1
|
Msaouel P, Yu K, Yuan Y, Chen J, Yan X, Karki M, Duan F, Sheth RA, Rao P, Sircar K, Shah AY, Zurita AJ, Genovese G, Li M, Yeh CC, Dang M, Han G, Chu Y, Hallin M, Olson P, Yang R, Slavin D, Der-Torossian H, Chin CD, Tannir NM, Wang L, Gao J. Sitravatinib in combination with nivolumab plus ipilimumab in patients with advanced clear cell renal cell carcinoma: a phase 1 trial. Nat Commun 2025; 16:578. [PMID: 39794332 PMCID: PMC11724043 DOI: 10.1038/s41467-024-55642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
We conducted a phase I trial to determine the optimal dose of triplet therapy with the tyrosine kinase inhibitor sitravatinib plus nivolumab plus ipilimumab in 22 previously untreated patients with advanced clear cell renal cell carcinoma. The primary endpoint was safety. Secondary endpoints were objective response rate (ORR), disease control rate (DCR), duration of response (DOR), progression-free survival (PFS), overall survival (OS), 1-year survival probability, and sitravatinib pharmacokinetics. Sitravatinib dose of 35 mg daily plus nivolumab 3 mg/kg and ipilimumab 1 mg/kg resulted in high frequency of immune-related adverse events. Subsequent dose reduction of ipilimumab to 0.7 mg/kg allowed safe escalation of sitravatinib up to 100 mg daily. Overall, the triplet combination achieved ORR 45.5%, DCR 86.4%, median PFS 14.5 months, and 1-year survival 80.8%. Median OS and DOR were not reached. Sitravatinib exposure increased dose-dependently. Single-cell RNA-seq of longitudinally collected tumor biopsies from 12 patients identified a tumor cell-specific epithelial-mesenchymal transition-like program associated with treatment resistance and poor outcomes. Treatment resistance was characterized by a transition from cytotoxic to exhausted T cell state and enrichment for M2-like myeloid cells. The observed hypothesis-generating changes in gene expression dynamics and cellular states may help inform future strategies to optimize immunotherapy efficacy. Clinical Trials.gov identifier: NCT04518046.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Kai Yu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Menuka Karki
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fei Duan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priya Rao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanishka Sircar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amishi Y Shah
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amado J Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Min Li
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Chih-Chen Yeh
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Max Hallin
- Mirati Therapeutics, Inc, San Diego, CA, USA
| | - Peter Olson
- Mirati Therapeutics, Inc, San Diego, CA, USA
| | - Rui Yang
- Mirati Therapeutics, Inc, San Diego, CA, USA
| | | | | | | | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA.
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Wang S, Thall PF, Takeda K, Yuan Y. ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Biometrics 2024; 80:ujae105. [PMID: 39360905 PMCID: PMC11447723 DOI: 10.1093/biomtc/ujae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Optimizing doses for multiple indications is challenging. The pooled approach of finding a single optimal biological dose (OBD) for all indications ignores that dose-response or dose-toxicity curves may differ between indications, resulting in varying OBDs. Conversely, indication-specific dose optimization often requires a large sample size. To address this challenge, we propose a Randomized two-stage basket trial design that Optimizes doses in Multiple Indications (ROMI). In stage 1, for each indication, response and toxicity are evaluated for a high dose, which may be a previously obtained maximum tolerated dose, with a rule that stops accrual to indications where the high dose is unsafe or ineffective. Indications not terminated proceed to stage 2, where patients are randomized between the high dose and a specified lower dose. A latent-cluster Bayesian hierarchical model is employed to borrow information between indications, while considering the potential heterogeneity of OBD across indications. Indication-specific utilities are used to quantify response-toxicity trade-offs. At the end of stage 2, for each indication with at least one acceptable dose, the dose with highest posterior mean utility is selected as optimal. Two versions of ROMI are presented, one using only stage 2 data for dose optimization and the other optimizing doses using data from both stages. Simulations show that both versions have desirable operating characteristics compared to designs that either ignore indications or optimize dose independently for each indication.
