1
|
Gang X, Yan J, Li X, Shi S, Xu L, Liu R, Cai L, Li H, Zhao M. Immune checkpoint inhibitors rechallenge in non-small cell lung cancer: Current evidence and future directions. Cancer Lett 2024; 604:217241. [PMID: 39260670 DOI: 10.1016/j.canlet.2024.217241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Immunotherapy, remarkably immune checkpoint inhibitors (ICIs), has significantly altered the treatment landscape for non-small cell lung cancer (NSCLC). Despite their success, the discontinuation of ICIs therapy may occur due to factors such as prior treatment completion, disease progression during ICIs treatment, or immune-related adverse events (irAEs). As numerous studies highlight the dynamic nature of immune responses and the sustained benefits of ICIs, ICIs rechallenge has become an attractive and feasible option. However, the decision-making process for ICIs rechallenge in clinical settings is complicated by numerous uncertainties. This review systematically analyses existing clinical research evidence, classifying ICIs rechallenge into distinct clinical scenarios, exploring methods to overcome ICIs resistance in rechallenge instances, and identifying biomarkers to select patients likely to benefit from rechallenge. By integrating recent studies and new technologies, we offer crucial recommendations for future clinical trial design and provide a practical guideline to maximize the therapeutic benefits of immunotherapy for NSCLC patients.
Collapse
Affiliation(s)
- Xiaoyu Gang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jinshan Yan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ruotong Liu
- Clinical Medicine, Shenyang Medical College, Shenyang, 110001, China
| | - Lutong Cai
- Psychological Medicine, Shenyang Medical College, Shenyang, 110001, China
| | - Heming Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China; Guangdong Association of Clinical Trials (GACT)/Chinese Thoracic Oncology Group (CTONG) and Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangzhou, 510000, China.
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Merola D, Campbell U, Lenis D, Schneeweiss S, Wang S, Madsen A, Carrigan G, Chia V, Ovbiosa OE, Pinheiro S, Pace N, Bruno A, Stewart M, Khosla S, Zhang Y, Rimawi M, Hendricks-Sturrup R, Huang J, Taylor A, Jiao X, Becnel L, McRoy L, Eckert J, Rodriguez C, Lunacsek O, Harvey R, Greshock J, Sarsour K, Belli A, Wang CK, Fernandes L, Chen J, San Francisco B, Sangli C, Natanzon Y, Chan KA, Dhopeshwarkar N, Shapiro M, Wasserman A, Quinn J, Rees M, Robinson T, Taylor B, Rider JR. Calibrating Observational Health Record Data Against a Randomized Trial. JAMA Netw Open 2024; 7:e2436535. [PMID: 39348118 PMCID: PMC11443351 DOI: 10.1001/jamanetworkopen.2024.36535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
Importance The conditions required for health record data sources to accurately assess treatment effectiveness remain unclear. Emulation of randomized clinical trials (RCTs) with health record data and subsequent calibration of the results can help elucidate this. Objective To pilot an emulation of the KEYNOTE-189 RCT using a commercially available electronic health record (EHR) data source. Design, Setting, and Participants This retrospective cohort study used an EHR database spanning from April 2007 to February 2023. Follow-up began on treatment initiation and proceeded until an outcome event, loss to follow-up, end of data, or end of study period (640 days). The population-based cohort was ascertained from EHRs provided by 52 health systems across the US. Eligibility criteria were defined as closely as possible to the benchmark RCT. Patients with non-small cell lung cancer initiating first-line treatment for metastatic disease were included. Patients with evidence of squamous non-small cell lung cancer, primary nonlung malignant neoplasms, or identified EGFR/ALK variations were excluded. Data were analyzed from June to October 2023. Exposures Initiation of first-line pembrolizumab and chemotherapy and chemotherapy alone. Chemotherapy in both groups was defined as a combination of pemetrexed and platinum-based (carboplatin or cisplatin) therapy. Main Outcomes and Measures Outcomes of interest were 12-month survival probability and mortality hazard ratio (HR). Results A total of 1854 patients (mean [SD] age, 63.7 [9.6] years; 971 [52.4%] men) were eligible, including 589 patients who initiated pembrolizumab and chemotherapy and 1265 patients who initiated chemotherapy only. The cohort included 364 Black patients (19.6%) and 1445 White patients (77.9%). The 12-month survival probabilities were 0.60 (95% CI, 0.54-0.65) in the pembrolizumab group and 0.58 (95% CI, 0.55-0.62) in the chemotherapy-only group, compared with 0.69 (95% CI, 0.64-0.74) in the KEYNOTE-189 pembrolizumab group and 0.49 (95% CI, 0.42-0.56) in the KEYNOTE-189 chemotherapy-only group. The mortality HR was 0.95 (95% CI, 0.78-1.16), compared with 0.49 (95% CI, 0.38-0.64) in the KEYNOTE-189 RCT. Conclusions and Relevance In this cohort study piloting an RCT emulation, results were incongruous with the benchmark trial. Differences in patient treatment and data capture between the RCT and EHR populations, confounding by indication, treatment crossover, and accuracy of captured diagnoses may explain these findings. Future feasibility assessments will require data sources to have important oncology-specific measures curated.
