1 ± 8.0%, specificity of 95.1 ± 0.7%, F1 score of 89.3 ± 3.4% and mean intersection over union of 82.6 ± 10.8%.
Collapse
Affiliation(s)
- Yuriy I. Surkov
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (I.A.S.); (E.A.G.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia
- Laboratory of Biomedical Photoacoustic, Saratov State University, 410012 Saratov, Russia;
| | - Isabella A. Serebryakova
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (I.A.S.); (E.A.G.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia
| | - Yana K. Kuzinova
- Department of Faculty Surgery and Oncology, Saratov State Medical University, 410012 Saratov, Russia; (Y.K.K.); (D.V.S.); (S.V.K.)
| | - Olga M. Konopatskova
- Laboratory of Biomedical Photoacoustic, Saratov State University, 410012 Saratov, Russia;
- Department of Faculty Surgery and Oncology, Saratov State Medical University, 410012 Saratov, Russia; (Y.K.K.); (D.V.S.); (S.V.K.)
| | - Dmitriy V. Safronov
- Department of Faculty Surgery and Oncology, Saratov State Medical University, 410012 Saratov, Russia; (Y.K.K.); (D.V.S.); (S.V.K.)
| | - Sergey V. Kapralov
- Department of Faculty Surgery and Oncology, Saratov State Medical University, 410012 Saratov, Russia; (Y.K.K.); (D.V.S.); (S.V.K.)
| | - Elina A. Genina
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (I.A.S.); (E.A.G.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia
| | - Valery V. Tuchin
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (I.A.S.); (E.A.G.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia
- Laboratory of Biomedical Photoacoustic, Saratov State University, 410012 Saratov, Russia;
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 410028 Saratov, Russia
| |
Collapse
|
11
|
Varshney K, Mazumder R, Rani A, Mishra R, Khurana N. Recent Research Trends against Skin Carcinoma - An Overview. Curr Pharm Des 2024; 30:2685-2700. [PMID: 39051578 DOI: 10.2174/0113816128307653240710044902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
Skin cancer is a prevalent and sometimes lethal cancer that affects a wide range of people. UV radiation exposure is the main cause of skin cancer. Immunosuppression, environmental factors, and genetic predisposition are other contributing variables. Fair-skinned people and those with a history of sunburns or severe sun exposure are more likely to experience this condition. Melanoma, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) are the three main forms. Melanoma poses a bigger hazard because of its tendency for metastasis, while SCC and BCC have limited metastatic potential. Genetic mutations and changes to signalling pathways such as p53 and MAPK are involved in pathogenesis. Early diagnosis is essential, and molecular testing, biopsy, dermoscopy, and visual inspection can all help. In addition to natural medicines like curcumin and green tea polyphenols, treatment options include immunotherapy, targeted therapy, radiation, surgery, and chemotherapy. Reducing the incidence of skin cancer requires preventive actions, including sun protection and early detection programs. An overview of skin cancers, including their forms, pathophysiology, diagnosis, and treatment, highlighting herbal therapy, is given in this review.
Collapse
Affiliation(s)
- Kamya Varshney
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh 201306, India
| | - Anjna Rani
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh 201306, India
| | - Rashmi Mishra
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh 201306, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
12
|
Vishwas S, Paul SD, Singh D. An Insight on Skin Cancer About Different Targets With Update on Clinical Trials and Investigational Drugs. Curr Drug Deliv 2024; 21:852-869. [PMID: 37496132 DOI: 10.2174/1567201820666230726150642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 07/28/2023]
Abstract
Cancer is a diverse disease caused by transcriptional changes involving genetic and epigenetic features that influence a huge variety of genes and proteins. Skin cancer is a potentially fatal disease that affects equally men and women globally and is characterized by many molecular changes. Despite the availability of various improved approaches for detecting and treating skin cancer, it continues to be the leading cause of death throughout society. This review highlights a general overview of skin cancer, with an emphasis on epidemiology, types, risk factors, pathological and targeted facets, biomarkers and molecular markers, immunotherapy, and clinical updates of investigational drugs associated with skin cancer. The skin cancer challenges are acknowledged throughout this study, and the potential application of novel biomarkers of skin cancer formation, progression, metastasis, and prognosis is explored. Although the mechanism of skin carcinogenesis is currently poorly understood, multiple articles have shown that genetic and molecular changes are involved. Furthermore, several skin cancer risk factors are now recognized, allowing for efficient skin cancer prevention. There have been considerable improvements in the field of targeted treatment, and future research into additional targets will expand patients' therapeutic choices. In comparison to earlier articles on the same issue, this review focused on molecular and genetic factors and examined various skin cancer-related factors in depth.
