1
|
Jiang C, Hong Z, Liu S, Hong Z, Dai B. Roles of CDK12 mutations in PCa development and treatment. Biochim Biophys Acta Rev Cancer 2025; 1880:189247. [PMID: 39681197 DOI: 10.1016/j.bbcan.2024.189247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men, and cyclin-dependent kinase 12 (CDK12) is emerging as a novel star player in the PCa tumorigenesis and progression to castration-resistant prostate cancer (CRPC). In PCa, CDK12 alterations are mostly loss-of-function mutations featuring intronic polyadenylation (IPA), focal tandem duplications (FTDs), and R-loops formation and transcription-replication conflicts (TRCs). The occurrence of IPA can result in homologous recombination deficiency (HRD) and androgen receptor (AR) variation. FTDs induce neoantigens and increase the expression of the AR, MYC, and other hotspot- associated genes. R-loops lead to TRCs and influence various cellular processes, including gene expression and genome stability. Due to the poor prognosis of CDK12-mutant PCa patients and the mediocre response to classic standard therapies, HRD and increased neoantigen levels have provided clinicians with new insights into alternative systematic treatments for this novel PCa phenotype. In this review, we summarize the roles of CDK12 mutations in PCa and discuss their clinical value, suggesting that CDK12 potentially represents a target for further research and the development of clinical strategies for PCa.
Collapse
Affiliation(s)
- Chenye Jiang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| | - Shiwei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zongyuan Hong
- Laboratory of Quantitative Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| |
Collapse
|
2
|
Ajayi AF, Hamed MA, Onaolapo MC, Fiyinfoluwa OH, Oyeniran OI, Oluwole DT. Defining the genetic profile of prostate cancer. Urol Oncol 2024:S1078-1439(24)00771-3. [PMID: 39690078 DOI: 10.1016/j.urolonc.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 12/19/2024]
Abstract
Several studies indicated that prostate cancer has a hereditary component. In particular, a significant risk of prostate cancer has been linked to a tight familial lineage. However, to provide insight into how prostate cancer is inherited, characterising its genetic profile is essential. The current body of research on the analysis of genetic mutations in prostate cancer was reviewed to achieve this. This paper reports on the effects and underlying processes of prostate cancer that have been linked to decreased male fertility. Many research approaches used have resulted in the discovery of unique inheritance patterns and manifest traits, the onset and spread of prostate cancer have also been linked to many genes. Studies have specifically examined Androgen Receptor gene variants about prostate cancer risk and disease progression. Research has shown that genetic and environmental variables are important contributors to prostate cancer, even if the true origins of the disease are not fully recognised or established. Researchers studying the genetics of prostate cancer are using genome-wide association studies more and more because of their outstanding effectiveness in revealing susceptibility loci for prostate cancer. Genome-Wide Association Studies provides a detailed method for identifying the distinct sequence of a gene that is associated with cancer risk. Surgical procedures and radiation treatments are 2 of the treatment options for prostate cancer. Notwithstanding the compelling evidence shown in this work, suggests that more research must be done to detect the gene alterations and the use of genetic variants in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| | - Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria; The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - Moyinoluwa Comfort Onaolapo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | - Ogundipe Helen Fiyinfoluwa
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | | | - David Tolulope Oluwole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Department of Physiology, College of Health Sciences, Crescent University, Abeokuta, Ogun State, Nigeria.
| |
Collapse
|
3
|
Picard M, Scott-Boyer MP, Bodein A, Leclercq M, Prunier J, Périn O, Droit A. Target repositioning using multi-layer networks and machine learning: The case of prostate cancer. Comput Struct Biotechnol J 2024; 24:464-475. [PMID: 38983753 PMCID: PMC11231507 DOI: 10.1016/j.csbj.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
The discovery of novel therapeutic targets, defined as proteins which drugs can interact with to induce therapeutic benefits, typically represent the first and most important step of drug discovery. One solution for target discovery is target repositioning, a strategy which relies on the repurposing of known targets for new diseases, leading to new treatments, less side effects and potential drug synergies. Biological networks have emerged as powerful tools for integrating heterogeneous data and facilitating the prediction of biological or therapeutic properties. Consequently, they are widely employed to predict new therapeutic targets by characterizing potential candidates, often based on their interactions within a Protein-Protein Interaction (PPI) network, and their proximity to genes associated with the disease. However, over-reliance on PPI networks and the assumption that potential targets are necessarily near known genes can introduce biases that may limit the effectiveness of these methods. This study addresses these limitations in two ways. First, by exploiting a multi-layer network which incorporates additional information such as gene regulation, metabolite interactions, metabolic pathways, and several disease signatures such as Differentially Expressed Genes, mutated genes, Copy Number Alteration, and structural variants. Second, by extracting relevant features from the network using several approaches including proximity to disease-associated genes, but also unbiased approaches such as propagation-based methods, topological metrics, and module detection algorithms. Using prostate cancer as a case study, the best features were identified and utilized to train machine learning algorithms to predict 5 novel promising therapeutic targets for prostate cancer: IGF2R, C5AR, RAB7, SETD2 and NPBWR1.
