1
|
Qin L, Dong Z, Huang C, Liu H, Beebe J, Subramaniyan B, Hao Y, Liu Y, He Z, Liu JY, Zhang JT. Reversible promoter demethylation of PDGFD confers gemcitabine resistance through STAT3 activation and RRM1 upregulation. Cancer Lett 2023:216266. [PMID: 37321532 DOI: 10.1016/j.canlet.2023.216266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Drug resistance is a major problem in cancer treatment with traditional or targeted therapeutics. Gemcitabine is approved for several human cancers and the first line treatment for locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, gemcitabine resistance frequently occurs and is a major problem in successful treatments of these cancers and the mechanism of gemcitabine resistance remains largely unknown. In this study, we identified 65 genes that had reversible methylation changes in their promoters in gemcitabine resistant PDAC cells using whole genome Reduced Representation Bisulfite Sequencing analyses. One of these genes, PDGFD, was further studied in detail for its reversible epigenetic regulation in expression and shown to contribute to gemcitabine resistance in vitro and in vivo via stimulating STAT3 signaling in both autocrine and paracrine manners to upregulate RRM1 expression. Analyses of TCGA datasets showed that PDGFD positively associates with poor outcome of PDAC patients. Together, we conclude that the reversible epigenetic upregulation plays an important role in gemcitabine resistance development and targeting PDGFD signaling alleviates gemcitabine resistance for PDAC treatment.
Collapse
Affiliation(s)
- Li Qin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zizheng Dong
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Caoqinglong Huang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hao Liu
- Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Jenny Beebe
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Boopathi Subramaniyan
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Yangyang Hao
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhimin He
- Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
2
|
Aljabal G, Yap BK. 14-3-3σ and Its Modulators in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13120441. [PMID: 33287252 PMCID: PMC7761676 DOI: 10.3390/ph13120441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023] Open
Abstract
14-3-3σ is an acidic homodimer protein with more than one hundred different protein partners associated with oncogenic signaling and cell cycle regulation. This review aims to highlight the crucial role of 14-3-3σ in controlling tumor growth and apoptosis and provide a detailed discussion on the structure-activity relationship and binding interactions of the most recent 14-3-3σ protein-protein interaction (PPI) modulators reported to date, which has not been reviewed previously. This includes the new fusicoccanes stabilizers (FC-NAc, DP-005), fragment stabilizers (TCF521-123, TCF521-129, AZ-003, AZ-008), phosphate-based inhibitors (IMP, PLP), peptide inhibitors (2a-d), as well as inhibitors from natural sources (85531185, 95911592). Additionally, this review will also include the discussions of the recent efforts by a different group of researchers for understanding the binding mechanisms of existing 14-3-3σ PPI modulators. The strategies and state-of-the-art techniques applied by various group of researchers in the discovery of a different chemical class of 14-3-3σ modulators for cancer are also briefly discussed in this review, which can be used as a guide in the development of new 14-3-3σ modulators in the near future.
Collapse
|
3
|
14-3-3 σ: A potential biomolecule for cancer therapy. Clin Chim Acta 2020; 511:50-58. [PMID: 32950519 DOI: 10.1016/j.cca.2020.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
As more studies have focused on the function of 14-3-3 proteins, their role in tumor progression has gradually improved. In the 14-3-3 protein family, 14-3-3σ is the protein that is most associated with tumor occurrence and development. In some malignancies, 14-3-3σ acts as a tumor suppressor via p53 and tumor suppressor genes. In most tumors, 14-3-3σ overexpression increases resistance to chemotherapy and radiotherapy and mediates the G2-M checkpoint after DNA damage. Although 14-3-3σ overexpression has been closely associated with poorer prognosis in pancreatic, gastric and colorectal cancer, its role in gallbladder and nasopharyngeal cancer remains less clear. As such, the function of 14-3-3σ in specific cancer types needs to be further clarified. It has been hypothesized that a role may be related to its molecular chaperone function combined with various protein ligands. In this review, we examine the role of 14-3-3σ in tumor development and drug resistance. We discuss the potential of targeting 14-3-3σ regulators in cancer therapy and treatment.