Collapse
Affiliation(s)
- Suraj Vishwas
- Shankaracharya Technical Campus, Faculty of Pharmaceutical Sciences, Bhilai (C.G.) India
- Sanskar City College of Pharmacy, Rajnandgaon, Bhilai (C.G.) India
| | - Swarnali Das Paul
- Shri Shankaracharya College of Pharmaceutical Sciences, Bhilai (C.G.) India
| | - Deepika Singh
- Shri Shankaracharya Technical Campus, Faculty of Pharmaceutical Sciences, Bhilai (C.G.) India
| |
Collapse
|
13
|
Becker JC, Ugurel S, Leiter U, Meier F, Gutzmer R, Haferkamp S, Zimmer L, Livingstone E, Eigentler TK, Hauschild A, Kiecker F, Hassel JC, Mohr P, Fluck M, Thomas I, Garzarolli M, Grimmelmann I, Drexler K, Spillner AN, Eckhardt S, Schadendorf D. Adjuvant immunotherapy with nivolumab versus observation in completely resected Merkel cell carcinoma (ADMEC-O): disease-free survival results from a randomised, open-label, phase 2 trial. Lancet 2023; 402:798-808. [PMID: 37451295 DOI: 10.1016/s0140-6736(23)00769-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is an immunogenic but aggressive skin cancer. Even after complete resection and radiation, relapse rates are high. PD-1 and PD-L1 checkpoint inhibitors showed clinical benefit in advanced MCC. We aimed to assess efficacy and safety of adjuvant immune checkpoint inhibition in completely resected MCC (ie, a setting without an established systemic standard-of-care treatment). METHODS In this multicentre phase 2 trial, patients (any stage, Eastern Cooperative Oncology Group performance status 0-1) at 20 academic medical centres in Germany and the Netherlands with completely resected MCC lesions were randomly assigned 2:1 to receive nivolumab 480 mg every 4 weeks for 1 year, or observation, stratified by stage (American Joint Committee on Cancer stages 1-2 vs stages 3-4), age (<65 vs ≥65 years), and sex. Landmark disease-free survival (DFS) at 12 and 24 months was the primary endpoint, assessed in the intention-to-treat populations. Overall survival and safety were secondary endpoints. This planned interim analysis was triggered when the last-patient-in was followed up for more than 1 year. This study is registered with ClinicalTrials.gov (NCT02196961) and with the EU Clinical Trials Register (2013-000043-78). FINDINGS Between Oct 1, 2014, and Aug 31, 2020, 179 patients were enrolled (116 [65%] stage 3-4, 122 [68%] ≥65 years, 111 [62%] male). Stratification factors (stage, age, sex) were balanced across the nivolumab (n=118) and internal control group (observation, n=61); adjuvant radiotherapy was more common in the control group. At a median follow-up of 24·3 months (IQR 19·2-33·4), median DFS was not reached (between-groups hazard ratio 0·58, 95% CI 0·30-1·12); DFS rates in the nivolumab group were 85% at 12 months and 84% at 24 months, and in the observation group were 77% at 12 months and 73% at 24 months. Overall survival results were not yet mature. Grade 3-4 adverse events occurred in 48 [42%] of 115 patients who received at least one dose of nivolumab and seven [11%] of 61 patients in the observation group. No treatment-related deaths were reported. INTERPRETATION Adjuvant therapy with nivolumab resulted in an absolute risk reduction of 9% (1-year DFS) and 10% (2-year DFS). The present interim analysis of ADMEC-O might suggest clinical use of nivolumab in this area of unmet medical need. However, overall survival events rates, with ten events in the active treatment group and six events in the half-the-size observation group, are not mature enough to draw conclusions. The explorative data of our trial support the continuation of ongoing, randomised trials in this area. ADMEC-O suggests that adjuvant immunotherapy is clinically feasible in this area of unmet medical need. FUNDING Bristol Myers Squibb.