Collapse
Affiliation(s)
- Milan Picard
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Julien Prunier
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Transformation and Innovation Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
4
|
Hamid AA, Sweeney CJ, Hovens C, Corcoran N, Azad AA. Precision medicine for prostate cancer: An international perspective. Urol Oncol 2024; 42:392-401. [PMID: 38614920 DOI: 10.1016/j.urolonc.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 04/15/2024]
Abstract
Greater personalization of cancer medicine continues to shape therapy development and patient selection accordingly. The treatment of prostate cancer has evolved considerably since the discovery of androgen deprivation therapy. The comprehensive profiling of the prostate cancer genome has mapped the targetable molecular landscape of the disease and identified opportunities for the implementation of novel and combination therapies. In this review, we provide an overview of the molecular biology of prostate cancer and tools developed to aid prognostication and prediction of therapy benefit. Modern treatment of advanced prostate cancer is reviewed as a paradigm of increasing precision-informed approach to patient care, and must be considered on a global scale with respect to the state of science and care delivery.
Collapse
Affiliation(s)
- Anis A Hamid
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Surgery, University of Melbourne, Melbourne, Australia.
| | | | | | - Niall Corcoran
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Wallen ZD, Nesline MK, Pabla S, Gao S, Vanroey E, Hastings SB, Ko H, Strickland KC, Previs RA, Zhang S, Conroy JM, Jensen TJ, George E, Eisenberg M, Caveney B, Sathyan P, Ramkissoon S, Severson EA. A consensus-based classification workflow to determine genetically inferred ancestry from comprehensive genomic profiling of patients with solid tumors. Brief Bioinform 2024; 25:bbae557. [PMID: 39471413 PMCID: PMC11521331 DOI: 10.1093/bib/bbae557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024] Open
Abstract
Disparities in cancer diagnosis, treatment, and outcomes based on self-identified race and ethnicity (SIRE) are well documented, yet these variables have historically been excluded from clinical research. Without SIRE, genetic ancestry can be inferred using single-nucleotide polymorphisms (SNPs) detected from tumor DNA using comprehensive genomic profiling (CGP). However, factors inherent to CGP of tumor DNA increase the difficulty of identifying ancestry-informative SNPs, and current workflows for inferring genetic ancestry from CGP need improvements in key areas of the ancestry inference process. This study used genomic data from 4274 diverse reference subjects and CGP data from 491 patients with solid tumors and SIRE to develop and validate a workflow to obtain accurate genetically inferred ancestry (GIA) from CGP sequencing results. We use consensus-based classification to derive confident ancestral inferences from an expanded reference dataset covering eight world populations (African, Admixed American, Central Asian/Siberian, European, East Asian, Middle Eastern, Oceania, South Asian). Our GIA calls were highly concordant with SIRE (95%) and aligned well with reference populations of inferred ancestries. Further, our workflow could expand on SIRE by (i) detecting the ancestry of patients that usually lack appropriate racial categories, (ii) determining what patients have mixed ancestry, and (iii) resolving ancestries of patients in heterogeneous racial categories and who had missing SIRE. Accurate GIA provides needed information to enable ancestry-aware biomarker research, ensure the inclusion of underrepresented groups in clinical research, and increase the diverse representation of patient populations eligible for precision medicine therapies and trials.