Collapse
Affiliation(s)
| | | | | | - Sebastian Schneeweiss
- Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shirley Wang
- Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Gillis Carrigan
- Center for Observational Research, Amgen, San Francisco, California
| | - Victoria Chia
- Center for Observational Research, Amgen, San Francisco, California
| | | | | | | | - Amanda Bruno
- Bayer Pharmaceuticals, Philadelphia, Pennsylvania
| | - Mark Stewart
- Friends of Cancer Research, Washington, District of Columbia
| | | | | | | | | | | | | | | | | | | | - Joy Eckert
- Reagan-Udall Foundation for the Food and Drug Administration, Washington, District of Columbia
| | - Carla Rodriguez
- Reagan-Udall Foundation for the Food and Drug Administration, Washington, District of Columbia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Liang X, Xiao H, Li H, Chen X, Li Y. Adverse events associated with immune checkpoint inhibitors in non-small cell lung cancer: a safety analysis of clinical trials and FDA pharmacovigilance system. Front Immunol 2024; 15:1396752. [PMID: 38745663 PMCID: PMC11091284 DOI: 10.3389/fimmu.2024.1396752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Objectives Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of non-small cell lung cancer (NSCLC). However, the application of ICIs can also cause treatment-related adverse events (trAEs) and immune-related adverse events (irAEs). This study was to evaluate both the irAEs and trAEs of different ICI strategies for NSCLC based on randomized clinical trials (RCTs). The study also examined real-world pharmacovigilance data from the Food and Drug Administration Adverse Event Reporting System (FAERS) regarding claimed ICI-associated AEs in clinical practice. Methods Based on Pubmed, Embase, Medline, and the Cochrane CENTRAL, we retrieved RCTs comparing ICIs with chemotherapy drugs or with different ICI regimens for the treatment of NSCLC up to October 20, 2023. Bayesian network meta-analysis (NMA) was performed using odds ratios (ORs) with 95% credible intervals (95%CrI). Separately, a retrospective pharmacovigilance study was performed based on FAERS database, extracting ICI-associated AEs in NSCLC patients between the first quarter (Q1) of 2004 and Q4 of 2023. The proportional reports reporting odds ratio was calculated to analyze the disproportionality. Results The NMA included 51 RCTs that involved a total of 26,958 patients with NSCLC. Based on the lowest risk of any trAEs, cemiplimab, tislelizumab, and durvalumab were ranked as the best. Among the agents associated with the lowest risk of grades 3-5 trAEs, tislelizumab, avelumab, and nivolumab were most likely to rank highest. As far as any or grades 3-5 irAEs are concerned, atezolizumab plus bevacizumab plus chemotherapy is considered the most safety option. However, it is associated with a high risk of grades 3-5 trAEs. As a result of FAERS pharmacovigilance data analysis, 9,420 AEs cases have been identified in 7,339 NSCLC patients treated with ICIs, and ICIs were related to statistically significant positive signal with 311 preferred terms (PTs), and comprehensively investigated and identified those AEs highly associated with ICIs. In total, 152 significant signals were associated with Nivolumab, with malignant neoplasm progression, death, and hypothyroidism being the most frequent PTs. Conclusion These findings revealed that ICIs differed in their safety profile. ICI treatment strategies can be improved and preventive methods can be developed for NSCLC patients based on our results.
