1
|
Liu Y, Zhou Z, Sun S. Prospects of marine-derived compounds as potential therapeutic agents for glioma. PHARMACEUTICAL BIOLOGY 2024; 62:513-526. [PMID: 38864445 PMCID: PMC11172260 DOI: 10.1080/13880209.2024.2359659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
CONTEXT Glioma, the most common primary malignant brain tumour, is a grave health concern associated with high morbidity and mortality. Current treatments, while effective to some extent, are often hindered by factors such as the blood-brain barrier and tumour microenvironment. This underscores the pressing need for exploring new pharmacologically active anti-glioma compounds. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, SciFinder, Google Scholar, Scopus, PubMed, Springer Link and relevant books. Publications were selected without date restrictions, using terms such as 'Hymenocrater spp.,' 'phytochemical,' 'pharmacological,' 'extract,' 'essential oil' and 'traditional uses.' General web searches using Google and Yahoo were also performed. Articles related to agriculture, ecology, synthetic work or published in languages other than English or Chinese were excluded. RESULTS The marine environment has been identified as a rich source of diverse natural products with potent antitumour properties. CONCLUSIONS This paper not only provides a comprehensive review of marine-derived compounds but also unveils their potential in treating glioblastoma multiforme (GBM) based on functional classifications. It encapsulates the latest research progress on the regulatory biological functions and mechanisms of these marine substances in GBM, offering invaluable insights for the development of new glioma treatments.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Zhiyang Zhou
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Han M, Wang Z, Li Y, Song Y, Wang Z. The application and sustainable development of coral in traditional medicine and its chemical composition, pharmacology, toxicology, and clinical research. Front Pharmacol 2024; 14:1230608. [PMID: 38235111 PMCID: PMC10791799 DOI: 10.3389/fphar.2023.1230608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
This review discusses the variety, chemical composition, pharmacological effects, toxicology, and clinical research of corals used in traditional medicine in the past two decades. At present, several types of medicinal coral resources are identified, which are used in 56 formulas such as traditional Chinese medicine, Tibetan medicine, Mongolian medicine, and Uyghur medicine. A total of 34 families and 99 genera of corals are involved in medical research, with the Alcyoniidae family and Sarcophyton genus being the main research objects. Based on the structural types of compounds and the families and genera of corals, this review summarizes the compounds primarily reported during the period, including terpenoids, steroids, nitrogen-containing compounds, and other terpenoids dominated by sesquiterpene and diterpenes. The biological activities of coral include cytotoxicity (antitumor and anticancer), anti-inflammatory, analgesic, antibacterial, antiviral, immunosuppressive, antioxidant, and neurological properties, and a detailed summary of the mechanisms underlying these activities or related targets is provided. Coral toxicity mostly occurs in the marine ornamental soft coral Zoanthidae family, with palytoxin as the main toxic compound. In addition, nonpeptide neurotoxins are extracted from aquatic corals. The compatibility of coral-related preparations did not show significant acute toxicity, but if used for a long time, it will still cause toxicity to the liver, kidneys, lungs, and other internal organs in a dose-dependent manner. In clinical applications, individual application of coral is often used as a substitute for orthopedic materials to treat diseases such as bone defects and bone hyperplasia. Second, coral is primarily available in the form of compound preparations, such as Ershiwuwei Shanhu pills and Shanhu Qishiwei pills, which are widely used in the treatment of neurological diseases such as migraine, primary headache, epilepsy, cerebral infarction, hypertension, and other cardiovascular and cerebrovascular diseases. It is undeniable that the effectiveness of coral research has exacerbated the endangered status of corals. Therefore, there should be no distinction between the advantages and disadvantages of listed endangered species, and it is imperative to completely prohibit their use and provide equal protection to help them recover to their normal numbers. This article can provide some reference for research on coral chemical composition, biological activity, chemical ecology, and the discovery of marine drug lead compounds. At the same time, it calls for people to protect endangered corals from the perspectives of prohibition, substitution, and synthesis.
Collapse
Affiliation(s)
- Mengtian Han
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyuan Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiye Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinglian Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules 2022; 12:biom12020189. [PMID: 35204690 PMCID: PMC8961598 DOI: 10.3390/biom12020189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
Collapse
|
5
|
Khotimchenko R, Bryukhovetskiy I, Khotimchenko M, Khotimchenko Y. Bioactive Compounds with Antiglioma Activity from Marine Species. Biomedicines 2021; 9:biomedicines9080886. [PMID: 34440090 PMCID: PMC8389718 DOI: 10.3390/biomedicines9080886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
The search for new chemical compounds with antitumor pharmacological activity is a necessary process for creating more effective drugs for each specific malignancy type. This review presents the outcomes of screening studies of natural compounds with high anti-glioma activity. Despite significant advances in cancer therapy, there are still some tumors currently considered completely incurable including brain gliomas. This review covers the main problems of the glioma chemotherapy including drug resistance, side effects of common anti-glioma drugs, and genetic diversity of brain tumors. The main emphasis is made on the characterization of natural compounds isolated from marine organisms because taxonomic diversity of organisms in seawaters significantly exceeds that of terrestrial species. Thus, we should expect greater chemical diversity of marine compounds and greater likelihood of finding effective molecules with antiglioma activity. The review covers at least 15 classes of organic compounds with their chemical formulas provided as well as semi-inhibitory concentrations, mechanisms of action, and pharmacokinetic profiles. In conclusion, the analysis of the taxonomic diversity of marine species containing bioactives with antiglioma activity is performed noting cytotoxicity indicators and to the tumor cells in comparison with similar indicators of antitumor agents approved for clinical use as antiglioblastoma chemotherapeutics.
