1
|
Halaoui A, Estrella M, Yan CH, Goodwill VS, Beaumont TL. Rathke cleft cyst with squamous metaplasia and activating mutations of mitogen-activated protein kinase signaling: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2025; 9:CASE24657. [PMID: 39832308 PMCID: PMC11744688 DOI: 10.3171/case24657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Rathke cleft cysts (RCCs) are benign sellar/suprasellar lesions that result from mucin-secreting vestigial remnants within the pars intermedia of the pituitary gland. When symptomatic, they can present with retro-orbital headaches, visual field defects, and/or pituitary dysfunction. OBSERVATIONS A 35-year-old female presented with subacute retro-orbital headache, right ptosis, and blurred vision. Workup revealed panhypopituitarism with central hypothyroidism and adrenal insufficiency. Imaging demonstrated a sellar/suprasellar mass with subacute intralesional hemorrhage, which was thought to represent chronic pituitary apoplexy. The patient underwent an endoscopic endonasal approach in which the initial intraoperative frozen section suggested papillary craniopharyngioma. Subsequent specimens suggested RCC, thus presenting a surgical management conundrum. Hemihypophysectomy with lesionectomy was performed. Final histopathology demonstrated RCC with squamous metaplasia (RCC-SM), rupture, and hemorrhage. BRAF V600E was not detected. However, activating mutations in KRAS and MAP2K1 were identified. LESSONS RCC can undergo SM and rupture, leading to a hemorrhagic-appearing cystic sellar/suprasellar mass associated with cranial nerve palsies and hypopituitarism that mimics pituitary apoplexy. Intraoperative frozen sections can be ambiguous due to overlapping histopathological features with craniopharyngioma, complicating surgical decision-making. The authors hypothesize that RCC-SM may represent a transitional state between RCC and craniopharyngioma. Neurosurgeons should be mindful of this transitional entity and be prepared to modify their surgical strategy accordingly. https://thejns.org/doi/10.3171/CASE24657.
Collapse
Affiliation(s)
- Adham Halaoui
- Department of Neurological Surgery, University of California, San Diego, La Jolla, California
| | - Melanie Estrella
- Department of Neuropathology, University of California, San Diego, La Jolla, California
| | - Carol H. Yan
- Department of Otolaryngology, University of California, San Diego, La Jolla, California
| | - Vanessa S. Goodwill
- Department of Neuropathology, University of California, San Diego, La Jolla, California
| | - Thomas L. Beaumont
- Department of Neurological Surgery, University of California, San Diego, La Jolla, California
| |
Collapse
|
2
|
Ma Q, Zhang W, Wu K, Shi L. The roles of KRAS in cancer metabolism, tumor microenvironment and clinical therapy. Mol Cancer 2025; 24:14. [PMID: 39806421 PMCID: PMC11727292 DOI: 10.1186/s12943-024-02218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
KRAS is one of the most mutated genes, driving alternations in metabolic pathways that include enhanced nutrient uptaking, increased glycolysis, elevated glutaminolysis, and heightened synthesis of fatty acids and nucleotides. However, the beyond mechanisms of KRAS-modulated cancer metabolisms remain incompletely understood. In this review, we aim to summarize current knowledge on KRAS-related metabolic alterations in cancer cells and explore the prevalence and significance of KRAS mutation in shaping the tumor microenvironment and influencing epigenetic modification via various molecular activities. Given that cancer cells rely on these metabolic changes to sustain cell growth and survival, targeting these processes may represent a promising therapeutic strategy for KRAS-driven cancers.
Collapse
Affiliation(s)
- Qinglong Ma
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
3
|
Shi Y, Zheng H, Wang T, Zhou S, Zhao S, Li M, Cao B. Targeting KRAS: from metabolic regulation to cancer treatment. Mol Cancer 2025; 24:9. [PMID: 39799325 PMCID: PMC11724471 DOI: 10.1186/s12943-024-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance. Here, we review the metabolic reprogramming of glucose, glutamine, and lipids regulated by oncogenic KRAS, with an emphasis on recent insights into the relationship between changes in metabolic mechanisms driven by KRAS mutant and related advances in targeted therapy. We also focus on advances in KRAS inhibitor discovery and related treatment strategies in colorectal, pancreatic, and non-small cell lung cancer, including current clinical trials. Therefore, this review provides an overview of the current understanding of metabolic mechanisms associated with KRAS mutation and related therapeutic strategies, aiming to facilitate the understanding of current challenges in KRAS-driven cancer and to support the investigation of therapeutic strategies.
Collapse
Affiliation(s)
- Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Tianzhen Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China
| | - Shengpu Zhou
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China.