Collapse
Affiliation(s)
- Jürgen C Becker
- Department of Dermatology, University Hospital Essen, Essen, Germany; Translational Skin Cancer Research, Department of Dermatology and West German Cancer Center, University of Medicine Duisburg-Essen, Essen, Germany; German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, Essen, Germany; German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Ulrike Leiter
- Centre for Dermatooncology, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany; German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Dresden, Dresden, Germany; German Cancer Consortium, Partner Site Dresden, Dresden, Germany
| | - Ralf Gutzmer
- Skin Cancer Center Hannover, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, Essen, Germany; German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, Essen, Germany; German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Thomas K Eigentler
- Centre for Dermatooncology, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany; Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Felix Kiecker
- Department of Dermatology and Venereology, Vivantes Klinikum Berlin Neukölln, Berlin, Germany; Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jessica C Hassel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium, Partner Site Heidelberg, Heidelberg, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe-Kliniken, Buxtehude, Germany
| | - Michael Fluck
- Department of Oncology Hornheide, Fachklinik Hornheide, Münster, Germany
| | - Ioannis Thomas
- Centre for Dermatooncology, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Marlene Garzarolli
- Department of Dermatology, University Hospital Dresden, Dresden, Germany
| | - Imke Grimmelmann
- Skin Cancer Center Hannover, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Konstantin Drexler
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany; German Cancer Consortium, Partner Site Essen, Essen, Germany.
| |
Collapse
|
14
|
Sarwar MS, Ramirez CN, Dina Kuo HC, Chou P, Wu R, Sargsyan D, Yang Y, Shannar A, Mary Peter R, Yin R, Wang Y, Su X, Kong AN. The environmental carcinogen benzo[a]pyrene regulates epigenetic reprogramming and metabolic rewiring in a two-stage mouse skin carcinogenesis model. Carcinogenesis 2023; 44:436-449. [PMID: 37100755 PMCID: PMC10414144 DOI: 10.1093/carcin/bgad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/28/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in the world. Environmental exposure to carcinogens is one of the major causes of NMSC initiation and progression. In the current study, we utilized a two-stage skin carcinogenesis mouse model generated by sequential exposure to cancer-initiating agent benzo[a]pyrene (BaP) and promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA), to study epigenetic, transcriptomic and metabolic changes at different stages during the development of NMSC. BaP/TPA caused significant alterations in DNA methylation and gene expression profiles in skin carcinogenesis, as evidenced by DNA-seq and RNA-seq analysis. Correlation analysis between differentially expressed genes and differentially methylated regions found that the mRNA expression of oncogenes leucine rich repeat LGI family member 2 (Lgi2), kallikrein-related peptidase 13 (Klk13) and SRY-Box transcription factor (Sox5) are correlated with the promoter CpG methylation status, indicating BaP/TPA regulates these oncogenes through regulating their promoter methylation at different stages of NMSC. Pathway analysis identified that the modulation of macrophage-stimulating protein-recepteur d'origine nantais and high-mobility group box 1 signaling pathways, superpathway of melatonin degradation, melatonin degradation 1, sirtuin signaling and actin cytoskeleton signaling pathways are associated with the development of NMSC. The metabolomic study showed BaP/TPA regulated cancer-associated metabolisms like pyrimidine and amino acid metabolisms/metabolites and epigenetic-associated metabolites, such as S-adenosylmethionine, methionine and 5-methylcytosine, indicating a critical role in carcinogen-mediated metabolic reprogramming and its consequences on cancer development. Altogether, this study provides novel insights integrating methylomic, transcriptomic and metabolic-signaling pathways that could benefit future skin cancer treatment and interception studies.