Collapse
Affiliation(s)
- Rodion Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Igor Bryukhovetskiy
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Maksim Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
- Laboratory of Pharmacology, A. V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
- Correspondence:
| |
Collapse
|
6
|
Small Molecules of Marine Origin as Potential Anti-Glioma Agents. Molecules 2021; 26:molecules26092707. [PMID: 34063013 PMCID: PMC8124757 DOI: 10.3390/molecules26092707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Marine organisms are able to produce a plethora of small molecules with novel chemical structures and potent biological properties, being a fertile source for discovery of pharmacologically active compounds, already with several marine-derived agents approved as drugs. Glioma is classified by the WHO as the most common and aggressive form of tumor on CNS. Currently, Temozolomide is the only chemotherapeutic option approved by the FDA even though having some limitations. This review presents, for the first time, a comprehensive overview of marine compounds described as anti-glioma agents in the last decade. Nearly fifty compounds were compiled in this document and organized accordingly to their marine sources. Highlights on the mechanism of action and ADME properties were included. Some of these marine compounds could be promising leads for the discovery of new therapeutic alternatives for glioma treatment.
Collapse
|
7
|
Wei J, Liu R, Hu X, Liang T, Zhou Z, Huang Z. MAPK signaling pathway-targeted marine compounds in cancer therapy. J Cancer Res Clin Oncol 2021; 147:3-22. [PMID: 33389079 DOI: 10.1007/s00432-020-03460-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE This paper reviews marine compounds that target the mitogen-activated protein kinase (MAPK) signaling pathway and their main sources, chemical structures, major targeted cancers and possible mechanisms to provide comprehensive and basic information for the development of marine compound-based antitumor drugs in clinical cancer therapy research. METHODS This paper searched the PubMed database using the keywords "cancer", "marine*" and "MAPK signaling pathway"; this search was supplemented by the literature-tracing method. The marine compounds screened for review in this paper are pure compounds with a chemical structure and have antitumor effects on more than one tumor cell line by targeting the MAPK signaling pathway. The PubChem database was used to search for the PubMed CID and draw the chemical structures of the marine compounds. RESULTS A total of 128 studies were searched, and 32 marine compounds with unique structures from extensive sources were collected for this review. These compounds are cytotoxic to cancer cell lines, although their targets are still unclear. This paper describes their anticancer effect mechanisms and the protein expression changes in the MAPK pathway induced by these marine compound treatments. This review is the first to highlight MAPK signaling pathway-targeted marine compounds and their use in cancer therapy. CONCLUSION The MAPK signaling pathway is a promising potential target for cancer therapy. Searching for marine compounds that exert anticancer effects by targeting the MAPK signaling pathway and developing them into new marine anticancer drugs will be beneficial for cancer treatment.
Collapse
Affiliation(s)
- Jiaen Wei
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Ruining Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Xiyun Hu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Tingen Liang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Zhiran Zhou
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China. .,Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
8
|
Su CM, Chen CY, Lu T, Sun Y, Li W, Huang YL, Tsai CH, Chang CS, Tang CH. A novel benzofuran derivative, ACDB, induces apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress. Oncotarget 2018; 7:83530-83543. [PMID: 27835579 PMCID: PMC5347786 DOI: 10.18632/oncotarget.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Chondrosarcoma is one of the bone tumor with high mortality in respond to poor radiation and chemotherapy treatment. Here, we analyze the antitumor activity of a novel benzofuran derivative, 2-amino-3-(2-chlorophenyl)-6-(4-dimethylaminophenyl)benzofuran-4-yl acetate (ACDB), in human chondrosarcoma cells. ACDB increased the cell apoptosis of human chondrosarcomas without harm in chondrocytes. ACDB also enhanced endoplasmic reticulum (ER) stress, which was characterized by varieties in the cytosolic calcium levels and induced the expression of glucose-regulated protein (GRP) and calpain. Furthermore, the ACDB-induced chondrosarcoma apoptosis was associated with the upregulation of the B cell lymphoma-2 (Bcl-2) family members including pro- and anti-apoptotic proteins, downregulation of dysfunctional mitochondria that released cytochrome C, and subsequent activation of caspases-3. In addition, the ACDB-mediated cellular apoptosis was suppressed by transfecting cells with glucose-regulated protein (GRP) and calpain siRNA or treating cells with ER stress chelators and caspase inhibitors. Interestingly, animal experiments illustrated a reduction in the tumor volume following ACDB treatment. Together, these results suggest that ACDB may be a novel tumor suppressor of chondrosarcoma, and this study demonstrates that the novel antitumor agent, ACDB, induced apoptosis by mitochondrial dysfunction and ER stress in human chondrosarcoma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China.,Graduate Institute of Basic Medical Science, China Medical University, Taichung Taiwan
| | - Chien-Yu Chen
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Tingting Lu
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yi Sun
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Weimin Li
- Department of Cardiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Shiang Chang
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Wright MH, Sieber SA. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat Prod Rep 2017; 33:681-708. [PMID: 27098809 PMCID: PMC5063044 DOI: 10.1039/c6np00001k] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on chemical probes to identify the protein binding partners of natural products in living systems.
Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.