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
4
|
Hoang T, Tsang ES. Advances in Novel Targeted Therapies for Pancreatic Adenocarcinoma. J Gastrointest Cancer 2025; 56:38. [PMID: 39762686 DOI: 10.1007/s12029-024-01149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with limited therapeutic options and poor prognosis. Recent advances in targeted therapies have opened new avenues for intervention in PDAC, focusing on key genetic and molecular pathways that drive tumor progression. METHODS In this review, we provide an overview on advances in novel targeted therapies in pancreatic adenocarcinoma. RESULTS Here, we explore the latest development in targeting the KRAS pathway, a historically "undruggable" target crucial to PDAC pathogenesis. Strategies to inhibit KRAS include direct KRAS-targeted therapies, modulation of upstream and downstream signaling, KRAS-specific siRNA, and novel combination therapies integrating KRAS inhibitors with immune checkpoint blockade, PARP inhibitors, chemotherapy, CDK4/6 inhibitors, and autophagy modulators. Beyond KRAS, emerging targets such as NRG1 fusions, NTRK/ROS1 fusions, RET alterations, and the PRMT5/CDKN2A/MAT2A axis, along with EGFR and Claudin18.2 inhibitors, are also discussed as promising therapeutic strategies. Additionally, the review highlights novel approaches for microsatellite instability-high (MSIH) PDAC and emerging therapies, including adoptive cell therapies (CAR-T, TCR, TIL), cancer vaccines, and strategies to modify the tumor microenvironment. CONCLUSION Overall, the rapid evolution of targeted therapies offers renewed optimism in the fight against pancreatic cancer, a malignancy with historically poor outcomes.
Collapse
Affiliation(s)
- Tuan Hoang
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Erica S Tsang
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
5
|
Molnár E, Baranyi M, Szigeti K, Hegedűs L, Bordás F, Gábriel Z, Petényi G, Tóvári J, Hegedűs B, Tímár J. Combination of farnesyl-transferase inhibition with KRAS G12D targeting breaks down therapeutic resistance in pancreatic cancer. Pathol Oncol Res 2024; 30:1611948. [PMID: 39687047 PMCID: PMC11646715 DOI: 10.3389/pore.2024.1611948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Pancreatic adenocarcinoma is one of the deadliest forms of cancer with no effective therapeutic options. A KRAS mutation can be found in up to 90% of all pancreatic tumors, making it a promising therapeutic target. The introduction of new KRAS inhibitors has been a milestone in the history of KRAS mutant tumors; however, therapeutic resistance limits their efficacy. Thus, new therapeutic options, including combination therapies, are urgently needed. Recently, we have shown that KRAS G12C inhibitors in combination with farnesyl-transferase inhibitors exert synergistic antitumor effects. Here, we provide evidence for the feasibility of this combinational approach to break down resistance in KRAS G12D mutant pancreatic cancer. Although we have shown that the 3D environment dramatically sensitizes cells to MRTX1133 treatment, the synergistic effect of this drug combination is present in both 2D and 3D in the PANC1 pancreatic adenocarcinoma model, which showed high resistance to MRTX1133 in 2D. The effects of the combination treatment show an association with the inhibition of farnesylated regulatory proteins, including HRAS and RHEB, along with the expression level of KRAS. Our study warrants further investigation for the potential applicability of KRAS G12D inhibitors in combination with farnesyl-transferase inhibitors for the treatment of KRAS mutant pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Eszter Molnár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Marcell Baranyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
- KINETO Lab Ltd., Budapest, Hungary
| | - Krisztina Szigeti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Luca Hegedűs
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Fanni Bordás
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Zsófia Gábriel
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gréta Petényi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Balázs Hegedűs
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Suzuki H, Fukuda M, Shirono T, Kondo R, Tanaka T, Niizeki T, Akiba J, Koga H, Kawaguchi T. A Rare Case of Primary Hepatic Undifferentiated Pleomorphic Sarcoma: Exploring Cancer-related Gene Mutations. Intern Med 2024:4368-24. [PMID: 39522997 DOI: 10.2169/internalmedicine.4368-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Hepatic undifferentiated pleomorphic sarcoma (UPS) is a rare malignant mesenchymal tumor with unclear cancer-related genetic mutations. In a 60-year-old Japanese woman with a rapidly growing, inoperable hepatic UPS, a genetic mutation analysis revealed KRAS and TP53 mutations. Despite initiating hepatic arterial infusion chemotherapy, the tumor continued to grow, and the patient's poor performance status complicated the transition to a phase I KRAS mutation drug trial, leading to death eight months after the symptom onset. A timely genetic mutation analysis may facilitate effective treatment transitions in hepatic UPS despite the lack of established treatments.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University, School of Medicine, Japan
| | - Michitaka Fukuda
- Division of Gastroenterology, Department of Medicine, Kurume University, School of Medicine, Japan
| | - Tomotake Shirono
- Division of Gastroenterology, Department of Medicine, Kurume University, School of Medicine, Japan
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University, School of Medicine, Japan
| | - Takashi Niizeki