Collapse
Affiliation(s)
- Shuqi Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Peter F Thall
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Kentaro Takeda
- Astellas Pharma Global Development Inc., Northbrook, IL 60062, United States
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| |
Collapse
|
3
|
Thall PF, Garrett-Mayer E, Wages NA, Halabi S, Cheung YK. Current issues in dose-finding designs: A response to the US Food and Drug Adminstration's Oncology Center of Excellence Project Optimus. Clin Trials 2024; 21:267-272. [PMID: 38570906 PMCID: PMC11132935 DOI: 10.1177/17407745241234652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
With the advent of targeted agents and immunological therapies, the medical research community has become increasingly aware that conventional methods for determining the best dose or schedule of a new agent are inadequate. It has been well established that conventional phase I designs cannot reliably identify safe and effective doses. This problem applies, generally, for cytotoxic agents, radiation therapy, targeted agents, and immunotherapies. To address this, the US Food and Drug Administration's Oncology Center of Excellence initiated Project Optimus, with the goal "to reform the dose optimization and dose selection paradigm in oncology drug development." As a response to Project Optimus, the articles in this special issue of Clinical Trials review recent advances in methods for choosing the dose or schedule of a new agent with an overall objective of informing clinical trialists of these innovative designs. This introductory article briefly reviews problems with conventional methods, the regulatory changes that encourage better dose optimization designs, and provides brief summaries of the articles that follow in this special issue.
Collapse
Affiliation(s)
- Peter F Thall
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Nolan A Wages
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Ying Kuen Cheung
- Department of Biostatistics, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Xu J, Zhang W, Tong J, Liu C, Zhang Q, Cao L, Yu J, Zhou A, Ma J. A phase I trial of autologous RAK cell immunotherapy in metastatic renal cell carcinoma. Cancer Immunol Immunother 2024; 73:107. [PMID: 38642109 PMCID: PMC11032301 DOI: 10.1007/s00262-024-03680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Treatment of metastatic renal cell carcinoma (mRCC) remains a challenge worldwide. Here, we introduced a phase I trial of autologous RAK cell therapy in patients with mRCC whose cancers progressed after prior systemic therapy. Although RAK cells have been used in clinic for many years, there has been no dose-escalation study to demonstrate its safety and efficacy. METHODS We conducted a phase I trial with a 3 + 3 dose-escalation design to investigate the dose-related safety and efficacy of RAK cells in patients with mRCC whose cancers have failed to response to systemic therapy (ChiCTR1900021334). RESULTS Autologous RAK cells, primarily composed of CD8+ T and NKT cells, were infused intravenously to patients at a dose of 5 × 109, 1 × 1010 or 1.5 × 1010 cells every 28 days per cycle. Our study demonstrated general safety of RAK cells in a total of 12 patients. Four patients (33.3%) showed tumor shrinkage, two of them achieved durable partial responses. Peripheral blood analysis showed a significant increase in absolute counts of CD3+ and CD8+ T cells after infusion, with a greater fold change observed in naive CD8+ T cells (CD8+CD45RA+). Higher peak values of IL-2 and IFN-γ were observed in responders after RAK infusion. CONCLUSION This study suggests that autologous RAK cell immunotherapy is safe and has clinical activity in previously treated mRCC patients. The improvement in peripheral blood immune profiling after RAK cell infusion highlights its potential as a cancer treatment. Further investigation is necessary to understand its clinical utility.
Collapse
Affiliation(s)
- Jing Xu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wen Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Jinlian Tong
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Caixia Liu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qiaohui Zhang
- Clinical Department, Everbright Cell Medical Biotech Inc., Beijing, 100061, People's Republic of China
| | - Liren Cao
- Clinical Department, Everbright Cell Medical Biotech Inc., Beijing, 100061, People's Republic of China
| | - Jiangyong Yu
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Aiping Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, People's Republic of China.
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|