Collapse
Affiliation(s)
- M H Wright
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - S A Sieber
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
10
|
Sivalingam KS, Paramasivan P, Weng CF, Viswanadha VP. Neferine Potentiates the Antitumor Effect of Cisplatin in Human Lung Adenocarcinoma Cells Via a Mitochondria-Mediated Apoptosis Pathway. J Cell Biochem 2017; 118:2865-2876. [DOI: 10.1002/jcb.25937] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Kalai Selvi Sivalingam
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore Tamil Nadu India
| | - Poornima Paramasivan
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore Tamil Nadu India
| | - Ching Feng Weng
- Laboratory of Molecular Physiology, Department of Life Sciences, Institute of Biotechnology; National Dong Hwa University; Hualien 974 Taiwan
| | - Vijaya padma Viswanadha
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore Tamil Nadu India
- Basic Medical Science; China Medical University; Taichung Taiwan
- Departments of Biotechnology; Asia University; Taichung Taiwan
| |
Collapse
|
11
|
Ghosh AK, Brindisi M. Achmatowicz Reaction and its Application in the Syntheses of Bioactive Molecules. RSC Adv 2016; 6:111564-111598. [PMID: 28944049 PMCID: PMC5603243 DOI: 10.1039/c6ra22611f] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Substituted pyranones and tetrahydropyrans are structural subunits of many bioactive natural products. Considerable efforts are devoted toward the chemical synthesis of these natural products due to their therapeutic potential as well as low natural abundance. These embedded pyranones and tetrahydropyran structural motifs have been the subject of synthetic interest over the years. While there are methods available for the syntheses of these subunits, there are issues related to regio and stereochemical outcomes, as well as versatility and compatibility of reaction conditions and functional group tolerance. The Achmatowicz reaction, an oxidative ring enlargement of furyl alcohol, was developed in the 1970s. The reaction provides a unique entry to a variety of pyranone derivatives from functionalized furanyl alcohols. These pyranones provide convenient access to substituted tetrahydropyran derivatives. This review outlines general approaches to the synthesis of tetrahydropyrans, covering general mechanistic aspects of the Achmatowicz reaction or rearrangement with an overview of the reagents utilized for the Achmatowicz reaction. The review then focuses on the synthesis of functionalized tetrahydropyrans and pyranones and their applications in the synthesis of natural products and medicinal agents.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Zhu L, Tong R. Structural Revision of (+)-Uprolide F Diacetate Confirmed by Asymmetric Total Synthesis. Org Lett 2015; 17:1966-9. [DOI: 10.1021/acs.orglett.5b00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liangyu Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
13
|
Polyoxygenated steroids from the octocoral Leptogorgia punicea and in vitro evaluation of their cytotoxic activity. Mar Drugs 2014; 12:5864-80. [PMID: 25486111 PMCID: PMC4278206 DOI: 10.3390/md12125864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/25/2022] Open
Abstract
Five new polyoxygenated marine steroids-punicinols A-E (1-5)-were isolated from the gorgonian Leptogorgia punicea and characterized by spectroscopic methods (IR, MS, 1H, 13C and 2-D NMR). The five compounds induced in vitro cytotoxic effects against lung cancer A549 cells, while punicinols A and B were the most active, with IC50 values of 9.7 μM and 9.6 μM, respectively. The synergistic effects of these compounds with paclitaxel, as well as their effects on cell cycle distribution and their performance in the clonogenic assay, were also evaluated. Both compounds demonstrated significant synergistic effects with paclitaxel.
Collapse
|
14
|
Zhu L, Liu Y, Ma R, Tong R. Total Synthesis and Structural Revision of (+)-Uprolide G Acetate. Angew Chem Int Ed Engl 2014; 54:627-32. [DOI: 10.1002/anie.201409618] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Indexed: 11/10/2022]
|
15
|
Zhu L, Liu Y, Ma R, Tong R. Total Synthesis and Structural Revision of (+)-Uprolide G Acetate. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Song W, Hu P, Shan Y, Du M, Liu A, Ye R. Cartilage polysaccharide induces apoptosis in K562 cells through a reactive oxygen species-mediated caspase pathway. Food Funct 2014; 5:2486-93. [PMID: 25112602 DOI: 10.1039/c4fo00476k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a polysaccharide (PS) was successfully extracted from porcine cartilage and its effect on chronic myeloid leukemia was examined using human K562 cells. The results of cell proliferation assays indicated that the PS inhibited cancer cell growth at different concentrations. Morphological and biochemical changes characteristic of apoptosis were observed and confirmed by PI staining and TUNEL assay. The nuclear DNA, RNA and proteins of the cancer cells subjected to PS treatment were irreversibly destroyed by reactive oxygen species (ROS), additionally, the ROS effected on the cells directly. The apoptotic signals altered the permeability of the mitochondrial outer membrane, thereby resulted in the release of apoptotic factors into the cytoplasm that induced apoptosis. As caspase-3/7, 8 and 9 were expressed, it was speculated that both intrinsic and extrinsic pathways were involved in the PS-induced apoptosis.
Collapse
Affiliation(s)
- Wei Song
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | | | | | | | | | | |
Collapse
|
17
|
Ni CH, Yu CS, Lu HF, Yang JS, Huang HY, Chen PY, Wu SH, Ip SW, Chiang SY, Lin JG, Chung JG. Chrysophanol-induced cell death (necrosis) in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential. ENVIRONMENTAL TOXICOLOGY 2014; 29:740-749. [PMID: 22848001 DOI: 10.1002/tox.21801] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 06/28/2012] [Accepted: 06/30/2012] [Indexed: 06/01/2023]
Abstract
Chrysophanol (1,8-dihydroxy-3-methylanthraquinone) is one of the anthraquinone compounds, and it has been shown to induce cell death in different types of cancer cells. The effects of chrysophanol on human lung cancer cell death have not been well studied. The purpose of this study is to examine chrysophanol-induced cytotoxic effects and also to investigate such influences that involved apoptosis or necrosis in A549 human lung cancer cells in vitro. Our results indicated that chrysophanol decreased the viable A549 cells in a dose- and time-dependent manner. Chrysophanol also promoted the release of reactive oxygen species (ROS) and Ca(2+) and decreased the levels of mitochondria membrane potential (ΔΨm ) and adenosine triphosphate in A549 cells. Furthermore, chrysophanol triggered DNA damage by using Comet assay and DAPI staining. Importantly, chrysophanol only stimulated the cytocheome c release, but it did not activate other apoptosis-associated protein levels including caspase-3, caspase-8, Apaf-1, and AIF. In conclusion, human lung cancer A549 cells treated with chrysophanol exhibited a cellular pattern associated with necrotic cell death and not apoptosis in vitro. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 740-749, 2014.
Collapse
Affiliation(s)
- Chien-Hang Ni
- Department of Chinese Medicine, E-DA Hospital/I-Shou University, Kaohsiung 824, Taiwan; Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Robles O, Romo D. Chemo- and site-selective derivatizations of natural products enabling biological studies. Nat Prod Rep 2014; 31:318-34. [PMID: 24468713 PMCID: PMC4041598 DOI: 10.1039/c3np70087a] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive natural products and derivatives remain an enduring starting point for the discovery of new cellular targets for disease intervention and lead compounds for the development of new therapeutic agents. The former goal is accomplished through the synthesis of bioactive cellular probes from natural products, enabling insights into the mechanism of action of these natural products by classical affinity chromatography or more recent proteome profiling methods. However, the direct and selective modification of native natural products for these purposes remains a challenge due to the structural complexity and the wide functional group diversity found in these natural substances. The lack of selective synthetic methods available to directly manipulate unprotected complex small molecules, in particular to perform structure-activity relationship studies and prepare appropriate cellular probes, has recently begun to be addressed, benefitting from the broader emerging area of chemoselective synthetic methodology. Thus, new reagents, catalysts and reaction processes are enabling both chemo- and site-selective modifications of complex, native natural products. In this review, we describe selected recent examples of these functionalization strategies in this emerging area.