Collapse
Affiliation(s)
- Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christina N Ramirez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Pochung Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rebecca Mary Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Khan MA, Akram T, Zhang Y, Alhaisoni M, Al Hejaili A, Shaban KA, Tariq U, Zayyan MH. SkinNet‐ENDO: Multiclass skin lesion recognition using deep neural network and Entropy‐Normal distribution optimization algorithm with ELM. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2023; 33:1275-1292. [DOI: 10.1002/ima.22863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/31/2023] [Indexed: 08/25/2024]
Abstract
AbstractThe early diagnosis of skin cancer through clinical methods reduces the human mortality rate. The manual screening of dermoscopic images is not an efficient procedure; therefore, researchers working in the domain of computer vision employed several algorithms to classify the skin lesion. The existing computerized methods have a few drawbacks, such as low accuracy and high computational time. Therefore, in this work, we proposed a novel deep learning and Entropy‐Normal Distribution Optimization Algorithm with extreme learning machine (NDOEM)‐based architecture for multiclass skin lesion classification. The proposed architecture consists of five fundamental steps. In the first step, two contrast enhancement techniques including hybridization of mathematical formulation and convolutional neural network are implemented prior to data augmentation. In the second step, two pre‐trained deep learning models, EfficientNetB0 and DarkNet19, are fine‐tuned and retrained through the transfer learning. In the third step, features are extracted from the fine‐tuned models and later the most discriminant features are selected based on novel Entropy‐NDOELM algorithm. The selected features are finally fused using a parallel correlation technique in the fourth step to generate the result feature vectors. Finally, the resultant features are again down‐sampled using the proposed algorithm and the resultant features are passed to the extreme learning machine (ELM) for the final classification. The simulations are conducted on three publicly available datasets as HAM10000, ISIC2018, and ISIC2019 to achieving an accuracy of 95.7%, 96.3%, and 94.8% respectively.
Collapse
Affiliation(s)
- Muhammad Attique Khan
- Department of Computer Science HITEC University Taxila Pakistan
- Department of Informatics University of Leicester Leicester UK
| | - Tallha Akram
- Department of Electrical and Computer Engineering COMSATS University Islamabad Wah Campus Pakistan
| | - Yu‐Dong Zhang
- Department of Informatics University of Leicester Leicester UK
| | - Majed Alhaisoni
- Computer Sciences Department, College of Computer and Information Sciences Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | - Abdullah Al Hejaili
- Faculty of Computers & Information Technology, Computer Science Department University of Tabuk Tabuk Saudi Arabia
| | - Khalid Adel Shaban
- Computer Science Department, College of Computing and Informatics Saudi Electronic University Ryiadh Saudi Arabia
| | - Usman Tariq
- Department of Management Information Systems College of Business Administration, Prince Sattam Bin Abdulaziz University Al‐Kharj Saudi Arabia
| | - Muhammad H. Zayyan
- Computer Science Department, Faculty of Computers and Information Sciences Mansoura University Mansoura Egypt
| |
Collapse
|
16
|
Zeng Q, Liu J, Yan Y, Zhang G, Wang P, Zhang H, Liu X, Zhang L, Wang X. Modified 5-aminolevulinic acid photodynamic therapy suppresses cutaneous squamous cell carcinoma through blocking Akt/mTOR-mediated autophagic flux. Front Pharmacol 2023; 14:1114678. [PMID: 37007013 PMCID: PMC10063783 DOI: 10.3389/fphar.2023.1114678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Background: We previously found that modified 5-aminolevulinic acid photodynamic therapy (M-PDT) is painless and effective in cutaneous squamous cell carcinoma (cSCC) treatment, however, the regulatory mechanism of M-PDT in cSCC is still unclear.Objective: To clarify the effect and relevant regulatory mechanism of M-PDT in cSCC.Methods: The cSCC apoptosis was examined by flow cytometry, TUNEL staining and Cleaved-caspase-3 immunofluorescence, respectively. The autophagy-related characterization was detected by monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), GFP-LC3B autophagic vacuoles localization and mRFP-EGFP tandem fluorescence-tagged LC3B construct, respectively. The expression of autophagy-related proteins and Akt/mTOR signaling molecules were examined by Western blot. ROS generation was measured by DCFH-DA probe.Results: We found that M-PDT induced cSCC apoptosis in a dose-dependent manner, and this result was related to autophagic flux blockage. The phenomenon is confirmed by the results that M-PDT could induce autophagosomes