Collapse
|
4
|
Li Y, Hu K, Xiao X, Wu W, Yan H, Chen H, Chen Z, Yin D. FBW7 suppresses cell proliferation and G2/M cell cycle transition via promoting γ-catenin K63-linked ubiquitylation. Biochem Biophys Res Commun 2018; 497:473-479. [PMID: 29408378 DOI: 10.1016/j.bbrc.2018.01.192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 11/25/2022]
|
5
|
Fagerholm R, Khan S, Schmidt MK, GarcClosas M, Heikkilä P, Saarela J, Beesley J, Jamshidi M, Aittomäki K, Liu J, Raza Ali H, Andrulis IL, Beckmann MW, Behrens S, Blows FM, Brenner H, Chang-Claude J, Couch FJ, Czene K, Fasching PA, Figueroa J, Floris G, Glendon G, Guo Q, Hall P, Hallberg E, Hamann U, Holleczek B, Hooning MJ, Hopper JL, Jager A, Kabisch M, Investigators KC, Keeman R, Kosma VM, Lambrechts D, Lindblom A, Mannermaa A, Margolin S, Provenzano E, Shah M, Southey MC, Dennis J, Lush M, Michailidou K, Wang Q, Bolla MK, Dunning AM, Easton DF, Pharoah PD., Chenevix-Trench G, Blomqvist C, Nevanlinna H. TP53-based interaction analysis identifies cis-eQTL variants for TP53BP2, FBXO28, and FAM53A that associate with survival and treatment outcome in breast cancer. Oncotarget 2017; 8:18381-18398. [PMID: 28179588 PMCID: PMC5392336 DOI: 10.18632/oncotarget.15110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/01/2017] [Indexed: 01/13/2023] Open
Abstract
TP53 overexpression is indicative of somatic TP53 mutations and associates with aggressive tumors and poor prognosis in breast cancer. We utilized a two-stage SNP association study to detect variants associated with breast cancer survival in a TP53-dependent manner. Initially, a genome-wide study (n = 575 cases) was conducted to discover candidate SNPs for genotyping and validation in the Breast Cancer Association Consortium (BCAC). The SNPs were then tested for interaction with tumor TP53 status (n = 4,610) and anthracycline treatment (n = 17,828). For SNPs interacting with anthracycline treatment, siRNA knockdown experiments were carried out to validate candidate genes.In the test for interaction between SNP genotype and TP53 status, we identified one locus, represented by rs10916264 (p(interaction) = 3.44 × 10-5; FDR-adjusted p = 0.0011) in estrogen receptor (ER) positive cases. The rs10916264 AA genotype associated with worse survival among cases with ER-positive, TP53-positive tumors (hazard ratio [HR] 2.36, 95% confidence interval [C.I] 1.45 - 3.82). This is a cis-eQTL locus for FBXO28 and TP53BP2; expression levels of these genes were associated with patient survival specifically in ER-positive, TP53-mutated tumors. Additionally, the SNP rs798755 was associated with survival in interaction with anthracycline treatment (p(interaction) = 9.57 × 10-5, FDR-adjusted p = 0.0130). RNAi-based depletion of a predicted regulatory target gene, FAM53A, indicated that this gene can modulate doxorubicin sensitivity in breast cancer cell lines.If confirmed in independent data sets, these results may be of clinical relevance in the development of prognostic and predictive marker panels for breast cancer.
Collapse
Affiliation(s)
- Rainer Fagerholm
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Montserrat GarcClosas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Päivi Heikkilä
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Jonathan Beesley
- Department of Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Maral Jamshidi
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | - H. Raza Ali
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Matthias W. Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fiona M. Blows
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter A. Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
| | - Giuseppe Floris
- Leuven Multidisciplinary Breast Center, Department of Oncology, KULeuven, Leuven Cancer Institute, University Hospitals Leuven
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Qi Guo
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Emily Hallberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Maartje J. Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
| | - Agnes Jager
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Renske Keeman
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Veli-Matti Kosma
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Sara Margolin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Provenzano
- Department of Oncology, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
- Department of Histopathology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul D.P . Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Oncology, University of Örebro, Örebro, Sweden
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Qin L, Dong Z, Zhang JT. 14-3-3σ regulation of and interaction with YAP1 in acquired gemcitabine resistance via promoting ribonucleotide reductase expression. Oncotarget 2017; 7:17726-36. [PMID: 26894857 PMCID: PMC4951245 DOI: 10.18632/oncotarget.7394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/23/2016] [Indexed: 02/02/2023] Open
Abstract
Gemcitabine is an important anticancer therapeutics approved for treatment of several human cancers including locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). Its clinical effectiveness, however, is hindered by existence of intrinsic and development of acquired resistances. Previously, it was found that 14-3-3σ expression associates with poor clinical outcome of PDAC patients. It was also found that 14-3-3σ expression is up-regulated in gemcitabine resistant PDAC cells and contributes to the acquired gemcitabine resistance. In this study, we investigated the molecular mechanism of 14-3-3σ function in gemcitabine resistance and found that 14-3-3σ up-regulates YAP1 expression and then binds to YAP1 to inhibit gemcitabine-induced caspase 8 activation and apoptosis. 14-3-3σ association with YAP1 up-regulates the expression of ribonucleotide reductase M1 and M2, which may mediate 14-3-3σ/YAP1 function in the acquired gemcitabine resistance. These findings suggest a possible role of YAP1 signaling in gemcitabine resistance.
Collapse
Affiliation(s)
- Li Qin
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zizheng Dong
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Chen Y, Li Z, Dong Z, Beebe J, Yang K, Fu L, Zhang JT. 14-3-3σ Contributes to Radioresistance By Regulating DNA Repair and Cell Cycle via PARP1 and CHK2. Mol Cancer Res 2017; 15:418-428. [PMID: 28087741 DOI: 10.1158/1541-7786.mcr-16-0366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/23/2016] [Accepted: 12/11/2016] [Indexed: 01/05/2023]
Abstract
14-3-3σ has been implicated in the development of chemo and radiation resistance and in poor prognosis of multiple human cancers. While it has been postulated that 14-3-3σ contributes to these resistances via inhibiting apoptosis and arresting cells in G2-M phase of the cell cycle, the molecular basis of this regulation is currently unknown. In this study, we tested the hypothesis that 14-3-3σ causes resistance to DNA-damaging treatments by enhancing DNA repair in cells arrested in G2-M phase following DNA-damaging treatments. We showed that 14-3-3σ contributed to ionizing radiation (IR) resistance by arresting cancer cells in G2-M phase following IR and by increasing non-homologous end joining (NHEJ) repair of the IR-induced DNA double strand breaks (DSB). The increased NHEJ repair activity was due to 14-3-3σ-mediated upregulation of PARP1 expression that promoted the recruitment of DNA-PKcs to the DNA damage sites for repair of DSBs. On the other hand, the increased G2-M arrest following IR was due to 14-3-3σ-induced Chk2 expression.Implications: These findings reveal an important molecular basis of 14-3-3σ function in cancer cell resistance to chemo/radiation therapy and in poor prognosis of human cancers. Mol Cancer Res; 15(4); 418-28. ©2017 AACR.