Collapse
Affiliation(s)
- Xueyan Liang
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hewei Xiao
- Department of Scientific Research, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huijuan Li
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoyu Chen
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Clinical Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yan Li
- Department of Clinical Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
4
|
Lin G, Wang Z, Chu Q, Hu Y, Huang D, Wang J, Yang F, Zhong W, Zhou C, Zhu B, Ai X, Cao B, Cao Y, Chen M, Chen X, Chu T, Duan J, Fan Y, Fang Y, Feng S, Feng W, Guo H, Han C, He Y, Hong S, Hu J, Huang M, Huang Y, Jiang D, Jiang K, Jiang R, Jin B, Jin S, Li J, Li M, Li Z, Li C, Lin J, Liu A, Liu SM, Yutao L, Liu Z, Liu Z, Liu Z, Liu Z, Liu Z, Lu Y, Lv T, Ma Z, Miao Q, Peng M, Pu X, Ren XB, Shan J, Shan J, Shen P, Shen B, Shi M, Song Y, Song Z, Su C, Sun J, Tian P, Wang J, Wang F, Wang H, Wang J, Wang Q, Wang W, Wang Y, Wu L, Wu F, Xia Y, Xie C, Xie C, Xin T, Xiong J, Xu H, Xu S, Xu Y, Xu B, Xu C, Yan X, Yang Z, Yao W, Yu Y, Feng Y, Yu Z, Yu Y, Yue D, Zhang H, Zhang H, Zhang L, Zhang L, Zhang Q, Zhang T, Zhang B, Zhao J, Zhao M, Zheng X, Zhong Q, Zhou J, Zhou P, Zhu Z, Zou J, Zou Z. Rechallenge of immune checkpoint inhibitors in advanced non-small cell lung cancer. Thorac Cancer 2024; 15:419-426. [PMID: 38219795 PMCID: PMC10864121 DOI: 10.1111/1759-7714.15209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) rechallenge in non-small cell lung cancer (NSCLC) is a promising therapeutic strategy. The situation for ICI rechallenge can be divided into three categories: adverse events (AEs); resistance to ICIs, and rechallenge becomes compulsive because of tumor relapse while the patients had completed a 2 year course of immunotherapy. However, these categories are still controversial and should be explored further. Through voting at the 6th Straits Summit Forum on Lung Cancer, in this study we summarize the consensus of 147 experts in ICI rechallenges. A total of 97.74% experts agreed to rechallenge; 48.87% experts rechallenge with the original drug, and the others rechallenge with a different drug; 40.3% agreed to rechallenge directly after progression; 88.06% experts agreed to ICI rechallenge with a combination regimen; and factors such as previous performance status score, PD-1 expression, and age should also be considered. Understanding the the clinical studies in ICI rechallenge could bring us one step closer to understanding the consensus. In patients with advanced NSCLC who have suffered recurrent or distant metastasis after immunotherapy, the option of rechallenge with ICIs is a promising treatment option.
Collapse
Affiliation(s)
- Gen Lin
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Zhijie Wang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qian Chu
- Department of Oncology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yi Hu
- Senior Department of OncologyChinese PLA General HospitalBeijingChina
| | - Dingzhi Huang
- Department of Thoracic OncologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Jun Wang
- Department of OncologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJi'nanChina
| | - Fan Yang
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Chengzhi Zhou
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory DiseasesThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Bo Zhu
- Institute of Cancer, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Xinghao Ai
- Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Cancer CenterPeking University Third HospitalBeijingChina
| | - Yabing Cao
- Department of oncologyKiang Wu HospitalMacauChina
| | - Mingqiu Chen
- Department of Thoracic Radiation OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Xiaohui Chen
- Department of Thoracic SurgeryClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Tianqing Chu
- Respiratory Department, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianchun Duan
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yun Fan
- Department of Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhenjiang University School of MedicineHangzhouChina
| | - Shuitu Feng
- Department of Medical OncologyFudan University Shanghai Cancer Center Xiamen HospitalXiamenChina
| | - Weineng Feng
- Department of Pulmonary OncologyThe First People's Hospital of FoshanFoshanChina
| | - Hui Guo
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Chengbo Han
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Yong He
- Department of Respiratory Medicine, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Shaodong Hong
- State Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jie Hu
- Shanghai Geriatric Center, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yan Huang
- State Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Da Jiang
- Department of OncologyThe Fourth Affiliated Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Kan Jiang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Richeng Jiang
- Department of Thoracic OncologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Bo Jin
- Department of Medical OncologyThe First affiliated hospital of China Medical UniversityShenyangChina
| | - Shi Jin
- National Cancer Center/National Clinical Research Cencer for Cancer/Cancer Hospital &Shenzhen HospitalChinese Academy of Medical Sciences and Perking Union Medical CollegeShenzhenChina
