1
|
How JA, Jazaeri AA, Westin SN, Lawson BC, Klopp AH, Soliman PT, Lu KH. Translating biological insights into improved management of endometrial cancer. Nat Rev Clin Oncol 2024; 21:781-800. [PMID: 39198622 DOI: 10.1038/s41571-024-00934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Endometrial cancer (EC) is the most common gynaecological cancer among women in high-income countries, with both incidence and mortality continuing to increase. The complexity of the management of patients with EC has evolved with greater comprehension of the underlying biology and heterogeneity of this disease. With a growing number of novel therapeutic agents available, emerging treatment regimens seem to have the potential to help to address the concerning trends in EC-related mortality. In this Review, we describe the epidemiology, histopathology and molecular classification of EC as well as the role of the new (2023) International Federation of Gynecologists and Obstetricians (FIGO) staging model. Furthermore, we provide an overview of disease management in the first-line and recurrent disease settings. With increasing use of molecular profiling and updates in treatment paradigms, we also summarize new developments in this rapidly changing treatment landscape.
Collapse
Affiliation(s)
- Jeffrey A How
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barrett C Lawson
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela T Soliman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Carvalho FM, Carvalho JP. Unraveling the Heterogeneity of Deficiency of Mismatch Repair Proteins in Endometrial Cancer: Predictive Biomarkers and Assessment Challenges. Cancers (Basel) 2024; 16:3452. [PMID: 39456546 PMCID: PMC11505891 DOI: 10.3390/cancers16203452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Endometrial cancer (EC) poses a significant global health challenge, with increasing prevalence in 26 of 43 countries and over 13,000 deaths projected in the United States by 2024. This rise correlates with aging populations, the obesity epidemic, and changing reproductive patterns, including delayed childbearing. Despite the early diagnosis in 67% of cases, approximately 30% of cases present with regional or distant spread, leading to nearly 20% mortality rates. Unlike many cancers, EC mortality rates are escalating, outpacing therapeutic advancements until recently. One of the reasons for this was the lack of effective therapeutic options for advanced disease until recently. The introduction of immunotherapy has marked a turning point in EC treatment, particularly benefiting patients with defects in mismatch repair proteins (dMMRs). However, dMMR status alone does not ensure a favorable response, underscoring the need for precise patient selection. This review explores the pivotal role of mismatch repair proteins in EC, emphasizing their heterogeneity, the challenges in their assessment, and their potential as predictive biomarkers.
Collapse
Affiliation(s)
- Filomena M. Carvalho
- Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo 01246-903, Brazil
| | - Jesus P. Carvalho
- Department of Obstetrics and Gynecology, Instituto do Cancer do Estado de Sao Paulo, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo 01246-903, Brazil;
| |
Collapse
|
3
|
Grisham R, Monk BJ, Van Nieuwenhuysen E, Moore KN, Fabbro M, O'Malley DM, Oaknin A, Thaker P, Oza AM, Colombo N, Gershenson D, Aghajanian CA, Choi CH, Lee YC, Mirza MR, Coleman RL, Cobb L, Harter P, Lustgarten S, Youssoufian H, Banerjee S. GOG-3097/ENGOT-ov81/GTG-UK/RAMP 301: a phase 3, randomized trial evaluating avutometinib plus defactinib compared with investigator's choice of treatment in patients with recurrent low grade serous ovarian cancer. Int J Gynecol Cancer 2024:ijgc-2024-005919. [PMID: 39375168 DOI: 10.1136/ijgc-2024-005919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND There are no approved treatments specifically for low grade serous ovarian cancer; current standard of care treatment options are limited in efficacy and tolerability. The combination of avutometinib with defactinib has demonstrated efficacy and a consistent safety profile in two clinical trials in recurrent low grade serous ovarian cancer, and a lower discontinuation rate due to adverse events compared with historical rates for standard of care. PRIMARY OBJECTIVE To compare the progression free survival of the combination of avutometinib with defactinib versus investigator's choice of treatment in patients with recurrent low grade serous ovarian cancer. STUDY HYPOTHESIS Combination treatment with avutometinib-defactinib will significantly improve progression free survival compared with investigator's choice of treatment in patients with recurrent low grade serous ovarian cancer. TRIAL DESIGN GOG-3097/ENGOT-ov81/GTG-UK/RAMP 301 is a phase 3, randomized, international, open label study designed to compare avutometinib with defactinib versus investigator's choice of treatment in patients with recurrent low grade serous ovarian cancer who have progressed on a previous platinum based therapy. On confirmation of disease progression using a blinded independent central review, patients on the investigator's choice of treatment arm may cross over to the avutometinib-defactinib arm. MAJOR INCLUSION/EXCLUSION CRITERIA Patients must have recurrent low grade serous ovarian cancer (KRAS mutant or wild-type) and have documented progression (radiographic or clinical) or recurrence of low grade serous ovarian cancer after at least one platinum based chemotherapy regimen. Unlimited additional previous lines of therapy are allowed, including previous MEK/RAF inhibitor. Patients will be excluded if they have co-existing high grade ovarian cancer or had previous treatment with avutometinib, defactinib, or any other FAK inhibitor. PRIMARY ENDPOINT Progression free survival according to Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, blinded-independent central review. SAMPLE SIZE Approximately 270 patients will be randomized in a 1:1 fashion to either the combination avutometinib with defactinib arm (n~135) or the investigator's choice of treatment arm (n~135). ESTIMATED DATES FOR COMPLETING ACCRUAL AND PRESENTING RESULTS The estimated primary completion date of RAMP 301 is 2028, and the estimated study completion date is 2031. TRIAL REGISTRATION ClinicalTrials.gov NCT06072781.