Collapse
Affiliation(s)
- Yifan Chen
- Departments of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Zhaomin Li
- Departments of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zizheng Dong
- Departments of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jenny Beebe
- Departments of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ke Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liwu Fu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Jian-Ting Zhang
- Departments of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
8
|
Chen DY, Dai DF, Hua Y, Qi WQ. p53 suppresses 14-3-3γ by stimulating proteasome-mediated 14-3-3γ protein degradation. Int J Oncol 2014; 46:818-24. [PMID: 25384678 DOI: 10.3892/ijo.2014.2740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/26/2014] [Indexed: 11/05/2022] Open
Abstract
14-3-3 proteins are a family of highly conserved polypeptides that interact with a large number of proteins and play a role in a wide variety of cellular processes. 14-3-3 proteins have been demonstrated overexpressed in several cancers and serving as potential oncogenes. In a previous study we showed one isoform of the 14-3-3 family, 14-3-3γ was negatively regulated by p53 through binding to its promoter and inhibiting its transcription. In the present study we investigated both p53 and 14-3-3γ protein levels in human lung cancerous tissues and normal lung tissues. We found 14-3-3γ expression correlated to p53 overexpression in lung cancer tissues. Ecotopic expression of wild-type p53, but not mutant p53 (R175H) suppressed both endogenous and exogenous 14-3-3γ in colon and lung cancer cell lines. Further examination demonstrated that p53 interacted with C-terminal domain of 14-3-3γ and induced 14-3-3γ ubiquitination. MG132, a specific inhibitor of the 26S proteasome, could block the effect of p53 on 14-3-3γ protein levels, suggesting that p53 suppressed 14-3-3γ by stimulating the process of proteasome-mediated degradation of 14-3-3γ. These results indicate that the inhibitory effect of p53 on 14-3-3γ is mediated also by a post-transcriptional mechanism. Loss of p53 function may result in upregulation of 14-3-3γ in lung cancers.
Collapse
Affiliation(s)
- De-Yu Chen
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dong-Fang Dai
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Ye Hua
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wen-Qing Qi
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
9
|
Qin L, Dong Z, Zhang JT. Reversible epigenetic regulation of 14-3-3σ expression in acquired gemcitabine resistance by uhrf1 and DNA methyltransferase 1. Mol Pharmacol 2014; 86:561-9. [PMID: 25189999 DOI: 10.1124/mol.114.092544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although gemcitabine is the most commonly used drug for treating pancreatic cancers, acquired gemcitabine resistance in a substantial number of patients appears to hinder its effectiveness in successful treatment of this dreadful disease. To understand acquired gemcitabine resistance, we generated a gemcitabine-resistant pancreatic cancer cell line using stepwise selection and found that, in addition to the known mechanisms of upregulated expression of ribonucleotide reductase, 14-3-3σ expression is dramatically upregulated, and that 14-3-3σ overexpression contributes to the acquired resistance to gemcitabine and cross-resistance to cytarabine. We also found that the increased 14-3-3σ expression in the gemcitabine-resistant cells is due to demethylation of the 14-3-3σ gene during gemcitabine selection, which could be partially reversed with removal of the gemcitabine selection pressure. Most importantly, the reversible methylation/demethylation of the 14-3-3σ gene appears to be carried out by DNA methyltransferase 1 under regulation by Uhrf1. These findings suggest that the epigenetic regulation of gene expression may play an important role in gemcitabine resistance, and that epigenetic modification is reversible in response to gemcitabine treatment.
Collapse
Affiliation(s)
- Li Qin
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zizheng Dong
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
10
|
Qi YJ, Wang M, Liu RM, Wei H, Chao WX, Zhang T, Lou Q, Li XM, Ma J, Zhu H, Yang ZH, Liu HQ, Ma YF. Downregulation of 14-3-3σ correlates with multistage carcinogenesis and poor prognosis of esophageal squamous cell carcinoma. PLoS One 2014; 9:e95386. [PMID: 24743601 PMCID: PMC3990633 DOI: 10.1371/journal.pone.0095386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/25/2014] [Indexed: 12/30/2022] Open
Abstract
Aims The asymptomatic nature of early-stage esophageal squamous cell carcinoma (ESCC) results in late presentation and consequent dismal prognosis This study characterized 14-3-3σ protein expression in the multi-stage development of ESCC and determined its correlation with clinical features and prognosis. Materials and Methods Western blot was used to examine 14-3-3σ protein expression in normal esophageal epithelium (NEE), low grade intraepithelial neoplasia (LGIN), high grade intraepithelial neoplasia (HGIN), ESCC of TNM I to IV stage and various esophageal epithelial cell lines with different biological behavior. Immunohistochemistry was used to estimate 14-3-3σ protein in 110 biopsy samples of NEE, LGIN or HGIN and in 168 ESCC samples all of whom had follow-up data. Support vector machine (SVM) was used to develop a classifier for prognosis. Results 14-3-3σ decreased progressively from NEE to LGIN, to HGIN, and to ESCC. Chemoresistant sub-lines of EC9706/PTX and EC9706/CDDP showed high expression of 14-3-3σ protein compared with non-chemoresistant ESCC cell lines and immortalized NEC. Furthermore, the downregulation of 14-3-3σ correlated significantly with histological grade (P = 0.000) and worse prognosis (P = 0.004). Multivariate Cox regression analysis indicated that 14-3-3σ protein (P = 0.016) and T stage (P = 0.000) were independent prognostic factors for ESCC. The SVM ESCC classifier comprising sex, age, T stage, histological grade, lymph node metastasis, clinical stage and 14-3-3σ, distinguished significantly lower- and higher-risk ESCC patients (91.67% vs. 3.62%, P = 0.000). Conclusions Downregulation of 14-3-3σ arises early in the development of ESCC and predicts poor survival, suggesting that 14-3-3σ may be a biomarker for early detection of high-risk subjects and diagnosis of ESCC. Our seven-feature SVM classifier for ESCC prognosis may help to inform clinical decisions and tailor individual therapy.