- Division of Gastroenterology, Department of Medicine, Kurume University, School of Medicine, Japan
| | - Jun Akiba
- Department of Pathology, Kurume University School of Medicine, Japan
- Department of Diagnostic Pathology, Kurume University Hospital, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University, School of Medicine, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University, School of Medicine, Japan
| |
Collapse
|
7
|
Becker JH, Metropulos AE, Spaulding C, Marinelarena AM, Shields MA, Principe DR, Pham TD, Munshi HG. Targeting BCL2 with Venetoclax Enhances the Efficacy of the KRASG12D Inhibitor MRTX1133 in Pancreatic Cancer. Cancer Res 2024; 84:3629-3639. [PMID: 39137400 PMCID: PMC11532783 DOI: 10.1158/0008-5472.can-23-3574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
MRTX1133 is currently being evaluated in patients with pancreatic ductal adenocarcinoma (PDAC) tumors harboring a KRASG12D mutation. Combination strategies have the potential to enhance the efficacy of MRTX1133 to further promote cell death and tumor regression. In this study, we demonstrated that MRTX1133 increased the levels of the proapoptotic protein BIM in PDAC cells and conferred sensitivity to the FDA-approved BCL2 inhibitor venetoclax. Combined treatment with MRTX1133 and venetoclax resulted in cell death and growth suppression in 3D cultures. BIM was required for apoptosis induced by the combination treatment. Consistently, BIM was induced in tumors treated with MRTX1133, and venetoclax enhanced the efficacy of MRTX1133 in vivo. Venetoclax could also resensitize MRTX1133-resistant PDAC cells to MRTX1133 in 3D cultures, and tumors established from resistant cells responded to the combination of MRTX1133 and venetoclax. These results provide a rationale for the clinical testing of MRTX1133 and venetoclax in patients with PDAC. Significance: The combination of MRTX1133 and the FDA-approved drug venetoclax promotes cancer cell death and tumor regression in pancreatic ductal adenocarcinoma, providing rationale for testing venetoclax with KRASG12D inhibitors in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Jeffrey H. Becker
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Anastasia E. Metropulos
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | | | - Mario A. Shields
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Daniel R. Principe
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thao D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| |
Collapse
|
8
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
9
|
Bravo AC, Morão B, Luz A, Dourado R, Oliveira B, Guedes A, Moreira-Barbosa C, Fidalgo C, Mascarenhas-Lemos L, Costa-Santos MP, Maio R, Paulino J, Viana Baptista P, Fernandes AR, Cravo M. Bringing Hope to Improve Treatment in Pancreatic Ductal Adenocarcinoma-A New Tool for Molecular Profiling of KRAS Mutations in Tumor and Plasma Samples. Cancers (Basel) 2024; 16:3544. [PMID: 39456638 PMCID: PMC11506488 DOI: 10.3390/cancers16203544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) incidence is rising, and prognosis remains poor due to late diagnosis and limited effective therapies. Currently, patients are treated based on TNM staging, without molecular tumor characterization. This study aimed to validate a technique that combines the amplification refractory mutation system (ARMS) with high-resolution melting analysis (HRMA) for detecting mutations in codon 12 of KRAS in tumor and plasma, and to assess its prognostic value. METHODS Prospective study including patients with newly diagnosed PDAC with tumor and plasma samples collected before treatment. Mutations in codon 12 of KRAS (G12D, G12V, G12C, and G12R) were detected using ARMS-HRMA and compared to Sanger sequencing (SS). Univariate and multivariate analyses were used to evaluate the prognostic significance of these mutations. RESULTS A total of 88 patients, 93% with ECOG-PS 0-1, 57% with resectable disease. ARMS-HRMA technique showed a higher sensitivity than SS, both in tumor and plasma (77% vs. 51%; 25 vs. 0%, respectively). The most frequent mutation was G12D (n = 32, 36%), followed by G12V (n = 22, 25%). On multivariate analysis, patients with G12D and/or G12C mutations, either in tumor or plasma, had lower PFS (HR 1.792, 95% CI 1.061-3.028, p = 0.029; HR 2.081, 95% CI 1.014-4.272, p = 0.046, respectively) and lower OS (HR 1.757, 95% CI 1.013-3.049, p = 0.045; HR 2.229, 95% CI 1.082-4.594, p = 0.030, respectively). CONCLUSIONS ARMS-HRMA is a rapid and cost-effective method for detecting KRAS mutations in PDAC patients, offering the potential for stratifying prognosis and guiding treatment decisions. The presence of G12D and G12C mutations in both tumor and plasma is associated with a poorer prognosis.
Collapse
Affiliation(s)
- Ana Catarina Bravo
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
| | - Bárbara Morão
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
| | - André Luz
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Rúben Dourado
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Beatriz Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana Guedes
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz Learning Health, Luz Saúde, 1500-650 Lisboa, Portugal
| | - Catarina Moreira-Barbosa
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz Learning Health, Luz Saúde, 1500-650 Lisboa, Portugal
| | - Catarina Fidalgo
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
| | - Luís Mascarenhas-Lemos
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- NOVA Medical School, 1169-056 Lisboa, Portugal
- Catolica Medical School, 1649-023 Lisboa, Portugal
| | | | - Rui Maio
- Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (A.C.B.); (B.M.); (A.G.); (C.M.-B.); (C.F.); (R.M.)