Collapse
Affiliation(s)
- Rachel Grisham
- Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Bradley J Monk
- Virginia G Piper Cancer Center-Biltmore Cancer Center, Phoenix, Arizona, USA
| | - Els Van Nieuwenhuysen
- Gynecological Oncology, KU Leuven University Hospitals Leuven, Leuven, Flanders, Belgium
| | | | - Michel Fabbro
- Institut régional du Cancer de Montpellier, Montpellier, France
| | - David M O'Malley
- Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Ana Oaknin
- Vall d'Hebron Institute of Oncology, Barcelona, Catalunya, Spain
| | - Premal Thaker
- Obstetrics and Gynecology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Amit M Oza
- Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Nicoletta Colombo
- Medical Gynecologic Oncology Unit, University of Milan Bicocca, European Institute of Oncology, Milan, Italy
| | - David Gershenson
- Gynecologic Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Carol A Aghajanian
- Medicine, Memorial Sloan-Kettering Cancer Center Inpatient Hospital and Main Campus, New York, New York, USA
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul, Korea (the Republic of)
| | - Yeh Chen Lee
- University of New South Wales Prince of Wales Clinical School, Randwick, New South Wales, Australia
| | - Mansoor Raza Mirza
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Lauren Cobb
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Ev, Kliniken Essen-Mitte, Essen, Germany
| | | | | | | |
Collapse
|
4
|
Davidson B, Teien Lande K, Nebdal D, Nesbakken AJ, Holth A, Lindemann K, Zahl Eriksson AG, Sørlie T. Endometrial carcinomas with ambiguous histology often harbor TP53 mutations. Virchows Arch 2024:10.1007/s00428-024-03912-7. [PMID: 39235515 DOI: 10.1007/s00428-024-03912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
The objective of the present study was to characterize the molecular features of endometrial carcinomas with ambiguous histology. Eighteen carcinomas that could not be conclusively typed based on morphology and immunohistochemistry underwent analysis of mismatch repair (MMR) status, microsatellite status, and whole-exome sequencing. None of the tumors had pathogenic POLE mutation. Twelve tumors (67%) were microsatellite stable, and 6 (33%) had microsatellite instability. Fourteen tumors (78%) harbored TP53 mutations, and 2 (11%) had mutations in MMR genes. Eleven carcinomas (61%) were classified as copy number high and 7 (39%) as MSI-hypermutated, the latter including 3 tumors with TP53 mutation who concomitantly had MSI or mutation in a MMR gene. Other mutations that were found in > 1 tumor affected MUC16 (7 tumors), PIK3CA (6 tumors), PPP2R1A (6 tumors), ARID1A (5 tumors), PTEN (5 tumors), FAT1 (4 tumors), FAT4 (3 tumors), BRCA2 (2 tumors), ERBB2 (2 tumors), FBXW7 (2 tumors), MET (2 tumors), MTOR (2 tumors), JAK1 (2 tumors), and CSMD3 (2 tumors). At the last follow-up (median = 68.6 months), 8 patients had no evidence of disease, 1 patient was alive with disease, 8 patients were dead of disease, and 1 patient died of other cause. In conclusion, based on this series, the molecular landscape of endometrial carcinomas with ambiguous histology is dominated by TP53 mutations and the absence of POLE mutations, with heterogeneous molecular profile with respect to other genes. A high proportion of these tumors is clinically aggressive.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway.
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway.
| | - Karin Teien Lande
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Daniel Nebdal
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Anne Jorunn Nesbakken
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Arild Holth
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Kristina Lindemann
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway
- Section for Gynecologic Oncology, Division of Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ane Gerda Zahl Eriksson
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway
- Section for Gynecologic Oncology, Division of Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Therese Sørlie
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway.
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway.
| |
Collapse
|
5
|
Wen W, Yuan L, Zhao X, Jia Y, Chen L, Jiang H, Wang W, Zhang C, Yao S. Differentially expressed circular RNA profiles and comprehensive analysis of circRNA-miRNA-mRNA regulatory network in microsatellite instability-high endometrial cancer. Genomics 2024; 116:110931. [PMID: 39209049 DOI: 10.1016/j.ygeno.2024.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The clinical benefit of anti-programmed cell death protein 1 (PD-1)-based immunotherapy among patients with microsatellite instable (MSI) endometrial cancer (EC) precedes that of microsatellite stable (MSS) EC, the mechanisms of which have not been fully understood. Circular RNAs (circRNAs) were reported to modulate immune evasion in several types of malignancies, while their roles in the immune regulation in EC remain largely unknown. Here, we conducted circRNA array analysis and mRNA-Sequencing of 10 MSI EC samples and 10 MSS EC samples and identified 1083 differentially expressed circRNAs (DE-circRNAs) and 864 differentially expressed mRNAs, based on which we constructed a circRNA-miRNA-mRNA comprehensive network consisting of 35 DE-circRNAs, 56 predicted miRNAs and 24 differentially expressed mRNAs. Finally, we confirmed hsa_circ_0058230 being positively correlated with CD8+ T cells infiltration, suggesting that it might take a part in anti-tumor immunity in EC.
Collapse
Affiliation(s)
- Weijia Wen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Li Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Xueyuan Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Yan Jia
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Linna Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China
| | - Wei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China.
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China.
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, PR China.
| |
Collapse
|
6
|
Manrai PA, McHenry A, Sun T, Santin AD, Ratner E, Lin DI, Elvin JA, Hui P, Buza N. Targetable ERBB2/HER2 Mutations in Gynecologic Malignancies: Clinicopathological, Immunohistochemical, and Molecular Correlations. Int J Gynecol Pathol 2024:00004347-990000000-00169. [PMID: 38914011 DOI: 10.1097/pgp.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Targeted anti-HER2 therapy has been recently added to the standard treatment recommendations in endometrial serous carcinoma. Current eligibility requires testing for HER2 overexpression and/or gene amplification by immunohistochemistry and by fluorescence in situ hybridization. However, clinical trials have also demonstrated the efficacy of anti-HER2 drugs against activating ERBB2/HER2 mutations in a variety of solid tumor types, and fam-trastuzumab deruxtecan is now approved by the US Food and Drug Administration for HER2-mutant non-small cell lung cancer. This study aimed at evaluating the detailed clinical, histomorphological, immunohistochemical, and molecular characteristics of gynecologic malignancies with ERBB2/HER2 mutations. We identified 16 tumors with 19 ERBB2/HER2 mutations in our departmental archives: 11 endometrial primaries, 2 endocervical adenocarcinomas, 1 ovarian mucinous adenocarcinoma, 1 tubo-ovarian undifferentiated carcinoma, and 1 high-grade endometrioid adenocarcinoma of Mullerian origin. ERBB2/HER2 mutations most often involved the tyrosine kinase domain (52.6%), and the most frequent specific mutation was R678Q (31.6%), involving the juxtamembrane domain. More than half (54.5%) of endometrial carcinomas and half of all tumors were MMR-deficient, resulting from MSH6 loss in all but 2 tumors. None of the tumors (0%) were POLE-mutated, while 18.8% were TP53-mutated. HER2 IHC was negative (score 0 or 1+) in 12 tumors (67%) and equivocal (score 2+) in 4 tumors (33%), whereas none of the tumors were scored as HER2 3+. Score 2+ was associated with R678Q, L755S, I767M mutations, and ERBB2/HER2 rearrangement with a breakpoint in exon 23. Concurrent ERBB2/HER2 amplification was identified in 2 endometrial carcinomas, with HER2/CEP17 ratios of 3.1 and 3.5. We also queried the cBioportal database, which revealed 70 ERBB2/HER2-mutant gynecologic tumors with a total of 77 ERBB2/HER2 mutations, most often involving the active site of the tyrosine kinase domain (n=36; 46.8%), and the most common specific mutation was S310F (n=20; 26%), located in the extracellular domain. Our results provide important details regarding the clinicopathological and molecular associations of potentially actionable ERBB2/HER2 mutations in endometrial carcinoma and other gynecological cancer types and contribute to addressing clinical treatment needs and improving pathology testing recommendations in the future.