Collapse
Affiliation(s)
- Yi-Jun Qi
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Ming Wang
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Rui-Min Liu
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Hua Wei
- Huaihe Hospital, Henan University, Kaifeng, Henan, P. R. China
| | - Wei-Xia Chao
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Tian Zhang
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Qiang Lou
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Xiu-Min Li
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Jin Ma
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Han Zhu
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Zhen-Hua Yang
- Linzhou Cancer Hospital, Linzhou, Henan, P. R. China
| | - Hai-Qing Liu
- Linzhou Cancer Hospital, Linzhou, Henan, P. R. China
| | - Yuan-Fang Ma
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, P. R. China
| |
Collapse
|
11
|
Mori M, Vignaroli G, Cau Y, Dinić J, Hill R, Rossi M, Colecchia D, Pešić M, Link W, Chiariello M, Ottmann C, Botta M. Discovery of 14-3-3 Protein-Protein Interaction Inhibitors that Sensitize Multidrug-Resistant Cancer Cells to Doxorubicin and the Akt Inhibitor GSK690693. ChemMedChem 2014; 9:973-83. [DOI: 10.1002/cmdc.201400044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Indexed: 11/06/2022]
|
12
|
Li Z, Peng H, Qin L, Qi J, Zuo X, Liu JY, Zhang JT. Determinants of 14-3-3σ protein dimerization and function in drug and radiation resistance. J Biol Chem 2013; 288:31447-57. [PMID: 24043626 DOI: 10.1074/jbc.m113.467753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many proteins exist and function as homodimers. Understanding the detailed mechanism driving the homodimerization is important and will impact future studies targeting the "undruggable" oncogenic protein dimers. In this study, we used 14-3-3σ as a model homodimeric protein and performed a systematic investigation of the potential roles of amino acid residues in the interface for homodimerization. Unlike other members of the conserved 14-3-3 protein family, 14-3-3σ prefers to form a homodimer with two subareas in the dimeric interface that has 180° symmetry. We found that both subareas of the dimeric interface are required to maintain full dimerization activity. Although the interfacial hydrophobic core residues Leu(12) and Tyr(84) play important roles in 14-3-3σ dimerization, the non-core residue Phe(25) appears to be more important in controlling 14-3-3σ dimerization activity. Interestingly, a similar non-core residue (Val(81)) is less important than Phe(25) in contributing to 14-3-3σ dimerization. Furthermore, dissociating dimeric 14-3-3σ into monomers by mutating the Leu(12), Phe(25), or Tyr(84) dimerization residue individually diminished the function of 14-3-3σ in resisting drug-induced apoptosis and in arresting cells at G2/M phase in response to DNA-damaging treatment. Thus, dimerization appears to be required for the function of 14-3-3σ.
Collapse
Affiliation(s)
- Zhaomin Li
- From the Department of Pharmacology and Toxicology and
| | | | | | | | | | | | | |
Collapse
|
13
|
Liu H, Wu X, Dong Z, Luo Z, Zhao Z, Xu Y, Zhang JT. Fatty acid synthase causes drug resistance by inhibiting TNF-α and ceramide production. J Lipid Res 2013; 54:776-785. [PMID: 23319743 DOI: 10.1194/jlr.m033811] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fatty acid synthase (FASN) is a key enzyme in the synthesis of palmitate, the precursor of major nutritional, energetic, and signaling lipids. FASN expression is upregulated in many human cancers and appears to be important for cancer cell survival. Overexpression of FASN has also been found to associate with poor prognosis and higher risk of recurrence of human cancers. Indeed, elevated FASN expression has been shown to contribute to drug resistance. However, the mechanism of FASN-mediated drug resistance is currently unknown. In this study, we show that FASN overexpression causes resistance to multiple anticancer drugs via inhibiting drug-induced ceramide production, caspase 8 activation, and apoptosis. We also show that FASN overexpression suppresses tumor necrosis factor-α production and nuclear factor-κB activation as well as drug-induced activation of neutral sphingomyelinase. Thus, TNF-α may play an important role in mediating FASN function in drug resistance.
