1
|
Sridaran D, Mahajan NP. ACK1/TNK2 kinase: molecular mechanisms and emerging cancer therapeutics. Trends Pharmacol Sci 2024:S0165-6147(24)00247-5. [PMID: 39721828 DOI: 10.1016/j.tips.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
Activated CDC42-associated kinase 1 (ACK1), encoded by the TNK2 gene, is a cytoplasmic non-receptor tyrosine kinase whose aberrant activation correlates positively with cancer severity. Recent research has revealed the functional relevance of this oncokinase - it is an epigenetic regulator that drives cancer progression in multiple malignancies. Although ACK1 is an attractive target for therapeutic intervention, incomplete knowledge of its diverse signaling mechanisms and the lack of specific inhibitors have challenged its clinical success. We summarize recent breakthroughs in understanding ACK1 regulation and cellular signaling, and shed light on its immunomodulatory role in balancing T cell activation. We provide a comprehensive overview of preclinical, proof-of-concept studies of potent ACK1-targeting small-molecule inhibitors that are expected to enter clinical trials for cancer patients.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University at St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University at St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Cancer Research Building, Washington University at St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Yu Z, Liao H, Wu G, Liu Y, Zhang G, Xiao L, Yang S, Liu J, Yang G. SIRT3 Inhibits Cell Proliferation of Nonsmall Cell Lung Carcinoma by Inducing ROS Production. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70033. [PMID: 39501597 PMCID: PMC11538276 DOI: 10.1111/crj.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND Sirtuin 3 (SIRT3) is located in the mitochondrial matrix, regulating acetylation levels of metabolic enzymes. As an oncogene or a tumor suppressor gene, SIRT3 plays an important role in the commencement and progression of certain cancers. In this research, we investigated the role of SIRT3 in the progression of nonsmall cell lung carcinoma (NSCLC). METHODS In this study, bioinformatics was used to analyze the differential expression of SIRT3 in NSCLC tissue and normal tissues, prognosis, single-cell analysis, and related signaling pathways. The Lentiviral overexpressing SIRT3 was constructed, and CCK8 and colony formation assay were used to evaluate the NSCLC cells proliferation, ROS production was detected by flow cytometry, and the sea-horse test was used to measure cellular oxygen consumption (OCR). RESULTS SIRT3 expression was significantly decreased in NSCLC, and low expression of SIRT3 was closely related to the poor prognosis. Besides, on the whole, upregulation of SIRT3 suppressed cell proliferation in A549 and SK-MES-1 cells via increasing oxidative phosphorylation (OXPHOS) and ROS production. CONCLUSIONS Overall, our findings suggested that SIRT3 functions as a tumor suppressor that can suppress the progression of NSCLC via stimulating ROS production.
Collapse
Affiliation(s)
- Ze Yu
- Laboratory of Cytobiology and Molecular Biology, Zhoushan HospitalZhejiang University School of MedicineZhoushanZhejiangChina
- Laboratory of Cytobiology and Molecular Biology, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Hongtao Liao
- Department of Cardiothoracic Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Guanhuai Wu
- Department of Cardiothoracic Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Ying Liu
- Department of Pharmacy, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Guoqiang Zhang
- Department of General Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Liang Xiao
- Department of Surgery and OncologyShenzhen Second People's HospitalShenzhenGuangdongChina
| | - Shuibo Yang
- School of AgricultureSUN Yat‐Sen UniversityShenzhenGuangdongChina
| | - Jia Liu
- School of AgricultureSUN Yat‐Sen UniversityShenzhenGuangdongChina
- Shenzhen Zhongjia Bio‐Medical Technology Co., LTDShenzhenGuangdongChina
| | - Guocai Yang
- Department of Cardiothoracic Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| |
Collapse
|
3
|
Hao Y, Gu C, Luo W, Shen J, Xie F, Zhao Y, Song X, Han Z, He J. The role of protein post-translational modifications in prostate cancer. PeerJ 2024; 12:e17768. [PMID: 39148683 PMCID: PMC11326433 DOI: 10.7717/peerj.17768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
Involving addition of chemical groups or protein units to specific residues of the target protein, post-translational modifications (PTMs) alter the charge, hydrophobicity, and conformation of a protein, which in turn influences protein function, protein-protein interaction, and protein aggregation. These alterations, which include phosphorylation, glycosylation, ubiquitination, methylation, acetylation, lipidation, and lactylation, are significant biological events in the development of cancer, and play vital roles in numerous biological processes. The processes behind essential functions, the screening of clinical illness signs, and the identification of therapeutic targets all depend heavily on further research into the PTMs. This review outlines the influence of several PTM types on prostate cancer (PCa) diagnosis, therapy, and prognosis in an effort to shed fresh light on the molecular causes and progression of the disease.