Collapse
Affiliation(s)
- Zachary D Wallen
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Mary K Nesline
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Sarabjot Pabla
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Shuang Gao
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Erik Vanroey
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Stephanie B Hastings
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Heidi Ko
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Kyle C Strickland
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
- Department of Pathology, Duke University Medical Center, Duke Cancer Institute, 40 Duke Medicine Cir, Durham, NC 27710, United States
| | - Rebecca A Previs
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
- Department of Obstetrics & Gynecology, Duke University Medical Center, Duke Cancer Institute, 40 Duke Medicine Cir, Durham, NC 27710, United States
| | - Shengle Zhang
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Jeffrey M Conroy
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Taylor J Jensen
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| | - Elizabeth George
- Labcorp, 531 South Spring Street, Burlington, NC 27215, United States
| | - Marcia Eisenberg
- Labcorp, 531 South Spring Street, Burlington, NC 27215, United States
| | - Brian Caveney
- Labcorp, 531 South Spring Street, Burlington, NC 27215, United States
| | - Pratheesh Sathyan
- Oncology Medical Affairs, Illumina Inc, 5200 Illumina Way, San Diego, CA 92122, United States
| | - Shakti Ramkissoon
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
- Department of Pathology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27109, United States
| | - Eric A Severson
- Medical Oncology, Labcorp Oncology, 6 Moore Dr., Durham, NC 27560, United States
| |
Collapse
|
6
|
Toye E, Chehrazi-Raffle A, Hwang J, Antonarakis ES. Targeting the multifaceted BRAF in cancer: New directions. Oncotarget 2024; 15:486-492. [PMID: 39018217 PMCID: PMC11254297 DOI: 10.18632/oncotarget.28612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Activating mutations in the mitogen-activated protein kinase (MAPK) pathway represent driver alterations governing tumorigenesis, metastasis, and therapy resistance. MAPK activation predominantly occurs through genomic alterations in RAS and BRAF. BRAF is an effector kinase that functions downstream of RAS and propagates this oncogenic activity through MEK and ERK. Across cancers, BRAF alterations include gain-of-function mutations, copy-number alterations, and structural rearrangements. In cancer patients, BRAF-targeting precision therapeutics are effective against Class I BRAF alterations (p.V600 hotspot mutations) in tumors such as melanomas, thyroid cancers, and colorectal cancers. However, numerous non-Class I BRAF inhibitors are also in development and have been explored in some cancers. Here we discuss the diverse forms of BRAF alterations found in human cancers and the strategies to inhibit them in patients harboring cancers of distinct origins.
Collapse
Affiliation(s)
- Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | | | - Justin Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Aya F, Lanuza-Gracia P, González-Pérez A, Bonnal S, Mancini E, López-Bigas N, Arance A, Valcárcel J. Genomic deletions explain the generation of alternative BRAF isoforms conferring resistance to MAPK inhibitors in melanoma. Cell Rep 2024; 43:114048. [PMID: 38614086 DOI: 10.1016/j.celrep.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/15/2024] Open
Abstract
Resistance to MAPK inhibitors (MAPKi), the main cause of relapse in BRAF-mutant melanoma, is associated with the production of alternative BRAF mRNA isoforms (altBRAFs) in up to 30% of patients receiving BRAF inhibitor monotherapy. These altBRAFs have been described as being generated by alternative pre-mRNA splicing, and splicing modulation has been proposed as a therapeutic strategy to overcome resistance. In contrast, we report that altBRAFs are generated through genomic deletions. Using different in vitro models of altBRAF-mediated melanoma resistance, we demonstrate the production of altBRAFs exclusively from the BRAF V600E allele, correlating with corresponding genomic deletions. Genomic deletions are also detected in tumor samples from melanoma and breast cancer patients expressing altBRAFs. Along with the identification of altBRAFs in BRAF wild-type and in MAPKi-naive melanoma samples, our results represent a major shift in our understanding of mechanisms leading to the generation of BRAF transcripts variants associated with resistance in melanoma.