accumulation and upregulate LC3-II and p62 expression. M-PDT elevated co-localization of RFP and GFP tandem-tagged LC3B puncta in cSCC cell, reflecting autophagic flux blockage, and this was confirmed by transmission electron microscopy. Furthermore, we noticed that M-PDT induced accumulated autophagosomes-dependent apoptosis via targeting ROS-mediated Akt/mTOR signaling. Suppression of Akt potentiated M-PDT-induced upregulation of LC3-II and p62 levels, whereas Akt activation and ROS inhibition rendered resistance to these events. In addition, we observed that lysosomal dysfunction was involved in M-PDT-triggered accumulated autophagosomes-dependent cSCC apoptosis.Conclusion: Our data demonstrates that M-PDT inhibits cSCC through blocking Akt/mTOR-mediated autophagic flux.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiuli Wang
- *Correspondence: Linglin Zhang, ; Xiuli Wang,
| |
Collapse
|
17
|
Sergi MC, Lauricella E, Porta C, Tucci M, Cives M. An update on Merkel cell carcinoma. Biochim Biophys Acta Rev Cancer 2023; 1878:188880. [PMID: 36914034 DOI: 10.1016/j.bbcan.2023.188880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare cancer of the skin characterized by a neuroendocrine phenotype and an aggressive clinical behavior. It frequently originates in sun-exposed body areas, and its incidence has steadily increased in the last three decades. Merkel cell polyomavirus (MCPyV) and ultraviolet (UV) radiation exposure are the main causative agents of MCC, and distinct molecular features have been documented in virus-positive and virus-negative malignancies. Surgery remains the cornerstone of treatment for localized tumors, but even when integrated with adjuvant radiotherapy is able to definitively cure only a fraction of MCC patients. While characterized by a high objective response rate, chemotherapy is associated with a short-lasting benefit of approximately 3 months. On the other hand, immune checkpoint inhibitors including avelumab and pembrolizumab have demonstrated durable antitumor activity in patients with stage IV MCC, and investigations on their use in the neoadjuvant or adjuvant setting are currently underway. Addressing the needs of those patients who do not persistently benefit from immunotherapy is currently one of the most compelling unmet needs in the field, and multiple clinical trials of new tyrosine kinase inhibitors (TKIs), peptide receptor radionuclide therapy (PRRT), therapeutic vaccines, immunocytokines as well as innovative forms of adoptive cellular immunotherapies are under clinical scrutiny at present.
Collapse
Affiliation(s)
- Maria Chiara Sergi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Eleonora Lauricella
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Marco Tucci
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Mauro Cives
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy.
| |
Collapse
|
18
|
Affiliation(s)
- David M Miller
- From Massachusetts General Hospital (D.M.M.), Harvard Medical School (D.M.M., K.S.E.), and Massachusetts Eye and Ear (K.S.E.) - all in Boston
| | - Kevin S Emerick
- From Massachusetts General Hospital (D.M.M.), Harvard Medical School (D.M.M., K.S.E.), and Massachusetts Eye and Ear (K.S.E.) - all in Boston
| |
Collapse
|
19
|
Rubatto M, Sciamarrelli N, Borriello S, Pala V, Mastorino L, Tonella L, Ribero S, Quaglino P. Classic and new strategies for the treatment of advanced melanoma and non-melanoma skin cancer. Front Med (Lausanne) 2023; 9:959289. [PMID: 36844955 PMCID: PMC9947410 DOI: 10.3389/fmed.2022.959289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/23/2022] [Indexed: 02/11/2023] Open
Abstract
Advanced melanoma and non-melanoma skin cancers (NMSCs) are burdened with a dismal prognosis. To improve the survival of these patients, studies on immunotherapy and target therapies in melanoma and NMSCs are rapidly increasing. BRAF and MEK inhibitors improve clinical outcomes, and anti-PD1 therapy demonstrates better results than chemotherapy or anti-CTLA4 therapy in terms of the survival of patients with advanced melanoma. In recent years, the combination therapy of nivolumab plus ipilimumab has gained ground in studies for its survival and response rate benefits in patients with advanced melanoma. In addition, neoadjuvant treatment for stages III and IV melanoma, either as monotherapy or combination therapy, has recently been discussed. Another promising strategy evaluated in recent studies is the triple combination of anti-PD-1/PD-L1 immunotherapy and anti-BRAF plus anti-MEK targeted therapy. On the contrary, in advanced and metastatic BCC, successful therapeutic strategies, such as vismodegib and sonidegib, are based on the inhibition of aberrant activation of the Hedgehog signaling pathway. In these patients, anti-PD-1 therapy with cemiplimab should be reserved as the second-line therapy in case of disease progression or poor response. In patients