Collapse
Affiliation(s)
- Omar Robles
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA.
| | | |
Collapse
|
19
|
Jiang H, Yin M, Li Y, Liu B, Zhao J, Wu W. An efficient synthesis of 2,5-diimino-furans via Pd-catalyzed cyclization of bromoacrylamides and isocyanides. Chem Commun (Camb) 2014; 50:2037-9. [DOI: 10.1039/c3cc47724j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Yoon DH, Lim MH, Lee YR, Sung GH, Lee TH, Jeon BH, Cho JY, Song WO, Park H, Choi S, Kim TW. A novel synthetic analog of Militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells. Toxicol Appl Pharmacol 2013; 273:659-71. [PMID: 24161344 DOI: 10.1016/j.taap.2013.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/04/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC50 of 5μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G0/G1-DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer.
Collapse
Affiliation(s)
- Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lo YL, Wang W. Formononetin potentiates epirubicin-induced apoptosis via ROS production in HeLa cells in vitro. Chem Biol Interact 2013; 205:188-97. [PMID: 23867903 DOI: 10.1016/j.cbi.2013.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 06/08/2013] [Accepted: 07/05/2013] [Indexed: 11/26/2022]
Abstract
The frequent development of multidrug resistance (MDR) hampers the efficacy of available anticancer drugs in treating cervical cancer. In this study, we aimed to use formononetin (7-hydroxy-4'-methoxyisoflavone), a potential herbal isoflavone, to intensify the chemosensitivity of human cervical cancer HeLa cells to epirubicin, an anticancer drug. The reactive oxygen species (ROS) levels were correlated with MDR modulation mechanisms, including the transporter inhibition and apoptosis induction. Our results revealed that formononetin significantly enhanced the cytotoxicity of epirubicin. Co-incubation of epirubicin with formononetin increased the ROS levels, including hydrogen peroxide and superoxide free radicals. Epirubicin alone markedly increased the mRNA expression of MDR1, MDR-associated protein (MRP) 1, and MRP2. In contrast, formononetin alone or combined treatment decreased the mRNA expression of MRP1 and MRP2. This result indicates that efflux transporter-mediated epirubicin resistance is inhibited at different degrees by the addition of formononetin. This isoflavone significantly intensified epirubicin uptake into HeLa cells. Apoptosis was induced by formononetin and/or epirubicin, as signified by nuclear DNA fragmentation, chromatin condensation, increased sub-G1 and G2/M phases. The cotreatment triggered the mitochondrial apoptotic pathway indicated by increased Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, and significant activation of caspase-9 and -3. In addition, extrinsic/caspases-8 apoptotic pathway was also induced by the cotreatment. N-acetyl cysteine abrogated these events induced by formononetin, supporting the involvement of ROS in the MDR reversal mechanism. This study pioneered in demonstrating that formononetin may potentiate the cytotoxicity of epirubicin in HeLa cells through the ROS-mediated MRP inhibition and concurrent activation of the mitochondrial and death receptor pathways of apoptosis. Hence, the circumvention of pump and non-pump resistance using formononetin and epirubicin may pave the way for a powerful chemotherapeutic regimen for treating human cervical cancer.
Collapse
Affiliation(s)
- Yu-Li Lo
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan ROC.
| | | |
Collapse
|
22
|
Su CM, Wang SW, Lee TH, Tzeng WP, Hsiao CJ, Liu SC, Tang CH. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells. Toxicol Appl Pharmacol 2013; 272:335-44. [PMID: 23806212 DOI: 10.1016/j.taap.2013.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022]
Abstract
Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress.
Collapse
Affiliation(s)
- Chen-Ming Su
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Simultaneous structure-activity studies and arming of natural products by C-H amination reveal cellular targets of eupalmerin acetate. Nat Chem 2013; 5:510-7. [PMID: 23695633 DOI: 10.1038/nchem.1653] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/11/2013] [Indexed: 12/31/2022]
Abstract
Natural products have a venerable history of, and enduring potential for the discovery of useful biological activity. To fully exploit this, the development of chemical methodology that can functionalize unique sites within these complex structures is highly desirable. Here, we describe the use of rhodium(II)-catalysed C-H amination reactions developed by Du Bois to carry out simultaneous structure-activity relationship studies and arming (alkynylation) of natural products at 'unfunctionalized' positions. Allylic and benzylic C-H bonds in the natural products undergo amination while olefins undergo aziridination, and tertiary amine-containing natural products are converted to amidines by a C-H amination-oxidation sequence or to hydrazine sulfamate zwitterions by an unusual N-amination. The alkynylated derivatives are ready for conversion into cellular probes that can be used for mechanism-of-action studies. Chemo- and site-selectivity was studied with a diverse library of natural products. For one of these-the marine-derived anticancer diterpene, eupalmerin acetate-quantitative proteome profiling led to the identification of several protein targets in HL-60 cells, suggesting a polypharmacological mode of action.