Collapse
Affiliation(s)
- Yinghui Hao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenqiong Gu
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Shen
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Zhao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Song
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zeping Han
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinhua He
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Kanayama M, Chen Y, Rabizadeh D, Vera L, Lu C, Nielsen SM, Russell EM, Esplin ED, Wang H, Isaacs WB, Antonarakis ES, Luo J. Clinical and Functional Analyses of an African-ancestry Gain-of-function HOXB13 Variant Implicated in Aggressive Prostate Cancer. Eur Urol Oncol 2024; 7:751-759. [PMID: 37806842 DOI: 10.1016/j.euo.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Recent reports have uncovered a HOXB13 variant (X285K) predisposing to prostate cancer in men of West African ancestry. The clinical relevance and protein function associated with this inherited variant are unknown. OBJECTIVE To determine the clinical relevance of HOXB13 (X285K) in comparison with HOXB13 (G84E) and BRCA2 pathogenic/likely pathogenic (P/LP) variants, and to elucidate the oncogenic mechanisms of the X285K protein. DESIGN, SETTING, AND PARTICIPANTS Real-world data were collected from 21,393 men with prostate cancer undergoing genetic testing from 2019 to 2022, and in vitro cell-line models were established for the evaluation of oncogenic functions associated with the X285K protein. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Genetic testing results were compared among patient groups according to self-reported race/ethnicity, Gleason scores, and American Joint Committee on Cancer stages using the exact test. Oncogenic functions of X285K were evaluated by RNA sequencing, chromatin immunoprecipitation sequencing, and Western blot analyses. RESULTS AND LIMITATIONS HOXB13 (X285K) was significantly enriched in self-reported Black (1.01%) versus White (0.01%) patients. We observed a trend of more aggressive disease in the HOXB13 (X285K) and BRCA2 P/LP carriers than in the HOXB13 (G84E) carriers. Replacement of the wild-type HOXB13 protein with the X285K protein resulted in a gain of an E2F/MYC signature, validated by the elevated expression of cyclin B1 and c-Myc, without affecting the androgen response signature. Elevated expression of cyclin B1 and c-Myc was explained by enhanced binding of the X285K protein to the promoters and enhancers of these genes. The limitations of the study are the lack of complete clinical outcome data for all patients studied and the use of a single cell line in the functional analysis. CONCLUSIONS HOXB13 (X285K) is significantly enriched in self-reported Black patients, and X285K carriers detected in the real-world clinical setting have aggressive prostate cancer features similar to the BRCA2 carriers. Functional studies revealed a unique gain-of-function oncogenic mechanism of X285K protein in regulating E2F/MYC signatures. PATIENT SUMMARY The HOXB13 (X285K) variant is clinically and functionally linked to aggressive prostate cancer, supporting genetic testing for X285K in Black men and early disease screening of carriers of this variant.