Collapse
Affiliation(s)
| | - Austin McHenry
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Tong Sun
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale School of Medicine, New Haven, CT
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences Yale School of Medicine, New Haven, CT
| | | | | | - Pei Hui
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Natalia Buza
- Department of Pathology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
7
|
Friedman CF, Manning-Geist BL, Zhou Q, Soumerai T, Holland A, Da Cruz Paula A, Green H, Ozsoy MA, Iasonos A, Hollmann T, Leitao MM, Mueller JJ, Makker V, Tew WP, O'Cearbhaill RE, Liu YL, Rubinstein MM, Troso-Sandoval T, Lichtman SM, Schram A, Kyi C, Grisham RN, Causa Andrieu P, Wherry EJ, Aghajanian C, Weigelt B, Hensley ML, Zamarin D. Nivolumab for mismatch-repair-deficient or hypermutated gynecologic cancers: a phase 2 trial with biomarker analyses. Nat Med 2024; 30:1330-1338. [PMID: 38653864 PMCID: PMC11108776 DOI: 10.1038/s41591-024-02942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Programmed death-1 (PD-1) inhibitors are approved for therapy of gynecologic cancers with DNA mismatch repair deficiency (dMMR), although predictors of response remain elusive. We conducted a single-arm phase 2 study of nivolumab in 35 patients with dMMR uterine or ovarian cancers. Co-primary endpoints included objective response rate (ORR) and progression-free survival at 24 weeks (PFS24). Secondary endpoints included overall survival (OS), disease control rate (DCR), duration of response (DOR) and safety. Exploratory endpoints included biomarkers and molecular correlates of response. The ORR was 58.8% (97.5% confidence interval (CI): 40.7-100%), and the PFS24 rate was 64.7% (97.5% one-sided CI: 46.5-100%), meeting the pre-specified endpoints. The DCR was 73.5% (95% CI: 55.6-87.1%). At the median follow-up of 42.1 months (range, 8.9-59.8 months), median OS was not reached. One-year OS rate was 79% (95% CI: 60.9-89.4%). Thirty-two patients (91%) had a treatment-related adverse event (TRAE), including arthralgia (n = 10, 29%), fatigue (n = 10, 29%), pain (n = 10, 29%) and pruritis (n = 10, 29%); most were grade 1 or grade 2. Ten patients (29%) reported a grade 3 or grade 4 TRAE; no grade 5 events occurred. Exploratory analyses show that the presence of dysfunctional (CD8+PD-1+) or terminally dysfunctional (CD8+PD-1+TOX+) T cells and their interaction with programmed death ligand-1 (PD-L1)+ cells were independently associated with PFS24. PFS24 was associated with presence of MEGF8 or SETD1B somatic mutations. This trial met its co-primary endpoints (ORR and PFS24) early, and our findings highlight several genetic and tumor microenvironment parameters associated with response to PD-1 blockade in dMMR cancers, generating rationale for their validation in larger cohorts.ClinicalTrials.gov identifier: NCT03241745 .
Collapse
Affiliation(s)
- Claire F Friedman
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Beryl L Manning-Geist
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tara Soumerai
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aliya Holland
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hunter Green
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melih Arda Ozsoy
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Travis Hollmann
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mario M Leitao
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Jennifer J Mueller
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - William P Tew
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Roisin E O'Cearbhaill
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ying L Liu
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria M Rubinstein
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Tiffany Troso-Sandoval
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Stuart M Lichtman
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alison Schram
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Chrisann Kyi
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Rachel N Grisham
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Pamela Causa Andrieu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E John Wherry
- Institute of Immunology,University of Pennsylvania, Philadelphia, PA, USA
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martee L Hensley
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Dmitriy Zamarin
- Tisch Cancer Institute,Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Kaya M, Post CCB, Tops CM, Nielsen M, Crosbie EJ, Leary A, Mileshkin LR, Han K, Bessette P, de Boer SM, Jürgenliemk-Schulz IM, Lutgens L, Jobsen JJ, Haverkort MAD, Nout RA, Kroep J, Creutzberg CL, Smit VTHBM, Horeweg N, van Wezel T, Bosse T. Molecular and Clinicopathologic Characterization of Mismatch Repair-Deficient Endometrial Carcinoma Not Related to MLH1 Promoter Hypermethylation. Mod Pathol 2024; 37:100423. [PMID: 38191122 DOI: 10.1016/j.modpat.2024.100423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Universal tumor screening in endometrial carcinoma (EC) is increasingly adopted to identify individuals at risk of Lynch syndrome (LS). These cases involve mismatch repair-deficient (MMRd) EC without MLH1 promoter hypermethylation (PHM). LS is confirmed through the identification of germline MMR pathogenic variants (PV). In cases where these are not detected, emerging evidence highlights the significance of double-somatic MMR gene alterations as a sporadic cause of MMRd, alongside POLE/POLD1 exonuclease domain (EDM) PV leading to secondary MMR PV. Our understanding of the incidence of different MMRd EC origins not related to MLH1-PHM, their associations with clinicopathologic characteristics, and the prognostic implications remains limited. In a combined analysis of the PORTEC-1, -2, and -3 trials (n = 1254), 84 MMRd EC not related to MLH1-PHM were identified that successfully underwent paired tumor-normal tissue next-generation sequencing of the MMR and POLE/POLD1 genes. Among these, 37% were LS associated (LS-MMRd EC), 38% were due to double-somatic hits (DS-MMRd EC), and 25% remained unexplained. LS-MMRd EC exhibited higher rates of MSH6 (52% vs 19%) or PMS2 loss (29% vs 3%) than DS-MMRd EC, and exclusively showed MMR-deficient gland foci. DS-MMRd EC had higher rates of combined MSH2/MSH6 loss (47% vs 16%), loss of >2 MMR proteins (16% vs 3%), and somatic POLE-EDM PV (25% vs 3%) than LS-MMRd EC. Clinicopathologic characteristics, including age at tumor onset and prognosis, did not differ among the various groups. Our study validates the use of paired tumor-normal next-generation sequencing to identify definitive sporadic causes in MMRd EC unrelated to MLH1-PHM. MMR immunohistochemistry and POLE-EDM mutation status can aid in the differentiation between LS-MMRd EC and DS-MMRd EC. These findings emphasize the need for integrating tumor sequencing into LS diagnostics, along with clear interpretation guidelines, to improve clinical management. Although not impacting prognosis, confirmation of DS-MMRd EC may release patients and relatives from burdensome LS surveillance.