Collapse
Affiliation(s)
- Francisco Aya
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Institut de Investigacions Biomedicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Lanuza-Gracia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Abel González-Pérez
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria López-Bigas
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ana Arance
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Institut de Investigacions Biomedicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
8
|
Hu J, Chen X, Sun F, Liu L, Liu L, Yang Z, Zhang H, Yu Z, Zhao R, Wang Y, Liu H, Yang X, Sun F, Han B. Identification of recurrent BRAF non-V600 mutations in intraductal carcinoma of the prostate in Chinese populations. Neoplasia 2024; 50:100983. [PMID: 38417222 PMCID: PMC10904907 DOI: 10.1016/j.neo.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
While BRAF alterations have been established as a driver in various solid malignancies, the characterization of BRAF alterations in prostate cancer (PCa) has not been thoroughly interrogated. By bioinformatics analysis, we first found that BRAF alterations were associated with advanced PCa and exhibited mutually exclusive pattern with ERG alteration across multiple cohorts. Of the most interest, recurrent non-V600 BRAF mutations were found in 3 of 21 (14.3 %) PCa patients demonstrating IDC-P morphology. Furthermore, experimental overexpression of BRAFK601E and BRAFL597R exhibited emergence of oncogenic phenotypes with intensified MAPK signaling in vitro, which could be targeted by MEK inhibitors. Comparison of the incidence of BRAF alterations in IDC-P between western and Chinese ancestry revealed an increased prevalence in the Chinese population. The BRAF mutation may represent important genetic alteration in a subset of IDC-P, highlighting the role of MAPK signaling pathway in this subtype of PCa. To the best of knowledge, this is the first description of non-V600 BRAF mutation in setting of IDC-P, which may in part explain the aggressive phenotype seen in IDC-P and could also bring more treatment options for PCa patients with IDC-P harboring such mutations.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xinyi Chen
- Department of Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group) Qingdao, Shandong, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feifei Sun
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lili Liu
- Department of Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group) Qingdao, Shandong, China
| | - Long Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Zimeng Yang
- Department of Taekwondo, Art, Design, & Physical Education, Chosun University, Gwangju, Republic of Korea
| | - Hanwen Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zeyuan Yu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ru Zhao
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yueyao Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fusheng Sun
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Bo Han
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Kasi PM, Lee JK, Pasquina LW, Decker B, Vanden Borre P, Pavlick DC, Allen JM, Parachoniak C, Quintanilha JCF, Graf RP, Schrock AB, Oxnard GR, Lovly CM, Tukachinsky H, Subbiah V. Circulating Tumor DNA Enables Sensitive Detection of Actionable Gene Fusions and Rearrangements Across Cancer Types. Clin Cancer Res 2024; 30:836-848. [PMID: 38060240 PMCID: PMC10870120 DOI: 10.1158/1078-0432.ccr-23-2693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Genomic rearrangements can generate potent oncogenic drivers or disrupt tumor suppressor genes. This study examines the landscape of fusions and rearrangements detected by liquid biopsy (LBx) of circulating tumor DNA (ctDNA) across different cancer types. EXPERIMENTAL DESIGN LBx from 53,842 patients with 66 solid tumor types were profiled using FoundationOneLiquid CDx, a hybrid-capture sequencing platform that queries 324 cancer-related genes. Tissue biopsies (TBx) profiled using FoundationOneCDx were used as a comparator. RESULTS Among all LBx, 7,377 (14%) had ≥1 pathogenic rearrangement detected. A total of 3,648 (6.8%) LBx had ≥1 gain-of-function (GOF) oncogene rearrangement, and 4,428 (8.2%) LBx had ≥1 loss-of-function rearrangement detected. Cancer types with higher prevalence of GOF rearrangements included those with canonical fusion drivers: prostate cancer (19%), cholangiocarcinoma (6.4%), bladder (5.5%), and non-small cell lung cancer (4.4%). Although the prevalence of driver rearrangements was lower in LBx than TBx overall, the frequency of detection was comparable in LBx with a tumor fraction (TF) ≥1%. Rearrangements in FGFR2, BRAF, RET, and ALK, were detected across cancer types, but tended to be clonal variants in some cancer types and potential acquired resistance variants in others. CONCLUSIONS In contrast to some prior literature, this study reports detection of a wide variety of rearrangements in ctDNA. The prevalence of driver rearrangements in tissue and LBx was comparable when TF ≥1%. LBx presents a viable alternative when TBx is not available, and there may be less value in confirmatory testing when TF is sufficient.
Collapse
Affiliation(s)
- Pashtoon M. Kasi
- Weill Cornell Medicine, Englander Institute of Precision Medicine, New York Presbyterian Hospital, New York, New York
| | | | | | | | | | | | | | | | | | - Ryon P. Graf
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Vivek Subbiah
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|