Collapse
Affiliation(s)
- Mayuko Kanayama
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA; Department of Population Health Sciences, the University of Texas Health San Antonio, San Antonio, TX, USA
| | - Daniel Rabizadeh
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren Vera
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Changxue Lu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Isaacs
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Emmanuel S Antonarakis
- Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Angappulige DH, Barashi NS, Pickersgill N, Weimholt C, Luo J, Shadmani G, Tarcha Z, Rayamajhi S, Mahajan NP, Andriole GL, Siegel BA, Kim EH, Mahajan K. Prostate-Specific Membrane Antigen-Targeted Imaging and Its Correlation with HOXB13 Expression. J Nucl Med 2024; 65:1210-1216. [PMID: 38936974 PMCID: PMC11294063 DOI: 10.2967/jnumed.123.267301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Homeobox 13 (HOXB13) is an oncogenic transcription factor that directly regulates expression of folate hydrolase 1, which encodes prostate-specific membrane antigen (PSMA). HOXB13 is expressed in primary and metastatic prostate cancers (PCs) and promotes androgen-independent PC growth. Since HOXB13 promotes resistance to androgen receptor (AR)-targeted therapies and regulates the expression of folate hydrolase 1, we investigated whether SUVs on PSMA PET would correlate with HOXB13 expression. Methods: We analyzed 2 independent PC patient cohorts who underwent PSMA PET/CT for initial staging or for biochemical recurrence. In the discovery cohort, we examined the relationship between HOXB13, PSMA, and AR messenger RNA (mRNA) expression in prostate biopsy specimens from 179 patients who underwent PSMA PET/CT with 18F-piflufolastat. In the validation cohort, we confirmed the relationship between HOXB13, PSMA, and AR by comparing protein expression in prostatectomy and lymph node (LN) sections from 19 patients enrolled in 18F-rhPSMA-7.3 PET clinical trials. Correlation and association analyses were also used to confirm the relationship between the markers, LN positivity, and PSMA PET SUVs. Results: We observed a significant correlation between PSMA and HOXB13 mRNA (P < 0.01). The association between HOXB13 and 18F-piflufolastat SUVs was also significant (SUVmax, P = 0.0005; SUVpeak, P = 0.0006). Likewise, the PSMA SUVmax was significantly associated with the expression of HOXB13 protein in the 18F-rhPSMA-7.3 PET cohort (P = 0.008). Treatment-naïve patients with LN metastases demonstrated elevated HOXB13 and PSMA levels in their tumors as well as higher PSMA tracer uptake and low AR expression. Conclusion: Our findings demonstrate that HOXB13 correlates with PSMA expression and PSMA PET SUVs at the mRNA and protein levels. Our study suggests that the PSMA PET findings may reflect oncogenic HOXB13 transcriptional activity in PC, thus potentially serving as an imaging biomarker for more aggressive disease.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Nimrod S Barashi
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Nicholas Pickersgill
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Jingqin Luo
- Division of Public Health, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| | - Ghazal Shadmani
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Ziad Tarcha
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Sampanna Rayamajhi
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| | - Gerald L Andriole
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Barry A Siegel
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Eric H Kim
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri;
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| |
Collapse
|
6
|
Liu S, Dai W, Jin B, Jiang F, Huang H, Hou W, Lan J, Jin Y, Peng W, Pan J. Effects of super-enhancers in cancer metastasis: mechanisms and therapeutic targets. Mol Cancer 2024; 23:122. [PMID: 38844984 PMCID: PMC11157854 DOI: 10.1186/s12943-024-02033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Metastasis remains the principal cause of cancer-related lethality despite advancements in cancer treatment. Dysfunctional epigenetic alterations are crucial in the metastatic cascade. Among these, super-enhancers (SEs), emerging as new epigenetic regulators, consist of large clusters of regulatory elements that drive the high-level expression of genes essential for the oncogenic process, upon which cancer cells develop a profound dependency. These SE-driven oncogenes play an important role in regulating various facets of metastasis, including the promotion of tumor proliferation in primary and distal metastatic organs, facilitating cellular migration and invasion