with locally advanced or metastatic SCC, who are not candidates for surgery or radiotherapy, anti-PD1 agents such as cemiplimab, pembrolizumab, and cosibelimab (CK-301) have shown significant results in terms of response rate. PD-1/PD-L1 inhibitors, such as avelumab, have also been used in Merkel carcinoma, achieving responses in half of the patients with advanced disease. The latest prospect emerging for MCC is the locoregional approach involving the injection of drugs that can stimulate the immune system. Two of the most promising molecules used in combination with immunotherapy are cavrotolimod (a Toll-like receptor 9 agonist) and a Toll-like receptor 7/8 agonist. Another area of study is cellular immunotherapy with natural killer cells stimulated with an IL-15 analog or CD4/CD8 cells stimulated with tumor neoantigens. Neoadjuvant treatment with cemiplimab in CSCCs and nivolumab in MCCs has shown promising results. Despite the successes of these new drugs, the new challenges ahead will be to select patients who will benefit from these treatments based on biomarkers and parameters of the tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Silvia Borriello
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| | - Valentina Pala
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| | - Luca Mastorino
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| | - Luca Tonella
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| | - Simone Ribero
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Torino, Italy
| |
Collapse
|
20
|
Zhang T, Jou THT, Hsin J, Wang Z, Huang K, Ye J, Yin H, Xing Y. Talimogene Laherparepvec (T-VEC): A Review of the Recent Advances in Cancer Therapy. J Clin Med 2023; 12:1098. [PMID: 36769745 PMCID: PMC9917711 DOI: 10.3390/jcm12031098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The landscape of melanoma treatment has undergone a dramatic revolution in the past decade. The use of oncolytic viruses (OVs) represents a novel therapeutic approach that can selectively infect and lyse tumor cells and induce local and systemic antitumor immune responses. As the first OV approved by the Food and Drug Administration (FDA) for melanoma treatment, talimogene laherparepvec (T-VEC), a genetically modified herpes simplex virus (HSV), has shown promising therapeutic effects in the treatment of advanced melanoma, both as a monotherapy or in combination with other immunotherapies, such as the immune checkpoint inhibitors (ICIs). With proven efficacy, T-VEC has been evaluated against a variety of other cancer types in a clinical trial setting. In this article, we will provide a review on OVs and the application of T-VEC in melanoma monotherapy and combination therapy. In addition, we will review the recent progress of T-VEC application in other cutaneous cancer types. Moreover, we will briefly describe our experience of T-VEC therapy at City of Hope, aiming to provide more insight for expanding its future application.
Collapse
Affiliation(s)
- Tiantian Zhang
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Tony Hong-Ting Jou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Jerline Hsin
- Department of Pharmacy, City of Hope, Duarte, CA 91010, USA
| | - Zhe Wang
- High Throughput Screening Core, Department of Share Resources, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Kelly Huang
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA
| | - Jian Ye
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Holly Yin
- High Throughput Screening Core, Department of Share Resources, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yan Xing
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
21
|
Molecular Mechanisms and Targeted Therapies of Advanced Basal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms231911968. [PMID: 36233269 PMCID: PMC9570397 DOI: 10.3390/ijms231911968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Among human cutaneous malignancies, basal cell carcinoma is the most common. Solid advances in unveiling the molecular mechanisms of basal cell carcinoma have emerged in recent years. In Gorlin syndrome, which shows basal cell carcinoma predisposition, identification of the patched 1 gene (PTCH1) mutation was a dramatic breakthrough in understanding the carcinogenesis of basal cell carcinoma. PTCH1 plays a role in the hedgehog pathway, and dysregulations of this pathway are known to be crucial for the carcinogenesis of many types of cancers including sporadic as well as hereditary basal cell carcinoma. In this review, we summarize the clinical features, pathological features and hedgehog pathway as applied in basal cell carcinoma. Other crucial molecules, such as p53 and melanocortin-1 receptor are also discussed. Due to recent advances, therapeutic strategies based on the precise molecular mechanisms of basal cell carcinoma are emerging. Target therapies and biomarkers are also discussed.