Collapse
Affiliation(s)
- Hailan Liu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
| | - Xi Wu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
| | - Zizheng Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
| | - Zhiyong Luo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
| | - Zhenwen Zhao
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
14
|
14-3-3σ expression is associated with poor pathological complete response to neoadjuvant chemotherapy in human breast cancers. Breast Cancer Res Treat 2012; 134:229-36. [PMID: 22315133 DOI: 10.1007/s10549-012-1976-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
14-3-3σ is a tumor suppressor gene induced by p53 in response to DNA damage and reportedly associated with resistance to chemotherapy. The aim of this study was to investigate whether 14-3-3σ expression is also associated with resistance to neoadjuvant chemotherapy consisting of paclitaxel followed by 5-FU/epirubicin/cyclophosphamide (P-FEC) in human breast cancer patients. A total of 123 primary breast cancer patients treated with neoadjuvant chemotherapy (P-FEC) were included in this study. Immunohistochemistry of 14-3-3σ and p53 as well as direct sequencing of TP53 were performed using the tumor biopsy samples obtained prior to neoadjuvant chemotherapy. Thirty-eight of the tumors (31%) were positive for 14-3-3σ. There was no significant association between 14-3-3σ expression and TP53 mutation or p53 expression. However, 14-3-3σ expression showed a significantly (P=0.009) negative association with pathological complete response (pCR) to P-FEC, and multivariate analysis demonstrated that only 14-3-3σ (P=0.015) and estrogen receptor (P=0.021) were significantly and independently associated with pCR. The combination of 14-3-3σ expression and TP53 mutation status had an additive negative effect on pCR, i.e., pCR rates were 45.5% for 14-3-3σ negative/TP53 mutant tumors, 24.6% for 14-3-3σ negative/TP53 wild tumors, 23.1% for 14-3-3σ positive/TP53 mutant tumors, and 0% for 14-3-3σ positive/TP53 wild tumors. These results demonstrate that 14-3-3σ expression is significantly associated with resistance to P-FEC and this association is independent of other biological markers. The combination of 14-3-3σ expression and TP53 mutation status has an additively negative effect on the response to P-FEC.
Collapse
|
15
|
Cetintas VB, Tetik A, Cok G, Kucukaslan AS, Kosova B, Gunduz C, Veral A, Eroglu Z. Role of 14-3-3σ in resistance to cisplatin in non-small cell lung cancer cells. Cell Biol Int 2012; 37:78-86. [DOI: 10.1002/cbin.10006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/17/2012] [Indexed: 01/30/2023]
Affiliation(s)
- Vildan Bozok Cetintas
- Department of Medical Biology; Ege University School of Medicine; Bornova 35100 Izmir Turkey
| | - Aslı Tetik
- Department of Medical Biology; Ege University School of Medicine; Bornova 35100 Izmir Turkey
| | - Gursel Cok
- Department of Thoracic Medicine; Ege University School of Medicine; Izmir Turkey
| | - Ali Sahin Kucukaslan
- Department of Medical Biology; Ege University School of Medicine; Bornova 35100 Izmir Turkey
| | - Buket Kosova
- Department of Medical Biology; Ege University School of Medicine; Bornova 35100 Izmir Turkey
| | - Cumhur Gunduz
- Department of Medical Biology; Ege University School of Medicine; Bornova 35100 Izmir Turkey
| | - Ali Veral
- Department of Pathology; Ege University School of Medicine; Izmir Turkey
| | - Zuhal Eroglu
- Department of Medical Biology; Ege University School of Medicine; Bornova 35100 Izmir Turkey
| |
Collapse
|
16
|
Kozakai N, Kikuchi E, Hasegawa M, Suzuki E, Ide H, Miyajima A, Horiguchi Y, Nakashima J, Umezawa K, Shigematsu N, Oya M. Enhancement of radiosensitivity by a unique novel NF-κB inhibitor, DHMEQ, in prostate cancer. Br J Cancer 2012; 107:652-7. [PMID: 22805327 PMCID: PMC3419964 DOI: 10.1038/bjc.2012.321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background: Inducible activation of nuclear factor (NF)-κB is one of the principal mechanisms through which resistant prostate cancer cells are protected from radiotherapy. We hypothesised that inactivation of inducible NF-κB with a novel NF-κB inhibitor, DHMEQ, would increase the therapeutic effects of radiotherapy. Methods: PC-3 and LNCaP cells were exposed to irradiation and/or DHMEQ. Cell viability, cell cycle analysis, western blotting assay, and NF-κB activity were measured. The antitumour effect of irradiation combined with DHMEQ in vivo was also assessed. Results: The combination of DHMEQ with irradiation resulted in cell growth inhibition and G2/M arrest relative to treatment with irradiation alone. Inducible NF-κB activity by irradiation was inhibited by DHMEQ treatment. The expression of p53 and p21 in LNCaP, and of 14-3-3σ in PC-3 cells, was increased in the combination treatment. In the in vivo study, 64 days after the start of treatment, tumour size was 85.1%, 77.1%, and 64.7% smaller in the combination treatment group than that of the untreated control, DHMEQ-treated alone, and irradiation alone groups, respectively. Conclusion: Blockade of NF-κB activity induced by radiation with DHMEQ could overcome radio-resistant responses and may become a new therapeutic modality for treating prostate cancer.