Collapse
Affiliation(s)
- Merve Kaya
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cathalijne C B Post
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carli M Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma J Crosbie
- Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alexandra Leary
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Linda R Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kathy Han
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Paul Bessette
- Department of Obstetrics and Gynaecology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephanie M de Boer
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ludy Lutgens
- Department of Radiation Oncology, MAASTRO Clinic, Maastricht, The Netherlands
| | - Jan J Jobsen
- Department of Radiation Oncology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Marie A D Haverkort
- Department of Radiation Oncology, Radiotherapiegroep, Arnhem, The Netherlands
| | - Remi A Nout
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Kroep
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nanda Horeweg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
9
|
Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, Scott CL, J. Wakefield M. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol 2024; 16:17588359231220511. [PMID: 38293277 PMCID: PMC10826407 DOI: 10.1177/17588359231220511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.
Collapse
Affiliation(s)
- Franziska Geissler
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | | | - Clare L. Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Wakefield
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Dagher C, Liu YL, Mueller JJ, Weigelt B. Moving into the modern era of molecular classification for endometrial cancer. J Surg Oncol 2024; 129:120-125. [PMID: 38100711 DOI: 10.1002/jso.27552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The molecular subtypes of endometrial carcinoma (EC) were first described by The Cancer Genome Atlas (TCGA) a decade ago. Using surrogate approaches, the molecular classification has been demonstrated to be prognostic across EC patients and to have predictive implications. Starting in 2020, the molecular classification has been incorporated into multiple guidelines as part of the risk assessment and most recently into the International Federation of Gynecology and Obstetrics (FIGO) staging. This review article discusses the implementation of the EC molecular classification into clinical practice, the therapeutic implications, and the molecular and clinical heterogeneity of the EC molecular subtypes.
Collapse
Affiliation(s)
- Christian Dagher
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ying L Liu
- Gynecologic Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennifer J Mueller
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
11
|
Han S, Guo C, Song Z, Ouyang L, Wang Y. Effectiveness and safety of PD-1/PD-L1 inhibitors in advanced or recurrent endometrial cancer: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1330877. [PMID: 38161705 PMCID: PMC10755929 DOI: 10.3389/fphar.2023.1330877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Studies in recent years have shown that PD-1/PD-L1 inhibitors may have better effectiveness in patients with advanced or recurrent endometrial cancer. The effectiveness of PD-1/PD-L1 inhibitors is thought to be related to mismatch repair-deficient (dMMR) and mismatch repair-proficient (pMMR) classification in advanced or recurrent endometrial cancer. This study aims to evaluate the effectiveness of PD-1/PD-L1 inhibitors in patients classified as dMMR and pMMR. Methods: Medical databases were searched to identify relevant publications up to 30 November 2022. The primary outcome was comparison of objective response rate (ORR) in patients with dMMR and pMMR following treatment with PD-1/PD-L1 inhibitors; secondary outcomes were single-group ORR in patients with dMMR and in patients with pMMR, respectively. Results: Eleven studies were eligible for analysis and patients with advanced or recurrent endometrial cancer with molecular classification of dMMR had a higher total ORR than those with pMMR [odds ratio (OR), 7.70; 95% confidence interval (CI), 3.22-18.38; p < 0.01], with low evidence of between-study heterogeneity (I2 = 0%). The total ORR of patients with advanced or recurrent endometrial cancer with molecular type dMMR was 51.9% (95% CI, 33.6%-69.9%). The overall ORR of patients with advanced or recurrent endometrial cancer with molecular type pMMR was 16.1% (95% CI, 5.5%-30.3%). Conclusion: In our including studies, the patients with advanced or recurrent endometrial cancer with molecular types of dMMR and pMMR, following treatment with PD-1/PD-L1 inhibitors, the total ORR of patients with dMMR was higher than that of patients with pMMR. Since the current number of studies is not very large, it is possible that more studies will be published in the future and more precise results will be discussed further.
Collapse
Affiliation(s)
| | | | | | | | - Yizi Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Dagher C, Manning-Geist B, Ellenson LH, Weigelt B, Rios-Doria E, Barry D, Abu-Rustum NR, Leitao MM, Mueller JJ. Molecular subtyping in endometrial cancer: A promising strategy to guide fertility preservation. Gynecol Oncol 2023; 179:180-187. [PMID: 37992549 PMCID: PMC10843754 DOI: 10.1016/j.ygyno.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVES To investigate the association of molecular subtype with progesterone response in patients with endometrial cancer (EC) or atypical endometrial hyperplasia (AEH). METHODS Premenopausal patients aged ≤48 years with tumor-normal sequencing data who received progesterone for EC/AEH from 1/1/2010-6/30/2021 were identified. Tumors were classified as POLE-ultramutated, microsatellite instability-high (MSI-H), copy number-high (CN-H), or copy number-low (CN-L) molecular subtype. Best response to progesterone was compared by subtype. Appropriate statistical tests were performed. RESULTS Of 20 patients, 7 (35%) had AEH and 13 (65%) had EC. Sixteen tumors (80%) were CN-L, 3 (15%) were MSI-H, and 1 (5%) was POLE-ultramutated. Median time on progesterone was 22 months (range, 3-115). Ten patients (50%) had complete response (CR); median time to CR was 9 months (range, 3-32). Four patients (20%) had stable disease (SD) and 6 (30%) had progressive disease (PD). For CN-L tumors, 10 patients (62%) had CR, 3 (19%) had SD, and 3 (19%) had PD. For MSI-H tumors, 1 patient (33%) had SD and 2 (66%) had PD. For POLE-ultramutated tumors, 1 patient had PD. Median follow-up was 48 months (range, 12-123). Four of 10 patients (40%) with CR recurred; median time from CR to recurrence was 16 months (range, 5-102). CONCLUSION Molecular subtype may be associated with progesterone response in patients with EC/AEH. CN-L tumors had the best response, and MSI-H tumors had the poorest. Recurrence after CR is common, and close surveillance is warranted. Larger studies investigating the role of molecular classification in medical management of EC/AEH are needed.