Collapse
|
24
|
A potential daidzein derivative enhances cytotoxicity of epirubicin on human colon adenocarcinoma Caco-2 cells. Int J Mol Sci 2012; 14:158-76. [PMID: 23344026 PMCID: PMC3565256 DOI: 10.3390/ijms14010158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022] Open
Abstract
In this study, we evaluated the effects of 8-hydroxydaidzein (8HD), an isoflavone isolated from fermented soy germ koji, and epirubicin (Epi), an antineoplastic agent, on the production of reactive oxygen species (ROS). We subsequently correlated the ROS levels to the anticancer mechanisms of Epi and 8HD in human colon adenocarcinoma Caco-2 cells. 8HD enhanced cytotoxicity of Epi and generated a synergistic effect. Epi and/or 8HD treatments increased the hydrogen peroxide and superoxide levels. Combined treatment markedly decreased mRNA expression levels of multidrug resistance protein 1 (MDR1), MDR-associated protein (MRP) 1, and MRP2. 8HD significantly intensified Epi intracellular accumulation in Caco-2 cells. 8HD and/or Epi-induced apoptosis, as indicated by the reduced mitochondrial membrane potential and increased sub-G1 phase in cell cycle. Moreover, 8HD and Epi significantly enhanced the mRNA expressions of Bax, p53, caspases-3, -8, and -9. To our best knowledge, this study verifies for the first time that 8HD effectively circumvents MDR in Caco-2 cells through the ROS-dependent inhibition of efflux transporters and p53-mediated activation of both death receptor and mitochondrial pathways of apoptosis. Our findings of 8HD shed light on the future search for potential biotransformed isoflavones to intensify the cytotoxicity of anticancer drugs through simultaneous reversal of pump and nonpump resistance.
Collapse
|
25
|
Lu DY, Chang CS, Yeh WL, Tang CH, Cheung CW, Leung YM, Liu JF, Wong KL. The novel phloroglucinol derivative BFP induces apoptosis of glioma cancer through reactive oxygen species and endoplasmic reticulum stress pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1093-1100. [PMID: 22819448 DOI: 10.1016/j.phymed.2012.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/20/2012] [Accepted: 06/19/2012] [Indexed: 06/01/2023]
Abstract
Prenyl-phloroglucinol derivatives from hop plants have been shown to have anticancer activities. This study is the first to investigate the anticancer effects of the new phloroglucinol derivative (2,4-bis(4-fluorophenylacetyl)phloroglucinol; BFP). BFP induced cell death and anti-proliferation in three glioma, U251, U87 and C6 cells, but not in primary human astrocytes. BFP-induced concentration-dependently cell death in glioma cells was determined by MTT and SRB assay. Moreover, BFP-induced apoptotic cell death in glioma cells was measured by Hochest 33258 staining and fluorescence-activated cell sorter (FACS) of propidine iodine (PI) analysis. Treatment of U251 human glioma cells with BFP was also found to induce reactive oxygen species (ROS) generation, which was detected by a fluorescence dye used FACS analysis. Treatment of BFP also increased a number of signature endoplasmic reticulum (ER) stress markers glucose-regulated protein (GRP)-78, GRP-94, IRE1, phosphorylation of eukaryotic initiation factor-2α (eIF-2α) and up-regulation of CAAT/enhancer-binding protein homologous protein (CHOP). Moreover, treatment of BFP also increased the down-stream caspase activation, such as pro-caspase-7 and pro-caspase-12 degradation, suggesting the induction of ER stress. Furthermore, BFP also induced caspase-9 and caspase-3 activation as well as up-regulation of cleaved PARP expression. Treatment of antioxidants, or pre-transfection of cells with GRP78 or CHOP siRNA reduced BFP-mediated apoptotic-related protein expression. Taken together, the present study provides evidences to support that ROS generation, GRP78 and CHOP activation are mediating the BFP-induced human glioma cell apoptosis.
Collapse
Affiliation(s)
- Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
(-)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation. J Nutr Biochem 2012; 24:940-7. [PMID: 22959059 DOI: 10.1016/j.jnutbio.2012.06.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 01/26/2023]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to inhibit carcinogenesis of various tumor types. The aim of this study was to elucidate the antiproliferative potential of EGCG and its mechanism in human endometrial cancer cells (Ishikawa cells) and primary endometrial adenocarcinoma cells. The antiproliferative effect of EGCG was evaluated by cell viability assay. Apoptosis was measured by annexin/propidium iodide staining. Reactive oxygen species (ROS) generation was measured by using 2',7'-dichlorofluorescin diacetate dye. Expression of mitogen-activated protein kinases, proliferation and apoptotic markers were measured by immunoblot analysis. EGCG was found to inhibit proliferation in Ishikawa as well as in primary endometrial adenocarcinoma cells and effectively down-regulated the expression of proliferation markers, i.e., estrogen receptor α, progesterone receptor, proliferating cell nuclear antigen and cyclin D1. EGCG also decreased the activation of ERK and downstream transcription factors fos and jun. EGCG caused apoptotic cell death accompanied by up-regulation of proapoptotic Bax and down-regulation of antiapoptotic protein Bcl2. EGCG induced the cleavage of caspase-3 and poly(ADP-ribose) polymerase, the hallmark of apoptosis. EGCG significantly induced the ROS generation as well as p38 activation in Ishikawa cells, which appeared to be a critical mediator in EGCG-induced apoptosis. The apoptotic effect of EGCG and the p38 activation were blocked by pretreatment of cells with the ROS scavenger N-acetylcysteine. EGCG reduced the glutathione levels, which might be responsible for enhanced ROS generation causing oxidative stress in endometrial cancer cells. Taken together, these results suggest that EGCG inhibits cellular proliferation via inhibiting ERK activation and inducing apoptosis via ROS generation and p38 activation in endometrial carcinoma cells.
Collapse
|
27
|
Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int J Mol Sci 2012; 13:9877-9892. [PMID: 22949836 PMCID: PMC3431834 DOI: 10.3390/ijms13089877] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/06/2012] [Accepted: 07/26/2012] [Indexed: 11/17/2022] Open
Abstract
Glioma is the most common primary adult brain tumor with poor prognosis because of the ease of spreading tumor cells to other regions of the brain. Cell apoptosis is frequently targeted for developing anti-cancer drugs. In the present study, we have assessed wogonin, a flavonoid compound isolated from Scutellaria baicalensis Georgi, induced ROS generation, endoplasmic reticulum (ER) stress and cell apoptosis. Wogonin induced cell death in two different human glioma cells, such as U251 and U87 cells but not in human primary astrocytes (IC 50 > 100 μM). Wogonin-induced apoptotic cell death in glioma cells was measured by propidine iodine (PI) analysis, Tunnel assay and Annexin V staining methods. Furthermore, wogonin also induced caspase-9 and caspase-3 activation as well as up-regulation of cleaved PARP expression. Moreover, treatment of wogonin also increased a number of signature ER stress markers glucose-regulated protein (GRP)-78, GRP-94, Calpain I, and phosphorylation of eukaryotic initiation factor-2α (eIF2α). Treatment of human glioma cells with wogonin was found to induce reactive oxygen species (ROS) generation. Wogonin induced ER stress-related protein expression and cell apoptosis was reduced by the ROS inhibitors apocynin and NAC (N-acetylcysteine). The present study provides evidence to support the fact that wogonin induces human glioma cell apoptosis mediated ROS generation, ER stress activation and cell apoptosis.