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Jorge Paulino
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Pedro Viana Baptista
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (A.L.); (R.D.); (B.O.); (P.V.B.); (A.R.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Marília Cravo
- Hospital da Luz, 1500-650 Lisboa, Portugal; (L.M.-L.); (J.P.)
- Lisbon School of Medicine, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
10
|
Mahran R, Kapp JN, Valtonen S, Champagne A, Ning J, Gillette W, Stephen AG, Hao F, Plückthun A, Härmä H, Pantsar T, Kopra K. Beyond KRAS(G12C): Biochemical and Computational Characterization of Sotorasib and Adagrasib Binding Specificity and the Critical Role of H95 and Y96. ACS Chem Biol 2024; 19:2152-2164. [PMID: 39283696 DOI: 10.1021/acschembio.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mutated KRAS proteins are frequently expressed in some of the most lethal human cancers and thus have been a target of intensive drug discovery efforts for decades. Lately, KRAS(G12C) switch-II pocket (SII-P)-targeting covalent small molecule inhibitors have finally reached clinical practice. Sotorasib (AMG-510) was the first FDA-approved covalent inhibitor to treat KRAS(G12C)-positive nonsmall cell lung cancer (NSCLC), followed soon by adagrasib (MRTX849). Both drugs target the GDP-bound state of KRAS(G12C), exploiting the strong nucleophilicity of acquired cysteine. Here, we evaluate the similarities and differences between sotorasib and adagrasib in their RAS SII-P binding by applying biochemical, cellular, and computational methods. Exact knowledge of SII-P engagement can enable targeting this site by reversible inhibitors for KRAS mutants beyond G12C. We show that adagrasib is strictly KRAS- but not KRAS(G12C)-specific due to its strong and unreplaceable interaction with H95. Unlike adagrasib, sotorasib is less dependent on H95 for its binding, making it a RAS isoform-agnostic compound, having a similar functionality also with NRAS and HRAS G12C mutants. Our results emphasize the accessibility of SII-P beyond oncogenic G12C and aid in understanding the molecular mechanism behind the clinically observed drug resistance, associated especially with secondary mutations on KRAS H95 and Y96.
Collapse
Affiliation(s)
- Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Jonas N Kapp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Salla Valtonen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Allison Champagne
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Jinying Ning
- KYinno Biotechnology Co., Ltd., Yizhuang Biomedical Park, No. 88 Kechuang Six Street, BDA, Beijing 101111, China
| | - William Gillette
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Andrew G Stephen
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Feng Hao
- KYinno Biotechnology Co., Ltd., Yizhuang Biomedical Park, No. 88 Kechuang Six Street, BDA, Beijing 101111, China
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Tatu Pantsar
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonrinne 3, 70210 Kuopio, Finland
| | - Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
11
|
Peng Y, Yang Q. Targeting KRAS in gynecological malignancies. FASEB J 2024; 38:e70089. [PMID: 39377766 DOI: 10.1096/fj.202401734r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Cervical, endometrial, and ovarian cancers stand prominently as the leading gynecological malignancies of the female reproductive system. The conventional therapeutic modalities for gynecological malignancies have predominantly encompassed surgery, chemotherapy, and radiotherapy. However, efficacy of these approaches remains limited in cases of relapse or drug resistance. KRAS is one of the most frequently mutated oncogenes in human cancers. The KRAS gene encodes a small guanosine triphosphatase protein that acts as a molecular switch for crucial intracellular signaling pathways. KRAS mutations are deeply involved in the occurrence and development of gynecological malignancies. The present review aims to expound upon the role of oncogenic KRAS as a biomarker, elucidating various therapeutic approaches under investigation targeting the KRAS pathway in gynecological tumors.