Collapse
Affiliation(s)
- N Kozakai
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu JY, Li Z, Li H, Zhang JT. Critical residue that promotes protein dimerization: a story of partially exposed Phe25 in 14-3-3σ. J Chem Inf Model 2011; 51:2612-25. [PMID: 21870863 DOI: 10.1021/ci200212y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many proteins exist and function as oligomers. While hydrophobic interactions have been recognized as the major driving force for oligomerization, detailed molecular mechanisms for the assembly are unknown. Here, we used 14-3-3σ as a model protein and investigated the role of hydrophobic residues at the dimeric interface using MD simulations and coimmunoprecipitations. We found that a half-exposed and half-buried residue in the interface, Phe(25), plays a more important role in promoting homodimerization than the hydrophobic core residues by organizing both favorable hydrophobic and hydrophilic interactions. Phe(25) is critical in packing and stabilizing hydrophobic core residues. We conclude that the structural stability of hydrophobic cores is critical for a stable homodimer complex and this stable property can be bestowed by residues outside of hydrophobic core. The important organizing activity of Phe(25) for homodimerization of 14-3-3σ originates from its unique physical location, rigidity, size, and hydrophobicity. Thus, hydrophobic residues that are not deeply buried at the oligomeric interface may play important but different roles from the buried core residues and they may promote oligomerization by organizing co-operativity of core and other residues for favorable hydrophobic and electrostatic interactions.
Collapse
Affiliation(s)
- Jing-Yuan Liu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | | | | | | |
Collapse
|
18
|
Crea F, Hurt EM, Mathews LA, Cabarcas SM, Sun L, Marquez VE, Danesi R, Farrar WL. Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol Cancer 2011; 10:40. [PMID: 21501485 PMCID: PMC3100246 DOI: 10.1186/1476-4598-10-40] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 04/18/2011] [Indexed: 12/23/2022] Open
Abstract
Background Polycomb repressive complex 2 (PRC2) mediates gene silencing through histone H3K27 methylation. PRC2 components are over-expressed in metastatic prostate cancer (PC), and are required for cancer stem cell (CSC) self-renewal. 3-Dezaneplanocin-A (DZNeP) is an inhibitor of PRC2 with broad anticancer activity. Method we investigated the effects of DZNeP on cell proliferation, tumorigenicity and invasive potential of PC cell lines (LNCaP and DU145). Results Exploring GEO and Oncomine databases, we found that specific PRC2 genes (EED, EZH2, SUZ12) predict poor prognosis in PC. Non-toxic DZNeP concentrations completely eradicated LNCaP and DU145 prostatosphere formation, and significantly reduced the expression of CSC markers. At comparable doses, other epigenetic drugs were not able to eradicate CSCs. DZNeP was also able to reduce PC cell invasion. Cells pre-treated with DZNeP were significantly less tumorigenic (LNCaP) and formed smaller tumors (DU145) in immunocompromised mice. Conclusion DZNeP is effective both in vitro and in vivo against PC cells. DZNeP antitumor activity is in part mediated by inhibition of CSC tumorigenic potential.
Collapse
Affiliation(s)
- Francesco Crea
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, National Cancer Institute at Frederick, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
D’Aguanno S, D’Alessandro A, Pieroni L, Roveri A, Zaccarin M, Marzano V, Canio MD, Bernardini S, Federici G, Urbani A. New Insights into Neuroblastoma Cisplatin Resistance: A Comparative Proteomic and Meta-Mining Investigation. J Proteome Res 2010; 10:416-28. [DOI: 10.1021/pr100457n] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simona D’Aguanno
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Annamaria D’Alessandro
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Luisa Pieroni
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Antonella Roveri
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Mattia Zaccarin
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Valeria Marzano
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Michele De Canio
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Sergio Bernardini
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Giorgio Federici
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Andrea Urbani
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| |
Collapse
|
20
|
Li Z, Dong Z, Myer D, Yip-Schneider M, Liu J, Cui P, Schmidt CM, Zhang JT. Role of 14-3-3σ in poor prognosis and in radiation and drug resistance of human pancreatic cancers. BMC Cancer 2010; 10:598. [PMID: 21040574 PMCID: PMC2991307 DOI: 10.1186/1471-2407-10-598] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 11/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic cancer is the fourth leading cause of death in the US. Unlike other solid tumors such as testicular cancer which are now curable, more than 90% of pancreatic cancer patients die due to lack of response to therapy. Recently, the level of 14-3-3σ mRNA was found to be increased in pancreatic cancers and this increased expression may contribute to the failure in treatment of pancreatic cancers. In the present study, we tested this hypothesis. METHODS Western blot analysis was used to determine 14-3-3σ protein level in fresh frozen tissues and was correlated to clinical outcome. A stable cell line expressing 14-3-3σ was established and the effect of 14-3-3σ over-expression on cellular response to radiation and anticancer drugs were tested using SRB assay and clonogenic assays. Cell cycle distribution and apoptosis analyses were performed using propidium iodide staining and PARP cleavage assays. RESULTS We found that 14-3-3σ protein level was increased significantly in about 71% (17 of 24) of human pancreatic cancer tissues and that the 14-3-3σ protein level in cancers correlated with lymph node metastasis and poor prognosis. Furthermore, we demonstrated that over-expression of 14-3-3σ in a pancreatic cancer cell line caused resistance to γ-irradiation as well as anticancer drugs by causing resistance to treatment-induced apoptosis and G2/M arrest. CONCLUSION The increased level of 14-3-3σ protein likely contributes to the poor clinical outcome of human pancreatic cancers by causing resistance to radiation and anticancer drugs. Thus, 14-3-3σ may serve as a prognosis marker predicting survival of pancreatic cancer patients and guide the clinical treatment of these patients.