into the vasculature, triggering epithelial-mesenchymal transition, enhancing cancer stem cell-like properties, circumventing immune detection, and adapting to the heterogeneity of metastatic niches. This heavy reliance on SE-mediated transcription delineates a vulnerable target for therapeutic intervention in cancer cells. In this article, we review current insights into the characteristics, identification methodologies, formation, and activation mechanisms of SEs. We also elaborate the oncogenic roles and regulatory functions of SEs in the context of cancer metastasis. Ultimately, we discuss the potential of SEs as novel therapeutic targets and their implications in clinical oncology, offering insights into future directions for innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Shenglan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wei Dai
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Bei Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Feng Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Hao Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wen Hou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yanli Jin
- College of Pharmacy, Jinan University Institute of Tumor Pharmacology, Jinan University, Guangzhou, 510632, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Nguyen DT, Mahajan U, Angappulige DH, Doshi A, Mahajan NP, Mahajan K. Amino Terminal Acetylation of HOXB13 Regulates the DNA Damage Response in Prostate Cancer. Cancers (Basel) 2024; 16:1622. [PMID: 38730575 PMCID: PMC11083449 DOI: 10.3390/cancers16091622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Advanced localized prostate cancers (PC) recur despite chemotherapy, radiotherapy and/or androgen deprivation therapy. We recently reported HOXB13 lysine (K)13 acetylation as a gain-of-function modification that regulates interaction with the SWI/SNF chromatin remodeling complex and is critical for anti-androgen resistance. However, whether acetylated HOXB13 promotes PC cell survival following treatment with genotoxic agents is not known. Herein, we show that K13-acetylated HOXB13 is induced rapidly in PC cells in response to DNA damage induced by irradiation (IR). It colocalizes with the histone variant γH2AX at sites of double strand breaks (DSBs). Treatment of PCs with the Androgen Receptor (AR) antagonist Enzalutamide (ENZ) did not suppress DNA-damage-induced HOXB13 acetylation. In contrast, HOXB13 depletion or loss of acetylation overcame resistance of PC cells to ENZ and synergized with IR. HOXB13K13A mutants show diminished replication fork progression, impaired G2/M arrest with significant cell death following DNA damage. Mechanistically, we found that amino terminus regulates HOXB13 nuclear puncta formation that is essential for proper DNA damage response. Therefore, targeting HOXB13 acetylation with CBP/p300 inhibitors in combination with DNA damaging therapy may be an effective strategy to overcome anti-androgen resistance of PCs.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Urvashi Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- A.T. Still University of Health Sciences, Kirksville, MO 63501, USA
| | - Duminduni Hewa Angappulige
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Aashna Doshi
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nupam P. Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Angappulige DH, Mahajan NP, Mahajan K. Epigenetic underpinnings of tumor-immune dynamics in prostate cancer immune suppression. Trends Cancer 2024; 10:369-381. [PMID: 38341319 DOI: 10.1016/j.trecan.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) is immunosuppressive and refractory to immunotherapy. Infiltration of myeloid-derived suppressor cells (MDSCs) and senescent-like neutrophils and T cell exhaustion are observed in the tumor microenvironment (TME) following androgen receptor (AR) antagonism with antiandrogens or androgen ablation. De novo post-translational acetylation of the AR, HOXB13, and H2A at K609, K13, and K130, respectively, and phosphorylation of H4 at Y88 have emerged as key epigenetic modifications associated with castration-resistant PC (CRPC). The resulting chromatin changes are integrated into cellular processes via phosphorylation of the AR, ACK1, ATPF1A, and SREBP1 at Y267, Y284, Y243/Y246, and Y673/Y951, respectively. In this review, we discuss how these de novo epigenetic alterations drive resistance and how efforts aimed at targeting these regulators may overcome immune suppression observed in PC.