| | - Jisheng Li
- Department of Medical OncologyQilu Hospital of Shandong UniversityJi'nanChina
| | - Min Li
- Department of Respiratory Medicine, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chao Li
- Department of PathologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Jie Lin
- Department of Medical OncologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Anwen Liu
- Department of Medical OncologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Si‐Yang Maggie Liu
- Department of Hematology, First Affiliated HospitalJi'nan UniversityGuangzhouChina
| | - Liu Yutao
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhefeng Liu
- Senior Department of OncologyChinese PLA General HospitalBeijingChina
| | - Zhe Liu
- Department of Medical Oncology, Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Zhenhua Liu
- Department of OncologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Zhentian Liu
- Department of Thoracic OncologyJiangxi Cancer HospitalNanchangChina
| | - Zhigang Liu
- Cancer CenterThe 10th Affiliated Hospital of Southern Medical UniversityDongguanChina
| | - Yuping Lu
- Department of Abdominal OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Zhiyong Ma
- Department of Respiratory MedicineHenan cancer Hospital, Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qian Miao
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Min Peng
- Cancer cenrterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xingxiang Pu
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Xiu Bao Ren
- Department of BiotherapyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Jianzhen Shan
- Department of Medical OncologyThe First Affiliated Hospital of Zhejiang UniversityZhejiangChina
| | - Jinlu Shan
- Department of Medical Oncology, Daping HospitalArmy Medical UniversityChongqingChina
| | - Peng Shen
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Bo Shen
- Department of Medical OncologyJiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Meiqi Shi
- Department of Medical OncologyJiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Zhengbo Song
- Department of Clinical TrialZhejiang Cancer HospitalHangzhouChina
| | - ChunXia Su
- Department of OncologyShanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of MedicineShanghaiChina
| | - Jianguo Sun
- Institute of Cancer, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Panwen Tian
- Precision Medicine Key Laboratory of Sichuan Province, Department of Pulmonary and Critical Care Medicine, Lung Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Jinliang Wang
- Senior Department of OncologyChinese PLA General HospitalBeijingChina
| | - Feng Wang
- Department of Thoracic SurgeryClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Huijuan Wang
- Department of Respiratory MedicineHenan cancer Hospital, Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jialei Wang
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Qian Wang
- Department of Respiratory MedicineAffiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese MedicineNanjingChina
| | - Wenxian Wang
- Department of Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lin Wu
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Fang Wu
- Department of Oncology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yang Xia
- Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Congying Xie
- Department of Radiation and Medical OncologySecond Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Conghua Xie
- Department of Pulmonary OncologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Tao Xin
- Department of OncologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jianping Xiong
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Haipeng Xu
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Song Xu
- Department of Lung Cancer SurgeryTianjin Medical University General HospitalTianjinChina
| | - Yiquan Xu
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Bin Xu
- Cancer cenrterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Chunwei Xu
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu HospitalAir Force Medical UniversityXi'anChina
| | - Zhenzhou Yang
- Department of Cancer CenterThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wenxiu Yao
- Department of Medical Oncology, Sichuan Cancer HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yao Yu
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ye Feng
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation ResearchThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Zongyang Yu
- Department of Respiratory MedicineThe 900th Hospital of the Joint Logistic Support Force, People's Liberation Army of ChinaFuzhouChina
| | - Yongfeng Yu
- Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dongsheng Yue
- Department of Lung CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Haibo Zhang
- Department of OncologyGuangdong Provicial Hospital of Chinese MedicineGuangzhouChina
| | - HongMei Zhang
- Department of Clinical Oncology, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Li Zhang
- Department of Oncology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Longfeng Zhang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Qiuyu Zhang
- Institute of ImmunotherapyFujian Medical UniversityFuzhouChina
| | - Tongmei Zhang