Collapse
Affiliation(s)
- Zhaomin Li
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Targeted proteomic analysis of 14-3-3sigma in nasopharyngeal carcinoma. Int J Biochem Cell Biol 2009; 42:137-47. [PMID: 19828132 DOI: 10.1016/j.biocel.2009.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 09/24/2009] [Accepted: 10/06/2009] [Indexed: 11/21/2022]
Abstract
14-3-3sigma is a potential tumor suppressor, and loss of 14-3-3sigma expression plays an important role in carcinogenesis and metastasis. To explore the possible mechanism of 14-3-3sigma in nasopharyngeal carcinoma (NPC) invasion and metastasis, targeted proteomic analysis was performed on 14-3-3sigma-associated proteins from NPC cells. As the results, 112 proteins associated with 14-3-3sigma were identified, and four 14-3-3sigma-interacted proteins: keratin 8, epidermal growth factor receptor (EGFR), small GTP-binding protein RAB7, and p53 were confirmed by coimmunoprecipitation and Western blot analysis. The 14-3-3sigma-associated proteins could be grouped into eight clusters based on their molecule functions. Protein-protein interaction (PPI) analysis indicated that 14-3-3sigma/EGFR/keratin 8 interactions may be involved in the invasion and metastasis of NPC. 14-3-3sigma/EGFR/keratin 8 could form complexes in NPC cells. 14-3-3sigma downregulation in NPC may lead to the overexpression of EGFR and keratin 8, which increases the invasion ability of NPC cells possibly by activating the downstream signal molecules and reorganizing cytoskeleton. The data suggest that the biological functions of 14-3-3sigma in NPC are diversified, and 14-3-3sigma could inhibit the in vitro invasive ability of NPC cells possibly through 14-3-3sigma/EGFR/keratin 8 interaction.
Collapse
|
22
|
Xiao G, Lu Q, Li C, Wang W, Chen Y, Xiao Z. Comparative proteome analysis of human adenocarcinoma. Med Oncol 2009; 27:346-56. [DOI: 10.1007/s12032-009-9216-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 03/30/2009] [Indexed: 11/24/2022]
|
23
|
Laimer K, Blassnig N, Spizzo G, Kloss F, Rasse M, Obrist P, Schäfer G, Perathoner A, Margreiter R, Amberger A. Prognostic significance of 14-3-3sigma expression in oral squamous cell carcinoma (OSCC). Oral Oncol 2008; 45:127-34. [PMID: 18620895 DOI: 10.1016/j.oraloncology.2008.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/09/2008] [Accepted: 04/10/2008] [Indexed: 11/27/2022]
Abstract
14-3-3sigma an intracellular phosphoserine binding protein regulates different cellular signalling processes and is involved in cancer development. In this study, we examined the expression of 14-3-3sigma and evaluated its clinical significance in OSCC. Tumour tissue from 95 OSCC patients was analysed for 14-3-3sigma and p53 expression, respectively. The correlation of these proteins with survival and clinical parameters was assessed. 14-3-3sigma high expression was observed in 44.2% of OSCC patients. A significant role of 14-3-3sigma expression on survival was shown by Kaplan-Meier analysis. Median survival time was 4.1years for patients with 14-3-3sigma low tumours, compared with 1.36years for 14-3-3sigma high tumours (P=.0021). Subset analysis in patients receiving adjuvant chemotherapy showed that the overall survival was significantly decreased in 14-3-3sigma high tumours than in 14-3-3sigma low tumours (P=.02). p53 expression was not significant in univariate analyses. In multivariate regression analysis, 14-3-3sigma expression emerged as a significant independent parameter (P=.003). These results provide evidence that 14-3-3sigma expression is involved in OSCC and, in contrast to p53 expression represents a new prognostic marker for OSCC and therapy response. Pending validation targeting 14-3-3sigma might also be a new opportunity to improve therapy.
Collapse
Affiliation(s)
- Klaus Laimer
- Division of Maxillofacial Surgery, Innsbruck Medical University, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu H, Liu Y, Zhang JT. A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Mol Cancer Ther 2008; 7:263-70. [PMID: 18281512 DOI: 10.1158/1535-7163.mct-07-0445] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multidrug resistance is a major problem in successful cancer chemotherapy. Various mechanisms of resistance, such as ABC transporter-mediated drug efflux, have been discovered using established model cancer cell lines. While characterizing a drug-resistant breast cancer cell line, MCF7/AdVp3000, we found that fatty acid synthase (FASN) is overexpressed. In this study, we showed that ectopic overexpression of FASN indeed causes drug resistance and that reducing the FASN expression increased the drug sensitivity in breast cancer cell lines MCF7 and MDA-MB-468 but not in the normal mammary epithelial cell line MCF10A1. Use of FASN inhibitor, Orlistat, at low concentrations also sensitized cells with FASN overexpression to anticancer drugs. The FASN-mediated drug resistance appears to be due to a decrease in drug-induced apoptosis from an overproduction of palmitic acid by FASN. Together with previous findings of FASN as a poor prognosis marker for breast cancer patients, our results suggest that FASN overexpression is a new mechanism of drug resistance and may be an ideal target for chemosensitization in breast cancer chemotherapy.