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Halabi S, Guo S, Park JJ, Nanus DM, George DJ, Antonarakis ES, Danila DC, Szmulewitz RZ, McDonnell DP, Norris JD, Lu C, Luo J, Armstrong AJ. The Impact of Circulating Tumor Cell HOXB13 RNA Detection in Men with Metastatic Castration-Resistant Prostate Cancer (mCRPC) Treated with Abiraterone or Enzalutamide. Clin Cancer Res 2024; 30:1152-1159. [PMID: 38236581 PMCID: PMC10947837 DOI: 10.1158/1078-0432.ccr-23-3017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE HOXB13 is an androgen receptor (AR) coregulator specifically expressed in cells of prostatic lineage. We sought to associate circulating tumor cell (CTC) HOXB13 expression with outcomes in men with mCRPC treated with abiraterone or enzalutamide. EXPERIMENTAL DESIGN We conducted a retrospective analysis of the multicenter prospective PROPHECY trial of mCRPC men (NCT02269982, n = 118) treated with abiraterone/enzalutamide. CTC detection and HOXB13 complementary DNA (cDNA) expression was measured using a modified Adnatest, grouping patients into 3 categories: CTC 0 (undetectable); CTC+ HOXB13 CTC low (<4 copies); or CTC+ HOXB13 CTC high. The HOXB13 threshold was determined by maximally selected rank statistics for prognostic associations with overall survival (OS) and progression-free survival (PFS). RESULTS We included 102 men with sufficient CTC HOXB13 cDNA, identifying 25%, 31%, and 44% of patients who were CTC 0, CTC+ HOXB13 low, and CTC+ HOXB13 high, respectively. Median OS were 25.7, 27.8, and 12.1 months whereas the median PFS were 9.0, 7.7, and 3.8 months, respectively. In subgroup analysis among men with CellSearch CTCs ≥5 copies/mL and adjusting for prior abi/enza treatment and Halabi clinical risk score, the multivariate HR for HOXB13 CTC detection was 2.39 (95% CI, 1.06-5.40) for OS and 2.78 (95% CI, 1.38-5.59) for PFS, respectively. Low HOXB13 CTC detection was associated with lower CTC PSA, PSMA, AR-FL, and AR-V7 detection, and more liver/lung metastases (41% vs. 25%). CONCLUSIONS Higher CTC HOXB13 expression is associated with AR-dependent biomarkers in CTCs and is adversely prognostic in the context of potent AR inhibition in men with mCRPC.
Collapse
Affiliation(s)
- Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Siyuan Guo
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Joseph J Park
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - David M Nanus
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Daniel J George
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
| | | | - Daniel Costin Danila
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Donald P McDonnell
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - John D Norris
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Changxue Lu
- Department of Urology, Johns Hopkins University, Baltimore, Maryland
| | - Jun Luo
- Department of Urology, Johns Hopkins University, Baltimore, Maryland
| | - Andrew J Armstrong
- Department of Medicine, Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| |
Collapse
|
10
|
Fan L, Wang H, Ben S, Cheng Y, Chen S, Ding Z, Zhao L, Li S, Wang M, Cheng G. Genetic variant in a BaP-activated super-enhancer increases prostate cancer risk by promoting AhR-mediated FAM227A expression. J Biomed Res 2024; 38:149-162. [PMID: 38410974 PMCID: PMC11001591 DOI: 10.7555/jbr.37.20230049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 02/28/2024] Open
Abstract
Genetic variants in super-enhancers (SEs) are increasingly implicated as a disease risk-driving mechanism. Previous studies have reported an associations between benzo[a]pyrene (BaP) exposure and some malignant tumor risk. Currently, it is unclear whether BaP is involved in the effect of genetic variants in SEs on prostate cancer risk, nor the associated intrinsic molecular mechanisms. In the current study, by using logistic regression analysis, we found that rs5750581T>C in 22q-SE was significantly associated with prostate cancer risk (odds ratio = 1.26, P = 7.61 × 10 -5). We also have found that the rs6001092T>G, in a high linkage disequilibrium with rs5750581T>C ( r 2 = 0.98), is located in a regulatory aryl hydrocarbon receptor (AhR) motif and may interact with the FAM227A promoter in further bioinformatics analysis. We then performed a series of functional and BaP acute exposure experiments to assess biological function of the genetic variant and the target gene. Biologically, the rs6001092-G allele strengthened the transcription factor binding affinity to AhR, thereby upregulating FAM227A, especially upon exposure to BaP, which induced the malignant phenotypes of prostate cancer. The current study highlights that AhR acts as an environmental sensor of BaP and is involved in the SE-mediated prostate cancer risk, which may provide new insights into the etiology of prostate cancer associated with the inherited SE variants under environmental carcinogen stressors.