- Department of Medical Oncology, Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Bicheng Zhang
- Cancer cenrterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic OncologyPeking University Cancer Hospital and InstituteBeijingChina
| | - Mingfang Zhao
- Department of Medical OncologyThe First affiliated hospital of China Medical UniversityShenyangChina
| | - Xiaobin Zheng
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Qiaofeng Zhong
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Penghui Zhou
- State Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zhengfei Zhu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Juntao Zou
- Department of Respiratory MedicineThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Zihua Zou
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| |
Collapse
|
5
|
Curkovic NB, Bai K, Ye F, Johnson DB. Incidence of Cutaneous Immune-Related Adverse Events and Outcomes in Immune Checkpoint Inhibitor-Containing Regimens: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:340. [PMID: 38254829 PMCID: PMC10814132 DOI: 10.3390/cancers16020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are used to treat many cancers, and cutaneous immune-related adverse events (cirAEs) are among the most frequently encountered toxic effects. Understanding the incidence and prognostic associations of cirAEs is of importance as their uses in different settings, combinations, and tumor types expand. To evaluate the incidence of cirAEs and their association with outcome measures across a variety of ICI regimens and cancers, we performed a systematic review and meta-analysis of published trials of anti-programmed death-1/ligand-1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) ICIs, both alone and in combination with chemotherapy, antiangiogenic agents, or other ICIs in patients with melanoma, renal cell carcinoma, non-small cell lung cancer, and urothelial carcinoma. Key findings of our study include variable cirAE incidence among tumors and ICI regimens, positive association with increased cirAE incidence and response rate, as well as significant association between increased vitiligo incidence and overall survival. Across 174 studies, rash, pruritis, and vitiligo were the most reported cirAEs, with incidences of 16.7%, 18.0%, and 6.6%, respectively. Higher incidence of cirAEs was associated with ICI combination regimens and with CTLA-4-containing regimens, particularly with higher doses of ipilimumab, as compared to PD-1/L1 monotherapies. Outcome measures including response rate and progression-free survival were positively correlated with incidence of cirAEs. The response rate and incidence of pruritis, vitiligo, and rash were associated with expected rises in incidence of 0.17% (p = 0.0238), 0.40% (p = 0.0010), and 0.18% (p = 0.0413), respectively. Overall survival was positively correlated with the incidence of pruritis, vitiligo, and rash; this association was significant for vitiligo (p = 0.0483). Our analysis provides benchmark incidence rates for cirAEs and links cirAEs with favorable treatment outcomes at a study level across diverse solid tumors and multiple ICI regimens.
Collapse
Affiliation(s)
- Nina B. Curkovic
- School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Kun Bai
- Vanderbilt Ingram Cancer Center, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Fei Ye
- Vanderbilt Ingram Cancer Center, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Douglas B. Johnson
- Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
6
|
Agostara AG, Roazzi L, Villa F, Romano' R, Piscazzi D, Martinelli F, Ciarlo G, Oresti S, Travaglini F, Marando A, Sartore-Bianchi A, Giannetta L, Cerea G, Siena S, Pizzutilo EG, Signorelli D. What to do after immune-checkpoint inhibitors failure in advanced non-small cell lung cancer: an expert opinion and review. Expert Rev Respir Med 2023; 17:787-803. [PMID: 37817448 DOI: 10.1080/17476348.2023.2268509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Immune-checkpoint inhibitors (IO) have significantly improved outcomes of patients with non-oncogene-addicted non-small cell lung cancer (NSCLC), becoming the first-line agents for advanced disease. However, resistance remains a significant clinical challenge, limiting their effectiveness. AREAS COVERED Hereby, we addressed standard and innovative therapeutic approaches for NSCLC patients experiencing progression after IO treatment, discussing the emerging resistance mechanisms and the ongoing efforts to overcome them. In order to provide a complete overview of the matter, we performed a comprehensive literature search across prominent databases, including PubMed, EMBASE (Excerpta Medica dataBASE), and the Cochrane Library, and a research of the main ongoing studies on clinicaltrials.gov. EXPERT OPINION The dynamics of progression to IO, especially in terms of time to treatment failure and burden of progressive disease, should guide the best subsequent management, together with patient clinical conditions. Long-responders to IO might benefit from continuation of IO beyond-progression, in combination with other treatments. Patients who experience early progression should be treated with salvage CT in case of preserved clinical conditions. Finally, patients who respond to IO for a considerable timeframe and who later present oligo-progression could be treated with a multimodal approach in order to maximize the benefit of immunotherapy.