Collapse
Affiliation(s)
- Hailan Liu
- Department of Pharmacology and Toxicology, Walther Oncology Center/Walther Cancer Institute and Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
25
|
Uzzo RG, Haas NB, Crispen PL, Kolenko VM. Mechanisms of apoptosis resistance and treatment strategies to overcome them in hormone-refractory prostate cancer. Cancer 2008; 112:1660-71. [DOI: 10.1002/cncr.23318] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Zhang JT, Liu Y. Use of comparative proteomics to identify potential resistance mechanisms in cancer treatment. Cancer Treat Rev 2007; 33:741-56. [PMID: 17854999 PMCID: PMC2203306 DOI: 10.1016/j.ctrv.2007.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/16/2007] [Accepted: 07/21/2007] [Indexed: 01/06/2023]
Abstract
Drug resistance is a major problem in successful cancer chemotherapy. Many molecular mechanisms that are responsible for drug resistance are known whereas others have yet to be discovered. Determining the exact mechanism activated in a particular case (clinical or laboratory) is a difficult task. Recently, proteomics has been applied to investigate drug resistance mechanisms in model cancer cell lines. As a result, novel mechanisms of resistance have been discovered and known mechanisms of resistance confirmed. In this paper, we wish to review recent developments and progresses in the application of proteomic tools to identify known and novel drug resistance mechanisms in drug-selected model cancer cell lines. Our combined analyses of multiple proteomic studies of various drug resistant cancer cell lines revealed that many mechanisms of resistance likely exist in any given drug-selected cancer cell line and that common mechanisms of resistance may be selected in a spectrum of cancer cell lines. These observations suggest that combination therapies targeting multiple mechanisms to sensitize drug resistant cancers may be necessary to eradicate cancers in the future.
Collapse
Affiliation(s)
- Jian-Ting Zhang
- Department of Pharmacology and Toxicology, Walther Oncology Center/Walther Cancer Institute and IU Cancer Center, Indiana University School of Medicine, 1044 W. Walnut Street, R4-166, IN 46202, United States.
| | | |
Collapse
|
27
|
Quayle SN, Sadar MD. 14-3-3 sigma increases the transcriptional activity of the androgen receptor in the absence of androgens. Cancer Lett 2007; 254:137-45. [PMID: 17433535 PMCID: PMC2040346 DOI: 10.1016/j.canlet.2007.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/14/2007] [Accepted: 03/05/2007] [Indexed: 12/12/2022]
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that regulates numerous target genes, including prostate-specific antigen (PSA). We examined the ability of each member of the 14-3-3 family to modulate transcription of PSA through the AR. Despite significant homology within the 14-3-3 family we observed differences in the ability of each isoform to alter the transcriptional activity of the AR. Significantly, 14-3-3 sigma activated PSA-luciferase reporters not only at castrate levels of androgens, but also in the complete absence of androgens. 14-3-3 sigma also increased expression of the endogenous PSA gene in the absence of androgens. Knockdown of the AR by siRNA oligonucleotides abolished activation of these reporters by 14-3-3 sigma. These findings may have greatest significance in hormone refractory prostate cancer where the AR may be activated in a ligand-independent manner.
Collapse
Affiliation(s)
- Steven N Quayle
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | |
Collapse
|
28
|
Liu Y, Liu H, Han B, Zhang JT. Identification of 14-3-3σ as a Contributor to Drug Resistance in Human Breast Cancer Cells Using Functional Proteomic Analysis. Cancer Res 2006; 66:3248-55. [PMID: 16540677 DOI: 10.1158/0008-5472.can-05-3801] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multidrug resistance (MDR) is a major obstacle to successful cancer treatment. To understand the mechanism of MDR, many cancer cell lines have been established, and various mechanisms of resistance, such as ATP-binding cassette (ABC) transporter-mediated drug efflux, have been discovered. Previously, a MDR cell line MCF7/AdVp3000 was selected from breast cancer cell line MCF7 against Adriamycin, and overexpression of ABCG2 was thought to cause MDR in this derivative cell line. However, ectopic overexpression of ABCG2 in MCF7 cells could not explain the extremely high drug resistance level of the selected MCF7/AdVp3000 cells. We hypothesized that MCF7/AdVp3000 cells must have other resistance mechanisms selected by Adriamycin. To test this hypothesis, we compared the global protein profiles between MCF7 and MCF7/AdVp3000 cells. Following two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis, 17 protein spots with differential levels between the two cell lines were identified. Although 14-3-3sigma, keratin 18, keratin 19, ATP synthase beta, protein disulfide isomerase, heat shock protein 27, cathepsin D, triose-phosphate isomerase, peroxiredoxin 6, and electron transfer flavoprotein were increased, nm23/H1, peroxiredoxin 2, nucleophosmin 1/B23, and inorganic pyrophosphatase were decreased in MCF7/AdVp3000 cells. The differential levels of these proteins were validated using Western blot. Furthermore, functional validation showed that the elevated 14-3-3sigma expression contributes considerably to the observed drug resistance in MCF7/AdVp3000 cells. We, thus, conclude that these proteins likely contribute to the resistance selected in the MCF7/AdVp3000 cells, and their altered expression in tumors may cause clinical resistance to chemotherapy.
Collapse
MESH Headings
- 14-3-3 Proteins
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Electrophoresis, Gel, Two-Dimensional
- Exonucleases/antagonists & inhibitors
- Exonucleases/biosynthesis
- Exonucleases/genetics
- Exonucleases/metabolism
- Exoribonucleases
- Humans
- Mitoxantrone/pharmacology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Proteomics/methods
- RNA, Small Interfering/genetics
- Reproducibility of Results
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transfection
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology and Toxicology, Walther Oncology Center/Walther Cancer Institute and IU Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|