Collapse
Affiliation(s)
- Christian Dagher
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Beryl Manning-Geist
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Rios-Doria
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA, USA
| | - Danika Barry
- Department of Obstetrics and Gynecology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Mario M Leitao
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Jennifer J Mueller
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
13
|
Bacher JW, Udho EB, Strauss EE, Vyazunova I, Gallinger S, Buchanan DD, Pai RK, Templeton AS, Storts DR, Eshleman JR, Halberg RB. A Highly Sensitive Pan-Cancer Test for Microsatellite Instability. J Mol Diagn 2023; 25:806-826. [PMID: 37544360 PMCID: PMC10629437 DOI: 10.1016/j.jmoldx.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Microsatellite instability (MSI) is an evolving biomarker for cancer detection and treatment. MSI was first used to identify patients with Lynch syndrome, a hereditary form of colorectal cancer (CRC), but has recently become indispensable in predicting patient response to immunotherapy. To address the need for pan-cancer MSI detection, a new multiplex assay was developed that uses novel long mononucleotide repeat (LMR) markers to improve sensitivity. A total of 469 tumor samples from 20 different cancer types, including 319 from patients with Lynch syndrome, were tested for MSI using the new LMR MSI Analysis System. Results were validated by using deficient mismatch repair (dMMR) status according to immunohistochemistry as the reference standard and compared versus the Promega pentaplex MSI panel. The sensitivity of the LMR panel for detection of dMMR status by immunohistochemistry was 99% for CRC and 96% for non-CRC. The overall percent agreement between the LMR and Promega pentaplex panels was 99% for CRC and 89% for non-CRC tumors. An increased number of unstable markers and the larger size shifts observed in dMMR tumors using the LMR panel increased confidence in MSI determinations. The LMR MSI Analysis System expands the spectrum of cancer types in which MSI can be accurately detected.
Collapse
Affiliation(s)
- Jeffery W Bacher
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin; Department of Medicine, University of Wisconsin, Madison, Wisconsin.
| | - Eshwar B Udho
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | | | - Irina Vyazunova
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | - Steven Gallinger
- Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Rish K Pai
- Health Science Research, Mayo Clinic, Scottsdale, Arizona
| | | | - Douglas R Storts
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | - James R Eshleman
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Richard B Halberg
- Department of Medicine, University of Wisconsin, Madison, Wisconsin; Department of Oncology, McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.
| |
Collapse
|
14
|
Weigelt B, Marra A, Selenica P, Rios-Doria E, Momeni-Boroujeni A, Berger MF, Arora K, Nemirovsky D, Iasonos A, Chakravarty D, Abu-Rustum NR, Da Cruz Paula A, Dessources K, Ellenson LH, Liu YL, Aghajanian C, Brown CL. Molecular Characterization of Endometrial Carcinomas in Black and White Patients Reveals Disparate Drivers with Therapeutic Implications. Cancer Discov 2023; 13:2356-2369. [PMID: 37651310 PMCID: PMC11149479 DOI: 10.1158/2159-8290.cd-23-0546] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
Although the incidence of endometrial carcinoma (EC) is similar in Black and White women, racial disparities are stark, with the highest mortality rates observed among Black patients. Here, analysis of 1,882 prospectively sequenced ECs using a clinical FDA-authorized tumor-normal panel revealed a significantly higher prevalence of high-risk histologic and molecular EC subtypes in self-identified Black (n = 259) compared with White (n = 1,623) patients. Clinically actionable alterations, including high tumor mutational burden/microsatellite instability, which confer benefit from immunotherapy, were less frequent in ECs from Black than from White patients. Ultramutated POLE molecular subtype ECs associated with favorable outcomes were rare in Black patients. Results were confirmed by genetic ancestry analysis. CCNE1 gene amplification, which is associated with aggressive clinical behavior, was more prevalent in carcinosarcomas occurring in Black than in White patients. ECs from Black and White patients display important differences in their histologic types, molecular subtypes, driver genetic alterations, and therapeutic targets. SIGNIFICANCE Our comprehensive analysis of prospectively clinically sequenced ECs revealed significant differences in their histologic and molecular composition and in the presence of therapeutic targets in Black versus White patients. These findings emphasize the importance of incorporating diverse populations into molecular studies and clinical trials to address EC disparities. This article is featured in Selected Articles from This Issue, p. 2293.
Collapse
Affiliation(s)
- Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Rios-Doria
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amir Momeni-Boroujeni
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kanika Arora
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David Nemirovsky
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Debyani Chakravarty
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, New York
| | - Arnaud Da Cruz Paula
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kimberly Dessources
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying L Liu
- Gynecologic Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Carol Aghajanian
- Gynecologic Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Carol L Brown
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, New York
- Office of Health Equity, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
15
|
Toboni MD, Wu S, Farrell A, Xiu J, Ribeiro JR, Oberley MJ, Arend R, Erickson BK, Herzog TJ, Thaker PH, Powell MA. Differential outcomes and immune checkpoint inhibitor response among endometrial cancer patients with MLH1 hypermethylation versus MLH1 "Lynch-like" mismatch repair gene mutation. Gynecol Oncol 2023; 177:132-141. [PMID: 37683549 DOI: 10.1016/j.ygyno.2023.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVES To identify differential survival outcomes and immune checkpoint inhibitor (ICI) response in MLH1 hypermethylated versus MLH1 mutated ("Lynch-like") endometrial tumors and determine whether their molecular profiles can elucidate the differential outcomes. METHODS 1673 mismatch repair deficient endometrial tumors were analyzed by next-generation sequencing and whole transcriptome sequencing (Caris Life Sciences, Phoenix, AZ). PD-L1, ER, and PR were tested by immunohistochemistry and immune cell infiltrates were calculated using MCP-counter. Significance was determined using Chi-square and Mann-Whitney U tests and adjusted for multiple comparisons. Overall survival (OS) was depicted using Kaplan-Meier survival curves. RESULTS The endometrial cancer cohort comprised 89.2% patients with MLH1 hypermethylated tumors and 10.8% with MLH1 mutated tumors, with median ages of 67 and 60 years, respectively (p < 0.01). Patients with MLH1 hypermethylated tumors had significantly worse OS and trended toward worse OS following ICI treatment than patients with MLH1 mutated tumors. The immune microenvironment of MLH1 hypermethylated relative to MLH1 mutated was characterized by decreased PD-L1 positivity, immune checkpoint gene expression, immune cell infiltration, T cell inflamed scores, and interferon gamma (IFNγ) scores. MLH1 hypermethylation was also associated with decreased mutation rates in TP53 and DNA damage repair genes, but increased rates of JAK1, FGFR2, CCND1, and PTEN mutations, as well as increased ER and PR positivity. CONCLUSIONS Endometrial cancer patients with MLH1 hypermethylation display significantly decreased survival and discrepant immunotherapy responses compared to patients with MLH1 mutated tumors, which was associated with differential mutational profiles, a more immune cold phenotype, and increased ER/PR expression in MLH1 hypermethylated tumors. Providers may consider early transition from single agent ICI to a multi-agent regimen or hormonal therapy for patients with MLH1 hypermethylated tumors.