Collapse
|
28
|
Oxidative stress induced by crude venom from the jellyfish Pelagia noctiluca in neuronal-like differentiated SH-SY5Y cells. Toxicol In Vitro 2012; 26:694-9. [DOI: 10.1016/j.tiv.2012.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/27/2012] [Accepted: 03/07/2012] [Indexed: 11/20/2022]
|
29
|
Liu JF, Fong YC, Chang KW, Kuo SC, Chang CS, Tang CH. FPTB, a novel CA-4 derivative, induces cell apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress pathways. J Cell Biochem 2011; 112:453-62. [PMID: 21268067 DOI: 10.1002/jcb.22927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chondrosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. The aim of this study was to elucidate the mechanism of the novel Combretastatin A-4 derivative, 2-(furanyl)-5-(pyrrolidinyl)-1-(3,4,5-trimethoxybenzyl)benzoimidazole (FPTB)-induced human chondrosarcoma cells apoptosis. FPTB induced cell apoptosis in human chondrosarcoma cell line but not primary chondrocytes. FPTB induced up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL and dysfunction of mitochondria in chondrosarcoma. FPTB also triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol-calcium levels. We found that FPTB increased glucose-regulated proteins (GRP)78 but not GRP94 expression. In addition, treatment of cells with FPTB induced calpain expression and activity. Transfection of cells with GRP78 or calpain siRNA reduced FPTB-mediated cell apoptosis. Therefore, FPTB-induced apoptosis in chondrosarcoma cells through the mitochondria dysfunction and involves caspase-9 and caspase-3-mediated mechanism. FPTB also induced cell death mediated by increasing ER stress, GPR78 activation, and Ca(2+) release, which subsequently triggers calpain, caspase-12 and caspase-3 activity, resulting in apoptosis.
Collapse
Affiliation(s)
- Ju-Fang Liu
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Yang WH, Fong YC, Lee CY, Jin TR, Tzen JTC, Li TM, Tang CH. Epigallocatechin-3-gallate induces cell apoptosis of human chondrosarcoma cells through apoptosis signal-regulating kinase 1 pathway. J Cell Biochem 2011; 112:1601-11. [DOI: 10.1002/jcb.23072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Kim MO, Moon DO, Jung JM, Lee WS, Choi YH, Kim GY. Agaricus blazei Extract Induces Apoptosis through ROS-Dependent JNK Activation Involving the Mitochondrial Pathway and Suppression of Constitutive NF-κB in THP-1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:838172. [PMID: 19861509 PMCID: PMC3137680 DOI: 10.1093/ecam/nep176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/03/2009] [Indexed: 01/25/2023]
Abstract
Agaricus blazei is widely accepted as a traditional medicinal mushroom, and it has been known to exhibit immunostimulatory and anti-cancer activity. However, the apoptotic mechanism in cancer cells is poorly understood. In this study, we have investigated whether A. blazei extract (ABE) exerts antiproliferative and apoptotic effects in human leukemic THP-1 cells. We observed that ABE-induced apoptosis is associated with the mitochondrial pathway, which is mediated by reactive oxygen species (ROS) generation and prolonged c-Jun N-terminal kinase (JNK) activation. In addition, the ABE treatment resulted in the accumulation of cytochrome c in the cytoplasm, an increase in caspase activity, and an upregulation of Bax and Bad. With those results in mind, we found that ABE decreases constitutive NF-κB activation and NF-κB-regulated gene products such as IAP-1 and -2. We concluded that ABE induces apoptosis with ROS-dependent JNK activation and constitutive activated NF-κB inhibition in THP-1 cells.
Collapse
Affiliation(s)
- Mun-Ock Kim
- Laboratory of Immunobiology, Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Hsu YL, Hou MF, Tsai EM, Kuo PL. Tricetin, a dietary flavonoid, induces apoptosis through the reactive oxygen species/c-Jun NH2-terminal kinase pathway in human liver cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12547-12556. [PMID: 21067180 DOI: 10.1021/jf103159r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study is the first to investigate the anticancer effect of tricetin (TCN) in two human liver cancer cell lines, Hep G2 and PLC/PRF/5. TCN induced cancer cell death treatment by triggering mitochondrial and death receptor 5 (DR5) apoptotic pathways. Exposure of Hep G2 and PLC/PRF/5 cells to TCN resulted in cellular glutathione reduction and ROS generation, accompanied by JNK activation and apoptosis. Both of the antioxidants vitamin C and catalase significantly decreased apoptosis by inhibiting the phosphorylation of JNK and subsequently triggering DR5 cell death pathways. The reduction of JNK expression by siRNA decreased TCN-mediated Bim cleavage, DR5 up-regulation, and apoptosis. Furthermore, daily TCN intraperitoneal injections in nude mice with PLC/PRF/5 subcutaneous tumors resulted in an approximately 60% decrease of mean tumor volume, compared with vehicle-treated controls. Taken together, the results of the present study indicate that TCN-induced cell death in liver cancer cells is initiated by ROS generation and that both intrinsic and extrinsic apoptotic pathways contribute to the cell death caused by this highly promising cancer chemopreventive agent.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100 Shih-Chuan First Road, Kaohsiung 807, Taiwan
| | | | | | | |
Collapse
|
33
|
A multi-parameter, high-content, high-throughput screening platform to identify natural compounds that modulate insulin and Pdx1 expression. PLoS One 2010; 5:e12958. [PMID: 20886041 PMCID: PMC2944895 DOI: 10.1371/journal.pone.0012958] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 09/02/2010] [Indexed: 01/01/2023] Open
Abstract
Diabetes is a devastating disease that is ultimately caused by the malfunction or loss of insulin-producing pancreatic beta-cells. Drugs capable of inducing the development of new beta-cells or improving the function or survival of existing beta-cells could conceivably cure this disease. We report a novel high-throughput screening platform that exploits multi-parameter high-content analysis to determine the effect of compounds on beta-cell survival, as well as the promoter activity of two key beta-cell genes, insulin and pdx1. Dispersed human pancreatic islets and MIN6 beta-cells were infected with a dual reporter lentivirus containing both eGFP driven by the insulin promoter and mRFP driven by the pdx1 promoter. B-score statistical transformation was used to correct systemic row and column biases. Using this approach and 5 replicate screens, we identified 7 extracts that reproducibly changed insulin and/or pdx1 promoter activity from a library of 1319 marine invertebrate extracts. The ability of compounds purified from these extracts to significantly modulate insulin mRNA levels was confirmed with real-time PCR. Insulin secretion was analyzed by RIA. Follow-up studies focused on two lead compounds, one that stimulates insulin gene expression and one that inhibits insulin gene expression. Thus, we demonstrate that multi-parameter, high-content screening can identify novel regulators of beta-cell gene expression, such as bivittoside D. This work represents an important step towards the development of drugs to increase insulin expression in diabetes and during in vitro differentiation of beta-cell replacements.