Collapse
Affiliation(s)
- Yuanyuan Peng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Murcia Pienkowski V, Skoczylas P, Zaremba A, Kłęk S, Balawejder M, Biernat P, Czarnocka W, Gniewek O, Grochowalski Ł, Kamuda M, Król-Józaga B, Marczyńska-Grzelak J, Mazzocco G, Szatanek R, Widawski J, Welanyk J, Orzeszko Z, Szura M, Torbicz G, Borys M, Wohadlo Ł, Wysocki M, Karczewski M, Markowska B, Kucharczyk T, Piatek MJ, Jasiński M, Warchoł M, Kaczmarczyk J, Blum A, Sanecka-Duin A. Harnessing the power of AI in precision medicine: NGS-based therapeutic insights for colorectal cancer cohort. Front Oncol 2024; 14:1407465. [PMID: 39435285 PMCID: PMC11491396 DOI: 10.3389/fonc.2024.1407465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose Developing innovative precision and personalized cancer therapeutics is essential to enhance cancer survivability, particularly for prevalent cancer types such as colorectal cancer. This study aims to demonstrate various approaches for discovering new targets for precision therapies using artificial intelligence (AI) on a Polish cohort of colorectal cancer patients. Methods We analyzed 71 patients with histopathologically confirmed advanced resectional colorectal adenocarcinoma. Whole exome sequencing was performed on tumor and peripheral blood samples, while RNA sequencing (RNAseq) was conducted on tumor samples. We employed three approaches to identify potential targets for personalized and precision therapies. First, using our in-house neoantigen calling pipeline, ARDentify, combined with an AI-based model trained on immunopeptidomics mass spectrometry data (ARDisplay), we identified neoepitopes in the cohort. Second, based on recurrent mutations found in our patient cohort, we selected corresponding cancer cell lines and utilized knock-out gene dependency scores to identify synthetic lethality genes. Third, an AI-based model trained on cancer cell line data was employed to identify cell lines with genomic profiles similar to selected patients. Copy number variants and recurrent single nucleotide variants in these cell lines, along with gene dependency data, were used to find personalized synthetic lethality pairs. Results We identified approximately 8,700 unique neoepitopes, but none were shared by more than two patients, indicating limited potential for shared neoantigenic targets across our cohort. Additionally, we identified three synthetic lethality pairs: the well-known APC-CTNNB1 and BRAF-DUSP4 pairs, along with the recently described APC-TCF7L2 pair, which could be significant for patients with APC and BRAF variants. Furthermore, by leveraging the identification of similar cancer cell lines, we uncovered a potential gene pair, VPS4A and VPS4B, with therapeutic implications. Conclusion Our study highlights three distinct approaches for identifying potential therapeutic targets in cancer patients. Each approach yielded valuable insights into our cohort, underscoring the relevance and utility of these methodologies in the development of precision and personalized cancer therapies. Importantly, we developed a novel AI model that aligns tumors with representative cell lines using RNAseq and methylation data. This model enables us to identify cell lines closely resembling patient tumors, facilitating accurate selection of models needed for in vitro validation.
Collapse
Affiliation(s)
| | | | | | - Stanisław Kłęk
- Surgical Oncology Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | - Joanna Welanyk
- Surgical Oncology Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow, Poland
| | - Zofia Orzeszko
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Mirosław Szura
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Grzegorz Torbicz
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Maciej Borys
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Łukasz Wohadlo
- Department of Oncological and General Surgery, Andrzej Frycz Modrzewski Krakow University, Cracow, Poland
| | - Michał Wysocki
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Marek Karczewski
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, University Hospital, Poznan, Poland
| | - Beata Markowska
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Kucharczyk
- Holy Cross Cancer Center Clinic of Clinical Oncology, Kielce, Poland
| | | | | | | | | | | | | |
Collapse
|
13
|
Ni R, Hu Z, Tao R. Advances of immune-checkpoint inhibition of CTLA-4 in pancreatic cancer. Biomed Pharmacother 2024; 179:117430. [PMID: 39260322 DOI: 10.1016/j.biopha.2024.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Targeting checkpoints for immune cell activation has been acknowledged known as one of the most effective way to activate anti-tumor immune responses. Among them, drugs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are approved for clinical treatment though several more are in advanced stages of development, which demonstrated durable response rates and manageable safety profile. However, its therapy efficacy is unsatisfactory in pancreatic cancer (PC), which can be limited by the overall condition of patients, the pathological type of PC, the expression level of tumor related genes, etc. To improve clinical efficiency, various researches have been conducted, and the efficacy of combination therapy showed significantly improvement compared to monotherapy. This review analyzed current strategies based on anti-CTLA-4 combination immunotherapy, providing totally new idea for future research.
Collapse
Affiliation(s)
- Ran Ni
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiming Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Hepatobiliary & Pancreatic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Doll J, Maurus K, Köhler F, Matthes N, Lock JF, Germer CT, Rosenwald A, Wiegering A. Molecular Profiling of Low-Grade Appendiceal Mucinous Neoplasms (LAMN). Genes Chromosomes Cancer 2024; 63:e23270. [PMID: 39400480 DOI: 10.1002/gcc.23270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
Low-grade appendiceal mucinous neoplasia (LAMN) represents a relatively rare tumor of the appendix typically diagnosed incidentally through appendectomy for acute appendicitis. In cases where perforation occurs, mucinous content may disseminate into the abdominal cavity, leading to the development of pseudomyxoma peritonei (PMP). The primary objective of this study was to elucidate the molecular characteristics associated with various stages of LAMN and PMP. DNA was extracted from LAMN, primary PMPs, recurrent PMPs, and adenocarcinomas originating from LAMN. The subsequent analysis involved the examination of mutational hotspot regions within 50 cancer-related genes, covering over 2800 COSMIC mutations, utilizing amplicon-based next-generation sequencing (NGS). Our findings revealed activating somatic mutations within the MAPK-signaling pathway across all tumors examined. Specifically, 98.1% of cases showed mutations in KRAS, while one tumor harbored a BRAF mutation. Additionally, GNAS mutations were identified in 55.8% of tumors, with no significant difference observed between LAMN and PMP. While LAMN rarely displayed additional mutations, 42% of primary PMPs and 60% of recurrent PMPs showed additional mutations. Notably, both adenocarcinomas originating from LAMN showed mutations within TP53. Furthermore, 7.7% (4/52) of cases exhibited a potentially targetable KRAS G12C mutation. In four patients, NGS analysis was performed on both primary PMP and recurrent PMP/adenocarcinoma samples. While mutations in KRAS and GNAS were detected in almost all samples, 50% of recurrent cases displayed an additional SMAD4 mutation, suggesting a notable alteration during disease progression. Our findings indicate two key points: First, mutations within the MAPK pathway, particularly in KRAS, are evident across all tumors, along with a high frequency of GNAS mutations. Second, progression toward PMP or adenocarcinoma is associated with an accumulation of additional mutations within common oncogenic pathways.