Collapse
Affiliation(s)
- Lulu Fan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hao Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yifei Cheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhutao Ding
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lingyan Zhao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Gong Cheng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
| |
Collapse
|
11
|
Barashi NS, Li T, Angappulige DH, Zhang B, O’Gorman H, Nottingham CU, Shetty AS, Ippolito JE, Andriole GL, Mahajan NP, Kim EH, Mahajan K. Symptomatic Benign Prostatic Hyperplasia with Suppressed Epigenetic Regulator HOXB13 Shows a Lower Incidence of Prostate Cancer Development. Cancers (Basel) 2024; 16:213. [PMID: 38201640 PMCID: PMC10778073 DOI: 10.3390/cancers16010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Our objective was to identify variations in gene expression that could help elucidate the pathways for the development of prostate cancer (PCa) in men with Benign Prostatic Hyperplasia (BPH). We included 98 men with BPH, a positive prostate MRI (Prostate Imaging Reporting and Data System; PIRADS ≥ 4), and a negative biopsy from November 2014 to January 2018. RNA sequencing (RNA-Seq) was performed on tissue cores from the MRI lesion and a geographically distant region (two regions per patient). All patients were followed for at least three years to identify who went on to develop PCa. We compared the gene expressions of those who did not develop PCa ("BPH-only") vs. those who did ("BPH/PCa"). Then, we identified the subset of men with BPH who had the highest American Urological Association (AUA) symptom scores ("symptomatic BPH") and compared their gene expression to the BPH/PCa group. At a median follow-up of 47.5 months, 15 men had developed PCa while 83 did not. We compared gene expressions of 14 men with symptomatic BPH (AUAss ≥ 18) vs. 15 with BPH/PCa. We found two clusters of genes, suggesting the two groups had distinctive molecular features. Differential analysis revealed genes that were upregulated in BPH-only and downregulated in BPH/PCa, and vice versa. Symptomatic BPH men had upregulation of T-cell activation markers (TCR, CD3, ZAP70, IL-2 and IFN-γ and chemokine receptors, CXCL9/10) expression. In contrast, men with BPH/PCa had upregulation of NKX3-1 and HOXB13 transcription factors associated with luminal epithelial progenitors but depleted of immune cells, suggesting a cell-autonomous role in immune evasion. Symptomatic BPH with immune-enriched landscapes may support anti-tumor immunity. RNA sequencing of benign prostate biopsy tissue showing upregulation of NKX3-1 and HOXB13 with the absence of T-cells might help in identifying men at higher risk of future PCa development, which may be useful in determining ongoing PCa screening.
Collapse
Affiliation(s)
- Nimrod S. Barashi
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Duminduni H. Angappulige
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
| | - Bo Zhang
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Harry O’Gorman
- School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Charles U. Nottingham
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Anup S. Shetty
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Joseph E. Ippolito
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gerald L. Andriole
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P. Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Eric H. Kim
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Sridaran D, Bradshaw E, DeSelm C, Pachynski R, Mahajan K, Mahajan NP. Prostate cancer immunotherapy: Improving clinical outcomes with a multi-pronged approach. Cell Rep Med 2023; 4:101199. [PMID: 37738978 PMCID: PMC10591038 DOI: 10.1016/j.xcrm.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Cancer immunotherapy has gained traction in recent years owing to remarkable tumor clearance in some patients. Despite the notable success of immune checkpoint blockade (ICB) in multiple malignancies, engagement of the immune system for targeted prostate cancer (PCa) therapy is still in its infancy. Multiple factors contribute to limited response, including the heterogeneity of PCa, the cold tumor microenvironment, and a low number of neoantigens. Significant effort is being invested in improving immune-based PCa therapies. This review is a summary of the status of immunotherapy in treating PCa, with a discussion of multiple immune modalities, including vaccines, adoptively transferred T cells, and bispecific T cell engagers, some of which are undergoing clinical trials. In addition, this review also focuses on emerging mechanism-based small-molecule tyrosine kinase inhibitors with immune modulatory properties that, either as single agents or in combination with other immunotherapies, have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Elliot Bradshaw
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Carl DeSelm
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Department of Radiation Oncology, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Russell Pachynski
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Division of Oncology, Department of Medicine, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
13
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|