Collapse
Affiliation(s)
- Alberto Giuseppe Agostara
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Laura Roazzi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Federica Villa
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Rebecca Romano'
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Daniele Piscazzi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesca Martinelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriele Ciarlo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Sara Oresti
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | | | - Alessandro Marando
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Laura Giannetta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Elio Gregory Pizzutilo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Diego Signorelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
7
|
Liu J, Chen M, Gao X, Liu X, Zhao J, Pan R, Zhong W, Xu Y, Wang M. Study protocol of KeyPemls-004: A phase 2 study of pembrolizumab in combination with plinabulin and docetaxel in previously treated patients with metastatic non-small cell lung cancer and progressive disease (PD) after immunotherapy (PD-1/PD-L1 inhibitor) alone or in combination with platinum-doublet chemotherapy. Thorac Cancer 2023; 14:773-778. [PMID: 36725772 PMCID: PMC10008678 DOI: 10.1111/1759-7714.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Immune checkpoint inhibitor (ICI)-based treatment regimens have become the standard of care for first-line treatment of metastatic epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK) wild-type non-small cell lung cancer (NSCLC). Nevertheless, most patients inevitably develop disease progression, and the mechanisms of resistance to first-line immunotherapy are not clear. ICIs in combination with agents targeting other pathways may serve as second-line therapy options. Plinabulin is a selective immunomodulating microtubule-binding agent which inhibits the polymerization of tubulin monomers, with multiple mechanisms to inhibit tumor growth. Clinical studies have demonstrated preliminary the antitumor efficacy of this agent. Therefore, we hypothesize that a combination of plinabulin with programmed death 1 (PD-1) inhibitor and docetaxel may result in higher efficacy and fewer side effects leading to better tolerance. METHODS In this investigator-initiated, single-arm, open-label, phase II trial, metastatic NSCLC patients who acquired resistance to first-line immunotherapy-based therapy will be enrolled. Participants will receive pembrolizumab 200 mg D1, plinabulin 30 mg/m2 D1 and D8, and docetaxel 75 mg/m2 D1 intravenously for a 21-day cycle. The study intervention will be given until disease progression, intolerable toxicity, informed consent withdrawal or investigator decision. The primary endpoint is investigator-based objective response rate per Response Evaluation Criteria in Solid Tumors, version 1.1. The secondary endpoints are progression-free survival, overall survival, duration of response, and safety. DISCUSSION This trial will provide evidence of the benefit and safety of pembrolizumab in combination with plinabulin and docetaxel in metastatic NSCLC patients who have been exposed and developed resistance to first-line PD-1/PD-L1 inhibitor either as monotherapy or in combination with chemotherapy.
Collapse
Affiliation(s)
- Jia Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxing Gao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruili Pan
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhong
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Leal JL, John T. Immunotherapy in Advanced NSCLC Without Driver Mutations: Available Therapeutic Alternatives After Progression and Future Treatment Options. Clin Lung Cancer 2022; 23:643-658. [PMID: 36130865 DOI: 10.1016/j.cllc.2022.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 01/27/2023]
Abstract
The treatment paradigm of non-small-cell lung cancer without oncogenic drivers has varied dramatically in recent years and is constantly evolving. Immune- checkpoint inhibitors have demonstrated unprecedented durable efficacy in a subset of these patients, so these drugs have become the standard of care in most cases. There are different ways to deliver these agents, such as monotherapy and combinations of immunotherapy or chemotherapy plus immunotherapy. Treatment selection is complicated by an absence of head-to-head comparisons in randomized trials because these agents have gained approval by demonstrating superiority to platinum-doublet chemotherapy alone. Unfortunately, most patients will progress and die from their disease despite advances. Furthermore, after progression on these agents, there is a lack of randomized controlled data to support further management, constituting an unmet need. This review discusses the therapeutic alternatives after progression, summarizes mechanisms of resistance and progression patterns, and describes the main approaches under clinical investigation in the field.
Collapse
Affiliation(s)
- Jose Luis Leal
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Thomas John
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia..
| |
Collapse
|
9
|
Zhao LP, Hu JH, Hu D, Wang HJ, Huang CG, Luo RH, Zhou ZH, Huang XY, Xie T, Lou JS. Hyperprogression, a challenge of PD-1/PD-L1 inhibitors treatments: potential mechanisms and coping strategies. Biomed Pharmacother 2022; 150:112949. [PMID: 35447545 DOI: 10.1016/j.biopha.2022.112949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy is now a mainstay in cancer treatments. Programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) immune checkpoint inhibitor (ICI) therapies have opened up a new venue of advanced cancer immunotherapy. However, hyperprogressive disease (HPD) induced by PD-1/PD-L1 inhibitors caused a significant decrease in the overall survival (OS) of the patients, which compromise the efficacy of PD-1/PD-L1 inhibitors. Therefore, HPD has become an urgent issue to be addressed in the clinical uses of PD-1/PD-L1 inhibitors. The mechanisms of HPD remain unclear, and possible predictive factors of HPD are not well understood. In this review, we summarized the potential mechanisms of HPD and coping strategies that can effectively reduce the occurrence and development of HPD.
Collapse
Affiliation(s)
- Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chang-Gang Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ru-Hua Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|