Collapse
Affiliation(s)
- Julia Doll
- Institute of Pathology, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg Medical Centre, Würzburg, Germany
| | - Katja Maurus
- Institute of Pathology, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg Medical Centre, Würzburg, Germany
| | - Franziska Köhler
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Niels Matthes
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Johan F Lock
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Christoph-Thomas Germer
- Comprehensive Cancer Center Mainfranken, University of Würzburg Medical Centre, Würzburg, Germany
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg Medical Centre, Würzburg, Germany
| | - Armin Wiegering
- Comprehensive Cancer Center Mainfranken, University of Würzburg Medical Centre, Würzburg, Germany
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Zhang B, Ohuchida K, Tsutsumi C, Shimada Y, Mochida Y, Oyama K, Iwamoto C, Sheng N, Fei S, Shindo K, Ikenaga N, Nakata K, Oda Y, Nakamura M. Dynamic glycolytic reprogramming effects on dendritic cells in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2024; 43:271. [PMID: 39343933 PMCID: PMC11441259 DOI: 10.1186/s13046-024-03192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma tumors exhibit resistance to chemotherapy, targeted therapies, and even immunotherapy. Dendritic cells use glucose to support their effector functions and play a key role in anti-tumor immunity by promoting cytotoxic CD8+ T cell activity. However, the effects of glucose and lactate levels on dendritic cells in pancreatic ductal adenocarcinoma are unclear. In this study, we aimed to clarify how glucose and lactate can impact the dendritic cell antigen-presenting function and elucidate the relevant mechanisms. METHODS Glycolytic activity and immune cell infiltration in pancreatic ductal adenocarcinoma were evaluated using patient-derived organoids and resected specimens. Cell lines with increased or decreased glycolysis were established from KPC mice. Flow cytometry and single-cell RNA sequencing were used to evaluate the impacts on the tumor microenvironment. The effects of glucose and lactate on the bone marrow-derived dendritic cell antigen-presenting function were detected by flow cytometry. RESULTS The pancreatic ductal adenocarcinoma tumor microenvironment exhibited low glucose and high lactate concentrations from varying levels of glycolytic activity in cancer cells. In mouse transplantation models, tumors with increased glycolysis showed enhanced myeloid-derived suppressor cell infiltration and reduced dendritic cell and CD8+ T cell infiltration, whereas tumors with decreased glycolysis displayed the opposite trends. In three-dimensional co-culture, increased glycolysis in cancer cells suppressed the antigen-presenting function of bone marrow-derived dendritic cells. In addition, low-glucose and high-lactate media inhibited the antigen-presenting and mitochondrial functions of bone marrow-derived dendritic cells. CONCLUSIONS Our study demonstrates the impact of dynamic glycolytic reprogramming on the composition of immune cells in the tumor microenvironment of pancreatic ductal adenocarcinoma, especially on the antigen-presenting function of dendritic cells.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuki Shimada
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuki Mochida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koki Oyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Nan Sheng
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shuang Fei
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
16
|
Haidar M, Jacquemin P. MRTX1133's promise for treating KRAS G12D-mutant pancreatic cancer. J Gastrointest Oncol 2024; 15:2002-2005. [PMID: 39279949 PMCID: PMC11399858 DOI: 10.21037/jgo-24-255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/12/2024] [Indexed: 09/18/2024] Open
Affiliation(s)
- Malak Haidar
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Patrick Jacquemin
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
17
|
Pollin G, Lomberk GA, Mathison AJ, Zimmermann MT, Urrutia R. Mutant KRAS inhibitors enter the scene of precision therapeutics for pancreatic cancer. J Gastrointest Oncol 2024; 15:1996-2001. [PMID: 39279937 PMCID: PMC11399826 DOI: 10.21037/jgo-24-326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 09/18/2024] Open
Affiliation(s)
- Gareth Pollin
- The RASopathies Program, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gwen A Lomberk
- The RASopathies Program, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela J Mathison
- The RASopathies Program, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- The RASopathies Program, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- The RASopathies Program, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
He D, Bai R, Chen N, Cui J. Immune status and combined immunotherapy progression in Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant tumors. Chin J Cancer Res 2024; 36:421-441. [PMID: 39246706 PMCID: PMC11377883 DOI: 10.21147/j.issn.1000-9604.2024.04.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most frequently mutated oncogene, occurring in various tumor types. Despite extensive efforts over the past 40 years to develop inhibitors targeting KRAS mutations, resistance to these inhibitors has eventually emerged. A more precise understanding of KRAS mutations and the mechanism of resistance development is essential for creating novel inhibitors that target specifically KRAS mutations and can delay or overcome resistance. Immunotherapy has developed rapidly in recent years, and in-depth dissection of the tumor immune microenvironment has led researchers to shift their focus to patients with KRAS mutations, finding that immune factors play an essential role in KRAS-mutant (KRAS-Mut) tumor therapy and targeted drug resistance. Breakthroughs and transitions from targeted therapy to immunotherapy have provided new hope for treating refractory patients. Here, we reviewed KRAS mutation-targeted treatment strategies and resistance issues, focusing on our in-depth exploration of the specific immune status of patients with KRAS mutations and the impact of body immunity following KRAS inhibition. We aimed to guide innovative approaches combining RAS inhibition with immunotherapy, review advances in preclinical and clinical stages, and discuss challenges and future directions.