Collapse
Affiliation(s)
- Michael D Toboni
- University of Alabama at Birmingham, Division of Gynecologic Oncology, Birmingham, AL, USA.
| | - Sharon Wu
- Caris Life Sciences, Phoenix, AZ, USA
| | | | | | | | | | - Rebecca Arend
- UAB Comprehensive Cancer Center Experimental Therapeutics Program, Birmingham, AL, USA
| | - Britt K Erickson
- University of Minnesota, Division of Gynecologic Oncology, Minneapolis, MN, USA
| | | | - Premal H Thaker
- Washington University School of Medicine, Division of Gynecologic Oncology, St. Louis, MO, USA
| | - Matthew A Powell
- Washington University School of Medicine, Division of Gynecologic Oncology, St. Louis, MO, USA
| |
Collapse
|
16
|
Thomas JF, Valencia-Sánchez MI, Tamburri S, Gloor SL, Rustichelli S, Godínez-López V, De Ioannes P, Lee R, Abini-Agbomson S, Gretarsson K, Burg JM, Hickman AR, Sun L, Gopinath S, Taylor HF, Sun ZW, Ezell RJ, Vaidya A, Meiners MJ, Cheek MA, Rice WJ, Svetlov V, Nudler E, Lu C, Keogh MC, Pasini D, Armache KJ. Structural basis of histone H2A lysine 119 deubiquitination by Polycomb repressive deubiquitinase BAP1/ASXL1. SCIENCE ADVANCES 2023; 9:eadg9832. [PMID: 37556531 PMCID: PMC10411902 DOI: 10.1126/sciadv.adg9832] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
Histone H2A lysine 119 (H2AK119Ub) is monoubiquitinated by Polycomb repressive complex 1 and deubiquitinated by Polycomb repressive deubiquitinase complex (PR-DUB). PR-DUB cleaves H2AK119Ub to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. The PR-DUB subunits (BAP1 and ASXL1) are among the most frequently mutated epigenetic factors in human cancers. How PR-DUB establishes specificity for H2AK119Ub over other nucleosomal ubiquitination sites and how disease-associated mutations of the enzyme affect activity are unclear. Here, we determine a cryo-EM structure of human BAP1 and the ASXL1 DEUBAD in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for restructuring the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing insight into understanding cancer etiology.
Collapse
Affiliation(s)
- Jonathan F. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marco Igor Valencia-Sánchez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Simone Tamburri
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | | | - Samantha Rustichelli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Victoria Godínez-López
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kristjan Gretarsson
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | | | | | | | | | | | | | | | - William J. Rice
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Diego Pasini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
17
|
Rios-Doria E, Momeni-Boroujeni A, Friedman CF, Selenica P, Zhou Q, Wu M, Marra A, Leitao MM, Iasonos A, Alektiar KM, Sonoda Y, Makker V, Jewell E, Liu Y, Chi D, Zamarin D, Abu-Rustum NR, Aghajanian C, Mueller JJ, Ellenson LH, Weigelt B. Integration of clinical sequencing and immunohistochemistry for the molecular classification of endometrial carcinoma. Gynecol Oncol 2023; 174:262-272. [PMID: 37245486 PMCID: PMC10402916 DOI: 10.1016/j.ygyno.2023.05.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE Using next generation sequencing (NGS), The Cancer Genome Atlas (TCGA) found that endometrial carcinomas (ECs) fall under one of four molecular subtypes, and a POLE mutation status, mismatch repair (MMR) and p53 immunohistochemistry (IHC)-based surrogate has been developed. We sought to retrospectively classify and characterize a large series of unselected ECs that were prospectively subjected to clinical sequencing by utilizing clinical molecular and IHC data. EXPERIMENTAL DESIGN All patients with EC with clinical tumor-normal MSK-IMPACT NGS from 2014 to 2020 (n = 2115) were classified by integrating molecular data (i.e., POLE mutation, TP53 mutation, MSIsensor score) and MMR and p53 IHC results. Survival analysis was performed for primary EC patients with upfront surgery at our institution. RESULTS Utilizing our integrated approach, significantly more ECs were molecularly classified (1834/2115, 87%) as compared to the surrogate (1387/2115, 66%, p < 0.001), with an almost perfect agreement for classifiable cases (Kappa 0.962, 95% CI 0.949-0.975). Discrepancies were primarily due to TP53 mutations in p53-IHC-normal ECs. Of the 1834 ECs, most were of copy number (CN)-high molecular subtype (40%), followed by CN-low (32%), MSI-high (23%) and POLE (5%). Histologic and genomic variability was present amongst all molecular subtypes. Molecular classification was prognostic in early- and advanced-stage disease, including early-stage endometrioid EC. CONCLUSIONS The integration of clinical NGS and IHC data allows for an algorithmic approach to molecularly classifying newly diagnosed EC, while overcoming issues of IHC-based genetic alteration detection. Such integrated approach will be important moving forward given the prognostic and potentially predictive information afforded by this classification.
