1
|
Zhang Q, Hu X, Wan G, Wang J, Li L, Wu X, Liu Z, Yu L. Discovery of 3-(((9H-purin-6-yl)amino)methyl)-4,6-dimethylpyridin-2(1H)-one derivatives as novel tubulin polymerization inhibitors for treatment of cancer. Eur J Med Chem 2019; 184:111728. [PMID: 31610375 DOI: 10.1016/j.ejmech.2019.111728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 02/05/2023]
Abstract
A new series of 3-(((9H-purin-6-yl)amino)methyl)-4,6-dimethylpyridin-2(1H)-one derivatives were designed, synthesized and demonstrated to act as tubulin polymerization inhibitors. These new derivatives showed significant antitumor activities, among which SKLB0533 demonstrated to be the most potent compound, with IC50 values ranging from 44.5 to 135.5 nM against seven colorectal carcinoma (CRC) cell lines. Remarkably, SKLB0533 exhibited no activity against other potential targets, such as 420 kinases and EZH2. Besides, SKLB0533 inhibited tubulin polymerization, arrested the cell cycle at the G2/M phase and induced apoptosis in CRC cells. Furthermore, SKLB0533 suppressed tumour growth in the HCT116 xenograft model without inducing notable major organ-related toxicity, suggesting that SKLB0533 could be used as a promising lead compound for the development of new antitumor agents.
Collapse
Affiliation(s)
- Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Xi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Guoquan Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Jia Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Lu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Xiuli Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Zhihao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China.
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China.
| |
Collapse
|
2
|
Orság P, Havran L, Fojt L, Coufal J, Brázda V, Fojta M. Voltammetric behavior of a candidate anticancer drug roscovitine at carbon electrodes in aqueous buffers and a cell culture medium. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2333-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Smith NF, Raynaud FI, Workman P. The application of cassette dosing for pharmacokinetic screening in small-molecule cancer drug discovery. Mol Cancer Ther 2007; 6:428-40. [PMID: 17308044 DOI: 10.1158/1535-7163.mct-06-0324] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pharmacokinetic evaluation is an essential component of drug discovery and should be conducted early in the process so that those compounds with the best chance of success are prioritized and progressed. However, pharmacokinetic analysis has become a serious bottleneck during the 'hit-to-lead' and lead optimization phases due to the availability of new targets and the large numbers of compounds resulting from advances in synthesis and screening technologies. Cassette dosing, which involves the simultaneous administration of several compounds to a single animal followed by rapid sample analysis by liquid chromatography/tandem mass spectrometry, was developed to increase the throughput of in vivo pharmacokinetic screening. Although cassette dosing is advantageous in terms of resources and throughput, there are possible complications associated with this approach, such as the potential for compound interactions. Following an overview of the cassette dosing literature, this article focuses on the application of the technique in anticancer drug discovery. Specific examples are discussed, including the evaluation of cassette dosing to assess pharmacokinetic properties in the development of cyclin-dependent kinase and heat shock protein 90 inhibitors. Subject to critical analysis and validation in each case, the use of cassette dosing is recommended in appropriate chemical series to enhance the efficiency of drug discovery and reduce animal usage.
Collapse
Affiliation(s)
- Nicola F Smith
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | | | | |
Collapse
|
5
|
Smith NF, Hayes A, James K, Nutley BP, McDonald E, Henley A, Dymock B, Drysdale MJ, Raynaud FI, Workman P. Preclinical pharmacokinetics and metabolism of a novel diaryl pyrazole resorcinol series of heat shock protein 90 inhibitors. Mol Cancer Ther 2006; 5:1628-37. [PMID: 16818523 DOI: 10.1158/1535-7163.mct-06-0041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CCT018159 was recently identified as a novel inhibitor of heat shock protein (Hsp) 90, a promising target for cancer therapy. Pharmacokinetic and metabolic properties are likely to be important for efficacy and need to be optimized during drug development. Here, we define the preclinical metabolism and pharmacokinetics of CCT018159 and some early derivatives. In addition, we assess in vitro metabolic stability screening and in vivo cassette dosing (simultaneous administration of several compounds to a single animal) as approaches to investigate these compounds. The plasma clearance following individual i.v. administration to mice was rapid (0.128-0.816 L/h), exceeding hepatic blood flow. For CCT066950 and CCT066952, this could be attributed in part to extensive (>80%) blood cell binding. Oral bioavailability ranged from 1.8% to 29.6%. Tissue distribution of CCT066952 was rapid and moderate, and renal excretion of the compounds was minimal (<1% of dose excreted). Compounds underwent rapid glucuronidation both in vivo and following incubation with mouse liver microsomes. However, whereas CCT066965 was metabolized to the greatest extent in vitro, this compound displayed the slowest plasma clearance. The rank order of the compounds from the highest to lowest area under the curve was the same following discrete and cassette dosing. Furthermore, pharmacokinetic variables were similar whether the compounds were dosed alone or in combination. We conclude that the pharmacokinetics of CCT018159 are complex. Cassette dosing is currently the best option available to assess the pharmacokinetics of this promising series of compounds in relatively high throughput and is now being applied to identify compounds with optimal pharmacokinetic properties during structural analogue synthesis.
Collapse
Affiliation(s)
- Nicola F Smith
- Cancer Research UK Centre for Cancer Therapeutics, Haddow Laboratories, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Workman P. Drugging the cancer kinome: progress and challenges in developing personalized molecular cancer therapeutics. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 70:499-515. [PMID: 16869789 DOI: 10.1101/sqb.2005.70.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A major goal of cancer research is to translate our understanding of the causation of malignancy at the level of the genome and biochemical pathways into the development of drugs with improved activity and cancer selectivity. This paper provides a personal perspective of the current status of efforts to achieve this goal, with a particular focus on drugging the cancer kinome. Remarkable progress has been made in this area, but many challenges remain. The value of cancer kinome sequencing is emphasized. Three projects in which the author's laboratory is involved are reviewed in detail. These involve the discovery and development of inhibitors of cyclin-dependent kinases, phosphoinositide 3-kinases, and the Hsp90 molecular chaperone.
Collapse
Affiliation(s)
- P Workman
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey
| |
Collapse
|