Collapse
Affiliation(s)
- Dongsheng He
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Rilan Bai
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Naifei Chen
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
19
|
Golivi Y, Kumari S, Farran B, Alam A, Peela S, Nagaraju GP. Small molecular inhibitors: Therapeutic strategies for pancreatic cancer. Drug Discov Today 2024; 29:104053. [PMID: 38849028 DOI: 10.1016/j.drudis.2024.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Pancreatic cancer (PC), a disease with high heterogeneity and a dense stromal microenvironment, presents significant challenges and a bleak prognosis. Recent breakthroughs have illuminated the crucial interplay among RAS, epidermal growth factor receptor (EGFR), and hedgehog pathways in PC progression. Small molecular inhibitors have emerged as a potential solution with their advantages of oral administration and the ability to target intracellular and extracellular sites effectively. However, despite the US FDA approving over 100 small-molecule targeted antitumor drugs, challenges such as low response rates and drug resistance persist. This review delves into the possibility of using small molecules to treat persistent or spreading PC, highlighting the challenges and the urgent need for a diverse selection of inhibitors to develop more effective treatment strategies.
Collapse
Affiliation(s)
- Yuvasri Golivi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, RJ 304 022, India
| | - Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM, Visakhapatnam, Andhra Pradesh 530045, India
| | - Batoul Farran
- Department of Hematology and Oncology, Henry Ford Health, Detroit, MI 48202, USA
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, RJ 304 022, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B. R. Ambedkar University, Srikakulam, Andhra Pradesh, 532001, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
20
|
Yu KH. Advances in Systemic Therapy in Pancreatic Cancer. Hematol Oncol Clin North Am 2024; 38:617-627. [PMID: 38575456 DOI: 10.1016/j.hoc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Substantial progress has been made toward understanding biology and developing new therapies for pancreatic ductal adenocarcinoma (PDAC). In this review, new insights from genomic profiling, as well as implications for treatment and prognosis, are discussed. New standards of care approaches with a focus on drug therapies are discussed for the treatment of resectable and advanced PDAC. The role of targeted and immune therapies remains limited; cohorts likely to benefit from these approaches are discussed. Promising, preliminary results regarding experimental therapies are reviewed.
Collapse
Affiliation(s)
- Kenneth H Yu
- Gastrointestinal Oncology Service, Cell Therapy Service, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, New York, NY 10065, USA.
| |
Collapse
|
21
|
Jamali M, Barar E, Shi J. Unveiling the Molecular Landscape of Pancreatic Ductal Adenocarcinoma: Insights into the Role of the COMPASS-like Complex. Int J Mol Sci 2024; 25:5069. [PMID: 38791111 PMCID: PMC11121229 DOI: 10.3390/ijms25105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is poised to become the second leading cause of cancer-related death by 2030, necessitating innovative therapeutic strategies. Genetic and epigenetic alterations, including those involving the COMPASS-like complex genes, have emerged as critical drivers of PDAC progression. This review explores the genetic and epigenetic landscape of PDAC, focusing on the role of the COMPASS-like complex in regulating chromatin accessibility and gene expression. Specifically, we delve into the functions of key components such as KDM6A, KMT2D, KMT2C, KMT2A, and KMT2B, highlighting their significance as potential therapeutic targets. Furthermore, we discuss the implications of these findings for developing novel treatment modalities for PDAC.