Collapse
Affiliation(s)
- Eric Rios-Doria
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amir Momeni-Boroujeni
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claire F Friedman
- Gynecologic Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weil Cornell Medical College, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle Wu
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mario M Leitao
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Surgery, Weil Cornell Medical College, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaled M Alektiar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yukio Sonoda
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Surgery, Weil Cornell Medical College, New York, NY, USA
| | - Vicky Makker
- Gynecologic Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weil Cornell Medical College, New York, NY, USA
| | - Elizabeth Jewell
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Surgery, Weil Cornell Medical College, New York, NY, USA
| | - Ying Liu
- Gynecologic Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weil Cornell Medical College, New York, NY, USA
| | - Dennis Chi
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Surgery, Weil Cornell Medical College, New York, NY, USA
| | - Dimitry Zamarin
- Gynecologic Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weil Cornell Medical College, New York, NY, USA
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Surgery, Weil Cornell Medical College, New York, NY, USA
| | - Carol Aghajanian
- Gynecologic Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weil Cornell Medical College, New York, NY, USA
| | - Jennifer J Mueller
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Surgery, Weil Cornell Medical College, New York, NY, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
de Freitas D, Aguiar FN, Anton C, de Almeida DC, Bacchi CE, Carvalho JP, Carvalho FM. Clinicopathological characteristics of endometrial carcinomas according to DNA mismatch repair protein status. Heliyon 2023; 9:e17495. [PMID: 37408903 PMCID: PMC10319187 DOI: 10.1016/j.heliyon.2023.e17495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
DNA mismatch repair protein deficiency (MMRd) in endometrial carcinoma is associated with the risk of Lynch syndrome and response to immune checkpoint inhibitors. It is also related to microsatellite instability and corresponds to a molecular subtype of endometrial tumor with an unclear prognosis. Here, we evaluated the clinicopathological characteristics and prognosis of 312 consecutive endometrial carcinoma cases submitted to complete surgical staging at a single institution. We compared MMRd and mismatch repair protein-proficient (MMRp) tumors and examined the effects of the MMR protein loss type (MLH1/PMS2 vs. MSH2/MSH6) and influence of L1CAM and p53 expression. The median follow-up period was 54.5 (range, 0-120.5) months. No difference was observed between MMRd [n = 166 (37.2%)] and MMRp [n = 196 (62.8%)] cases in terms of age, body mass index, FIGO stage, tumor grade, tumor size, depth of myometrial infiltration, or lymph node metastasis. More MMRd than MMRp tumors had endometrioid histology (87.9% vs. 75.5%) and despite MMRd had more lymphovascular space invasion (LVSI; 27.2% vs. 16.9%), they presented fewer recurrences and no difference in lymph node metastasis and disease-related death. Relative to those with MLH1/MSH6 loss, tumors with MSH2/MSH6 loss were diagnosed at earlier FIGO stages, were smaller, and had less ≥50% myometrial invasion, LVSI and lymph node metastasis. Outcomes, however, did not differ between these groups. L1CAM positivity and mutation-type p53 expression were more common in MMRp than in MMRd tumors and did not differ between the MLH1/PMS2 and MSH2/MSH6 loss groups. In the entire cohort, L1CAM and mutation p53 expression were associated with worse prognosis, but only non-endometrioid histology, FIGO stage III/IV, and deep myometrial infiltration were significant predictors. In the subgroup of endometrioid carcinomas, only FIGO stage III/IV was associated with poor outcomes. The risk of lymph node metastasis was associated with tumor size, non-endometrioid histology, and multifocal LVSI. For MMRd tumors, only tumor size and myometrial invasion depth were predictive of lymph node involvement. In our cohort, MMRd tumors were associated with greater recurrence-free, but not overall, survival. The precise identification of MMRd status, present in a substantial proportion of endometrial cancer cases, is a challenge to be overcome for proper patient management. MMRd status serves as a marker for Lynch syndrome, and a significant number of these tumors are high risk and candidate to immunotherapy.
Collapse
Affiliation(s)
- Daniela de Freitas
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, ZIP code 01246-000, Sao Paulo, SP, Brazil
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, room 1465, ZIP code 01246-903, Sao Paulo, SP, Brazil
| | - Fernando Nalesso Aguiar
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, ZIP code 01246-000, Sao Paulo, SP, Brazil
| | - Cristina Anton
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, ZIP code 01246-000, Sao Paulo, SP, Brazil
| | | | - Carlos Eduardo Bacchi
- Consultoria em Patologia, Rua Major Leônidas Cardoso, 739, ZIP code 18602-010, Botucatu, SP, Brazil
| | - Jesus Paula Carvalho
- Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 251, ZIP code 01246-000, Sao Paulo, SP, Brazil
- Department of Obstetrics and Gynecology, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, ZIP code 05403-000, Sao Paulo, SP, Brazil
| | - Filomena Marino Carvalho
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, room 1465, ZIP code 01246-903, Sao Paulo, SP, Brazil
| |
Collapse
|
19
|
Jeanne C, Treilleux I, Le Frère-Belda MA, Alexandre J, Joly F, Rouleau E. Recommandations pour la pratique clinique Nice/Saint-Paul-de-Vence 2022–2023 : Diagnostic histomoléculaire des carcinomes de l'endomètre. Bull Cancer 2023; 110:6S10-6S19. [PMID: 37573035 DOI: 10.1016/s0007-4551(23)00330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
French recommendations for clinical practice Nice-Saint-Paul de Vence 2022-2023: histomolecular diagnosis of endometrial carcinomas The characterisation of endometrial carcinomas has been recently modified and enriched by molecular classification, the integration of which now impacts therapeutic decisions on whether adjuvant therapy should be administered or not in localized tumors, and influences treatment selection in advanced disease. Mandatory information includes histological type according to WHO 2020 classification, histological grade, hormone receptors status and molecular classification, the main new elements to provide being analysis of MMR proteins, p53 status and POLE status in selected cases. Sampling and preparation of material must be performed adequately to allow complete analysis. Numerous markers can be used to better define histological type, distinguish between primary lesion or metastases, or provide prognostic information. Determination of MMR/MSI profile is complex but well defined by guidelines that precisely describe techniques to be used and interpretation rules. Knowledge of POLE status is useful to guide therapeutic strategy, especially to consider de-escalation in stages I and II, in particular in case of high grade and/or p53 mutated tumors. This is why indications of POLE determination must be well defined. Finally, oncogenetics consultation is recommended in dMMR tumors (except in case or MLH1 promoter methylation) and in patients with evocative familial history.