Collapse
|
22
|
Fine GC, Covington MF, Koppula BR, Salem AE, Wiggins RH, Hoffman JM, Morton KA. PET-CT in Clinical Adult Oncology-VI. Primary Cutaneous Cancer, Sarcomas and Neuroendocrine Tumors. Cancers (Basel) 2022; 14:2835. [PMID: 35740501 PMCID: PMC9221374 DOI: 10.3390/cancers14122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
PET-CT is an advanced imaging modality with many oncologic applications, including staging, therapeutic assessment, restaging and surveillance for recurrence. The goal of this series of six review articles is to provide practical information to providers and imaging professionals regarding the best use of PET-CT for specific oncologic indications, the potential pitfalls and nuances that characterize these applications, and guidelines for image interpretation. Tumor-specific clinical information and representative PET-CT images are provided. The current, sixth article in this series addresses PET-CT in an evaluation of aggressive cutaneous malignancies, sarcomas and neuroendocrine tumors. A discussion of the role of FDG PET for all types of tumors in these categories is beyond the scope of this review. Rather, this article focuses on the most common malignancies in adult patients encountered in clinical practice. It also focuses on Food and Drug Agency (FDA)-approved and clinically available radiopharmaceuticals rather than research tracers or those requiring a local cyclotron. This information will serve as a guide to primary providers for the appropriate role of PET-CT in managing patients with cutaneous malignancies, sarcomas and neuroendocrine tumors. The nuances of PET-CT interpretation as a practical guide for imaging providers, including radiologists, nuclear medicine physicians and their trainees, are also addressed.
Collapse
Affiliation(s)
- Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Matthew F. Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Bhasker R. Koppula
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Ahmed Ebada Salem
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
- Faculty of Medicine, Department of Radiodiagnosis and Intervention, Alexandria University, Alexandria 21526, Egypt
| | - Richard H. Wiggins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - John M. Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Kathryn A. Morton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (G.C.F.); (M.F.C.); (B.R.K.); (A.E.S.); (R.H.W.); (J.M.H.)
- Intermountain Healthcare Hospitals, Summit Physician Specialists, Murray, UT 84123, USA
| |
Collapse
|
23
|
Miller DM, Shalhout SZ. BodyMapR: an R package and Shiny application designed to generate anatomical visualizations of cancer lesions. JAMIA Open 2022; 5:ooac013. [PMID: 35274087 PMCID: PMC8903180 DOI: 10.1093/jamiaopen/ooac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives Structured real-world data (RWD), such as those found in cancer registries, provide a rich source of information regarding the natural history of cancer. Interactive data visualizations of cancer lesions can provide insights into certain clinical tumor characteristics (CTC). Software that can be integrated into an oncological data collection effort and generate anatomical data visualizations of CTC are limited. Materials and Methods We created BodyMapR: an R package and Shiny application that generates anatomical visualizations of cancer lesions from structured data. Results BodyMapR is a Shiny application that transposes structured data from REDCap® onto an anatomical map to yield an interactive data visualization. Conclusions BodyMapR is freely available under the MIT license and can be obtained from GitHub. BodyMapR is executed in R and deployed as a Shiny application. It can be integrated into an existing cancer research platform and produces an interactive data visualization of CTC.
Collapse
Affiliation(s)
- David M Miller
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sophia Z Shalhout
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Letter to the editor of radiotherapy and oncology regarding of the paper "Stereotactic body radiotherapy for head and neck skin cancer" by IS Voruganti et al. Radiother Oncol 2022; 170:247. [PMID: 35278593 DOI: 10.1016/j.radonc.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
|