Collapse
Affiliation(s)
- Marzieh Jamali
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
STICKLER SANDRA, RATH BARBARA, HAMILTON GERHARD. Targeting KRAS in pancreatic cancer. Oncol Res 2024; 32:799-805. [PMID: 38686056 PMCID: PMC11055996 DOI: 10.32604/or.2024.045356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/11/2023] [Indexed: 05/02/2024] Open
Abstract
Pancreatic cancer has a dismal prognosis due to late detection and lack of efficient therapies. The Kirsten rat sarcoma virus (KRAS) oncogene is mutated in up to 90% of all pancreatic ductal adenocarcinomas (PDACs) and constitutes an attractive target for therapy. However, the most common KRAS mutations in PDAC are G12D (44%), G12V (34%) and G12R (20%) that are not amenable to treatment by KRAS G12C-directed cysteine-reactive KRAS inhibitors such as Sotorasib and Adagrasib that exhibit clinical efficacy in lung cancer. KRAS G12C mutant pancreatic cancer has been treated with Sotorasib but this mutation is detected only in 2%-3% of PDAC. Recently, the KRAS G12D-directed MRTX1133 inhibitor has entered clinical trials and more of such inhibitors are in development. The other KRAS mutations may be targeted indirectly via inhibition of the cognate guanosine exchange factor (GEF) Son of Sevenless 1 that drives KRAS. These agents seem to provide the means to target the most frequent KRAS mutations in PDAC and to improve patient outcomes.
Collapse
Affiliation(s)
- SANDRA STICKLER
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| | - BARBARA RATH
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| | - GERHARD HAMILTON
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| |
Collapse
|
23
|
Park SY, Gowda Saralamma VV, Nale SD, Kim CJ, Jo YS, Baig MH, Cho J. Design, synthesis, and evaluation of purine and pyrimidine-based KRAS G12D inhibitors: Towards potential anticancer therapy. Heliyon 2024; 10:e28495. [PMID: 38617914 PMCID: PMC11015380 DOI: 10.1016/j.heliyon.2024.e28495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
Oncogenic RAS mutations, commonly observed in human tumors, affect approximately 30% of cancer cases and pose a significant challenge for effective cancer treatment. Current strategies to inhibit the KRAS G12D mutation have shown limited success, emphasizing the urgent need for new therapeutic approaches. In this study, we designed and synthesized several purine and pyrimidine analogs as inhibitors for the KRAS G12D mutation. Our synthesized compounds demonstrated potent anticancer activity against cell lines with the KRAS G12D mutation, effectively impeding their growth. They also exhibited low toxicity in normal cells, indicating their selective action against cancer cells harboring the KRAS G12D mutation. Notably, the lead compound, PU1-1 induced the programmed cell death of KRAS G12D-mutated cells and reduced the levels of active KRAS and its downstream signaling proteins. Moreover, PU1-1 significantly shrunk the tumor size in a pancreatic xenograft model induced by the KRAS G12D mutation, further validating its potential as a therapeutic agent. These findings highlight the potential of purine-based KRAS G12D inhibitors as candidates for targeted cancer therapy. However, further exploration and optimization of these compounds are essential to meet the unmet clinical needs of patients with KRAS-mutant cancers.
Collapse
Affiliation(s)
- So-Youn Park
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Venu Venkatarame Gowda Saralamma
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul 06273, Republic of Korea
| | - Sagar Dattatraya Nale
- BNJBiopharma, 2nd Floor Memorial Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Chang Joong Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Yun Seong Jo
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul 06273, Republic of Korea
| | - Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul 06273, Republic of Korea
| | - JungHwan Cho
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| |
Collapse
|
24
|
Uddin MH, Zhang D, Muqbil I, El-Rayes BF, Chen H, Philip PA, Azmi AS. Deciphering cellular plasticity in pancreatic cancer for effective treatments. Cancer Metastasis Rev 2024; 43:393-408. [PMID: 38194153 DOI: 10.1007/s10555-023-10164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Cellular plasticity and therapy resistance are critical features of pancreatic cancer, a highly aggressive and fatal disease. The pancreas, a vital organ that produces digestive enzymes and hormones, is often affected by two main types of cancer: the pre-dominant ductal adenocarcinoma and the less common neuroendocrine tumors. These cancers are difficult to treat due to their complex biology characterized by cellular plasticity leading to therapy resistance. Cellular plasticity refers to the capability of cancer cells to change and adapt to different microenvironments within the body which includes acinar-ductal metaplasia, epithelial to mesenchymal/epigenetic/metabolic plasticity, as well as stemness. This plasticity allows heterogeneity of cancer cells, metastasis, and evasion of host's immune system and develops resistance to radiation, chemotherapy, and targeted therapy. To overcome this resistance, extensive research is ongoing exploring the intrinsic and extrinsic factors through cellular reprogramming, chemosensitization, targeting metabolic, key survival pathways, etc. In this review, we discussed the mechanisms of cellular plasticity involving cellular adaptation and tumor microenvironment and provided a comprehensive understanding of its role in therapy resistance and ways to overcome it.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| | - Dingqiang Zhang
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Irfana Muqbil
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA
- Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| |
Collapse
|