Collapse
Affiliation(s)
- Corinne Jeanne
- Laboratoire d'anatomie et cytologie pathologiques, CLCC Baclesse, 14000 Caen, France.
| | - Isabelle Treilleux
- Laboratoire d'anatomie et cytologie pathologiques, CLCC Léon-Bérard, 69008 Lyon, France
| | - Marie-Aude Le Frère-Belda
- Laboratoire d'anatomie et cytologie pathologiques, hôpital européen Georges-Pompidou, 75015 Paris, France
| | - Jérôme Alexandre
- Service d'oncologie médicale, AP-HP Centre, université de Paris, site Cochin, 123, boulevard de Port-Royal, 75014 Paris, France
| | - Florence Joly
- Département de médecine, université de Caen, centre François-Baclesse, 3, avenue du Général-Harris, 14000 Caen, France
| | - Etienne Rouleau
- Laboratoire de génétique moléculaire, CLCC Institut Gustave-Roussy, 94805 Villejuif, France
| |
Collapse
|
20
|
Gordhandas S, Rios-Doria E, Cadoo KA, Catchings A, Maio A, Kemel Y, Sheehan M, Ranganathan M, Green D, Aryamvally A, Arnold AG, Salo-Mullen E, Manning-Geist B, Sia T, Selenica P, Da Cruz Paula A, Vanderbilt C, Misyura M, Leitao MM, Mueller JJ, Makker V, Rubinstein M, Friedman CF, Zhou Q, Iasonos A, Latham A, Carlo MI, Murciano-Goroff YR, Will M, Walsh MF, Issa Bhaloo S, Ellenson LH, Ceyhan-Birsoy O, Berger MF, Robson ME, Abu-Rustum N, Aghajanian C, Offit K, Stadler Z, Weigelt B, Mandelker DL, Liu YL. Comprehensive analysis of germline drivers in endometrial cancer. J Natl Cancer Inst 2023; 115:560-569. [PMID: 36744932 PMCID: PMC10165491 DOI: 10.1093/jnci/djad016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We sought to determine the prevalence of germline pathogenic variants (gPVs) in unselected patients with endometrial cancer (EC), define biallelic gPVs within tumors, and describe their associations with clinicopathologic features. METHODS Germline assessment of at least 76 cancer predisposition genes was performed in patients with EC undergoing clinical tumor-normal Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) sequencing from January 1, 2015, to June 30, 2021. In patients with gPVs, biallelic alterations in ECs were identified through analysis of loss of heterozygosity and somatic PVs. Clinicopathologic variables were compared using nonparametric tests. RESULTS Of 1625 patients with EC, 216 (13%) had gPVs, and 15 patients had 2 gPVs. There were 231 gPVs in 35 genes (75 [32%] high penetrance; 39 [17%] moderate penetrance; and 117 [51%] low, recessive, or uncertain penetrance). Compared with those without gPVs, patients with gPVs were younger (P = .002), more often White (P = .009), and less obese (P = .025) and had differences in distribution of tumor histology (P = .017) and molecular subtype (P < .001). Among 231 gPVs, 74 (32%) exhibited biallelic inactivation within tumors. For high-penetrance gPVs, 63% (47 of 75) of ECs had biallelic alterations, primarily affecting mismatch repair (MMR) and homologous recombination related genes, including BRCA1,BRCA2, RAD51D, and PALB2. Biallelic inactivation varied across molecular subtypes with highest rates in microsatellite instability-high (MSI-H) or copy-number (CN)-high subtypes (3 of 12 [25%] POLE, 30 of 77 [39%] MSI-H, 27 of 60 [45%] CN-high, 9 of 57 [16%] CN-low; P < .001). CONCLUSIONS Of unselected patients with EC, 13% had gPVs, with 63% of gPVs in high-penetrance genes (MMR and homologous recombination) exhibiting biallelic inactivation, potentially driving cancer development. This supports germline assessment in EC given implications for treatment and cancer prevention.
Collapse
Affiliation(s)
- Sushmita Gordhandas
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Rios-Doria
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karen A Cadoo
- St. James’s Hospital, Trinity St. James’s Cancer Institute, Dublin, Ireland
| | - Amanda Catchings
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Maio
- Sloan Kettering Institute, New York, NY, USA
| | | | - Margaret Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Megha Ranganathan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dina Green
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali Aryamvally
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela G Arnold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Beryl Manning-Geist
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tiffany Sia
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chad Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maksym Misyura
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mario M Leitao
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Jennifer J Mueller
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Vicky Makker
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria Rubinstein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yonina R Murciano-Goroff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marie Will
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Michael F Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Shirin Issa Bhaloo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ozge Ceyhan-Birsoy
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nadeem Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana L Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying L Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
21
|
Chen J, Yan Q, Sun J, Wang Q, Tao Y, Xiao D, Xie B. Microsatellite Status Detection of Colorectal Cancer: Evaluation of Inconsistency between PCR and IHC. J Cancer 2023; 14:1132-1140. [PMID: 37215453 PMCID: PMC10197936 DOI: 10.7150/jca.81675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/17/2023] [Indexed: 05/24/2023] Open
Abstract
Objective: An essential component of precision medical treatment for colorectal cancer (CRC) is the use of microsatellite state in combination with polymerase chain reaction (PCR) and immunohistochemistry (IHC) as the primary clinical detection methods. Microsatellite instability-high (MSI-H) or mismatch-repair deficiency (dMMR) accounts for about 15% of all CRC patients. Characterized by a high mutation burden, MSI-H is a predictive biomarker of immune checkpoint inhibitors (ICIs). Misdiagnosis of microsatellite status has been shown to be an important cause of resistance to immune checkpoint inhibitors. Therefore, a rapid and accurate assessment of microsatellite status can be beneficial for precision medicine in CRC. Methods: We evaluated the rate of discordance between PCR and IHC detection of microsatellite status from a cohort of patients that had 855 colorectal cancers. PCR-based microsatellite assay was performed using a set of five monomorphic mononucleotide makers (NR-24, BAT-25, CAT-25, BAT-26, MONO-27) and two polymorphic pentanucleotide (Penta D and Penta E). IHC was used to detect the absence of mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2). The inconsistency rates of the two assays were evaluated. Results: Among 855 patients,15.6% (134 to 855) cases were identified as MSI-H by PCR, whereas 16.9% (145 to 855) cases were identified as dMMR by IHC. There were 45 patients with discordant results between IHC and PCR. Of these, 17 patients were classified as MSI-H/pMMR and 28 patients as MSS/dMMR. When the clinicopathological characteristics of these 45 patients were compared to those of the 855 patients, it was found that more patients were younger than 65 years old (80% to 63%), more were male (73% to 62%), more were located in the right colon (49% to 32%), and more were poorly differentiated (20% to 15%). Conclusion: Our study demonstrated a high concordance between the PCR and IHC results. In order to reduce the ineffective treatment of ICIs due to MSI misdiagnosis, the patient's age, gender, tumor location and degree of differentiation should be included in the clinician's selection of MSI testing in colorectal cancer.
Collapse
Affiliation(s)
- Jielin Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jingyue Sun
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Qingyi Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yongguang Tao
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University), Ministry of Education, Hunan, 410078, China
- Key Laboratory of Carcinogenesis (Central South University), Ministry of Health, Hunan, 410078, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|