Collapse
|
34
|
Hsu YL, Chen CY, Hou MF, Tsai EM, Jong YJ, Hung CH, Kuo PL. 6-Dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human breast cancer cells. Mol Nutr Food Res 2010; 54:1307-17. [PMID: 20175081 DOI: 10.1002/mnfr.200900125] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study is the first to investigate the anticancer effect of 6-dehydrogingerdione (DGE), an active constituent of dietary ginger, in human breast cancer MDA-MB-231 and MCF-7 cells. DGE exhibited effective cell growth inhibition by inducing cancer cells to undergo G2/M phase arrest and apoptosis. Blockade of cell cycle was associated with increased levels of p21, and reduced amounts of cyclin B1, cyclin A, Cdc2 and Cdc25C. DGE also enhanced the levels of inactivated phosphorylated Cdc2 and Cdc25C. DGE triggered the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in caspase-9 activation. We also found the generation of reactive oxygen species is a critical mediator in DGE-induced cell growth inhibition. DGE clearly increased the activation of apoptosis signal-regulating kinase 1 and c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1/2 (ERK1/2) and p38. In addition, antioxidants vitamin C and catalase significantly decreased DGE-mediated JNK activation and apoptosis. Moreover, blocking JNK by specific inhibitors suppressed DGE-triggered mitochondrial apoptotic pathway. Taken together, these findings suggest that a critical role for reactive oxygen species and JNK in DGE-mediated apoptosis of human breast cancer.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
35
|
Moon DO, Kim MO, Choi YH, Hyun JW, Chang WY, Kim GY. Butein induces G(2)/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer Lett 2009; 288:204-13. [PMID: 19643530 DOI: 10.1016/j.canlet.2009.07.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 07/05/2009] [Indexed: 02/05/2023]
Abstract
We investigated the molecular effects of 3,4,2',4'-tetrahydroxychalcone (butein) treatment in two human hepatoma cancer cell lines-HepG2 and Hep3B. Butein treatment inhibited cancer cell growth by inducing G(2)/M phase arrest and apoptosis. Butein-induced G(2)/M phase arrest was associated with increased ATM, Chk1, and Chk2 phosphorylations and reduced cdc25C levels. Additionally, butein treatment enhanced inactivated phospho-Cdc2 levels, reduced Cdc2 kinase activity, and generated reactive oxygen species (ROS) that was accompanied by JNK activation. The extent of butein-induced G(2)/M phase arrest significantly decreased following pretreatment with N-acetyl-l-cysteine or glutathione and following JNK phosphorylation reduction by SP600125. Both N-acetyl-l-cysteine and glutathione also decreased butein-mediated apoptosis. Taken together, these results imply a critical role of ROS and JNK in the anticancer effects of butein.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Marine Life Science, Jeju National University, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Cnidarians (Coelenterates), a very old and diverse animal phylum, possess a wide variety of biologically active substances that can be considered as toxins. Anthozoan toxins can be classified into two chemically very different groups, namely polypeptide toxins isolated from sea anemones and diterpenes isolated from octocorals. Cubozoan and scyphozoan protein toxins have been the most elusive cnidarian toxins to investigate - despite a tremendous effort in the past few decades, very few of these large, relatively unstable protein toxins were isolated, but recently this has been achieved for cubozoan venoms. Hydrozoans mainly contain large proteins with physiological mechanisms of action similar to the sea anemone and jellyfish pore-forming toxins. This article will focus on the in vivo physiological effects of cnidarian toxins and venoms; their actions at the cellular level will only be considered to understand their actions at the organ and whole animal levels. An understanding of mechanisms underlying the in vivo toxic effects will facilitate the development of more effective treatments of cnidarian envenomations.
Collapse
Affiliation(s)
- Dusan Suput
- University of Ljubljana, Faculty of Medicine, Vrazov trg 2, 1104 Ljubljana, Slovenia.
| |
Collapse
|
37
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2009; 26:170-244. [PMID: 19177222 DOI: 10.1039/b805113p] [Citation(s) in RCA: 413] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the literature published in 2007 for marine natural products, with 948 citations(627 for the period January to December 2007) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidarians,bryozoans, molluscs, tunicates, echinoderms and true mangrove plants. The emphasis is on new compounds (961 for 2007), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.1 Introduction, 2 Reviews, 3 Marine microorganisms and phytoplankton, 4 Green algae, 5 Brown algae, 6 Red algae, 7 Sponges, 8 Cnidarians, 9 Bryozoans, 10 Molluscs, 11 Tunicates (ascidians),12 Echinoderms, 13 Miscellaneous, 14 Conclusion, 15 References.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
38
|
Chen JT, Fong YC, Li TM, Liu JF, Hsu CW, Chang CS, Tang CH. DDTD, an isoflavone derivative, induces cell apoptosis through the reactive oxygen species/apoptosis signal-regulating kinase 1 pathway in human osteosarcoma cells. Eur J Pharmacol 2008; 597:19-26. [PMID: 18822283 DOI: 10.1016/j.ejphar.2008.08.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 06/18/2008] [Accepted: 08/27/2008] [Indexed: 12/23/2022]
Abstract
Osteosarcoma is the most common primary bone tumor associated with childhood and adolescence. In the present study, we investigated the anticancer effect of a new isoflavone derivative, 3',4'-dichloro-3-(3,4-dichlorophenylacetyl)-2,4,6-trihydroxydeoxybenzoin (DDTD) in human osteosarcoma cells. DDTD induced cell apoptosis in human osteosarcoma cell lines (including: U2OS, MG-63, Saos2 and ROS 17/2.8). We found that the accumulation of reactive oxygen species is a critical mediator in DDTD-induced cell death. DDTD induced apoptosis signal-regulating kinase 1 (ASK1) dephosphorylation and its dissociation from 14-3-3. Treatment of osteosarcoma cells with DDTD induced p38 and p53 phosphorylation. Transfection with ASK1, mitogen activated protein kinase (MAPK) kinase (MKK)3/6, and p38 small interfering RNA (siRNA) antagonized the DDTD-induced cell apoptosis. DDTD also triggered the mitochondrial apoptotic pathway, as indicated by a change in Bax/Bcl2 ratio and Caspase-9 activation. Bax knockdown using a Bax siRNA strategy reduced Bax expression and subsequent cell death. In addition, transfection of cells with ASK1, MKK3/6, and p38 siRNA reduced DDTD-induced p38 activation, p53 phosphorylation and Bax expression. These results suggest that DDTD generates reactive oxygen species and activates the ASK1-MKK3/6-p38-p53-Bax pathway to cause osteosarcoma cell death.
Collapse
Affiliation(s)
- Jung-Tsan Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
39
|
Chang HC, Huang CC, Huang CJ, Cheng JS, Liu SI, Tsai JY, Chang HT, Huang JK, Chou CT, Jan CR. Desipramine-induced apoptosis in human PC3 prostate cancer cells: Activation of JNK kinase and caspase-3 pathways and a protective role of [Ca2+]i elevation. Toxicology 2008; 250:9-14. [DOI: 10.1016/j.tox.2008.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
|
40
|
Li P, Reichert DE, Rodríguez AD, Manion BD, Evers AS, Eterović VA, Steinbach JH, Akk G. Mechanisms of potentiation of the mammalian GABAA receptor by the marine cembranoid eupalmerin acetate. Br J Pharmacol 2007; 153:598-608. [PMID: 18037909 DOI: 10.1038/sj.bjp.0707597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Eupalmerin acetate (EPA) is a marine diterpene compound isolated from the gorgonian octocorals Eunicea succinea and Eunicea mammosa. The compound has been previously shown to modulate muscle-type and neuronal nicotinic acetylcholine receptors, which are inhibited in the presence of low micromolar concentrations of EPA. In this study, we examined the effect of EPA on another transmitter-gated ion channel, the GABA(A) receptor. EXPERIMENTAL APPROACH Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing rat wild-type and mutant alpha1beta2gamma2L GABA(A) receptors. KEY RESULTS Our findings demonstrate that, at micromolar concentrations, EPA potentiates the rat alpha1beta2gamma2L GABA(A) receptor. The analysis of single-channel currents recorded in the presence of EPA showed that the kinetic mode of action of EPA is similar to that of neuroactive steroids. Mutations to residues alpha1Q241 and alpha1N407/Y410, previously shown to affect receptor modulation by neurosteroids, also diminished potentiation by EPA. Exposure to a steroid antagonist, (3alpha,5alpha)-17-phenylandrost-16-en-3-ol, reduced potentiation by EPA. Additionally, exposure to EPA led to potentiation of GABA(A) receptors activated by very high concentrations (1-10 microM) of allopregnanolone. In tadpole behavioural assays, EPA caused loss of righting reflex and loss of swimming reflex. CONCLUSIONS AND IMPLICATIONS We conclude that EPA either interacts with the putative neurosteroid binding site on the GABA(A) receptor or shares with neurosteroids the key transduction elements involved in channel potentiation by steroids. The results indicate that cembranoids represent a novel class of GABA(A) receptor modulators.
Collapse
Affiliation(s)
- P Li
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang CCC, Chiang YM, Sung SC, Hsu YL, Chang JK, Kuo PL. Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett 2007; 259:82-98. [PMID: 18023967 DOI: 10.1016/j.canlet.2007.10.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/26/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
This study is the first to investigate the anticancer effect of plumbagin in human melanoma A375.S2 cells. Plumbagin exhibited effective cell growth inhibition by inducing cancer cells to undergo S-G2/M phase arrest and apoptosis. Further investigation revealed that plumbagin's inhibition of cell growth was also evident in a nude mice model. Blockade of cell cycle was associated with increased levels of p21, and reduced amounts of cyclin B1, cyclin A, Cdc2, and Cdc25C. Plumbagin also enhanced the levels of inactivated phosphorylated Cdc2 and Cdc25C. Plumbagin triggered the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in caspase-9 activation. We also found the generation of ROS is a critical mediator in plumbagin-induced cell growth inhibition. Plumbagin increased the activation of apoptosis signal-regulating kinase 1, JNK and extracellular signal-regulated kinase 1/2 (ERK1/2), but not p38. In addition, antioxidants vitamin C and catalase significantly decreased plumbagin-mediated c-Jun N-terminal kinase (JNK) activation and apoptosis. Moreover, blocking ERK and JNK by specific inhibitors suppressed plumbagin-triggered mitochondrial apoptotic pathway. Taken together, these results imply a critical role for ROS and JNK in the plumbagin's anticancer activity.
Collapse
Affiliation(s)
- Clay C C Wang
- .; Department of Chemistry, University of Southern California, College of Letters, Arts, and Sciences, University Park Campus, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|