1
|
Ballav S, Ranjan A, Basu S. Partial Activation of PPAR-γ by Synthesized Quercetin Derivatives Modulates TGF-β1-Induced EMT in Lung Cancer Cells. Adv Biol (Weinh) 2023; 7:e2300037. [PMID: 37042092 DOI: 10.1002/adbi.202300037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/10/2023] [Indexed: 04/13/2023]
Abstract
Non-small cell lung cancer (NSCLC) has a very low survival rate due to poor response to chemotherapy and late detection. Epithelial to mesenchymal transition (EMT) is regarded as a major contributor to drive metastasis during NSCLC progression. Towards this, transforming growth factor-beta 1 (TGF-β1) is the key driver that endows cancer cells with increased aggressiveness. Recently, this group synthesized a series of Schiff base quercetin derivatives (QDs) and ascertained their effectiveness on EMT markers of A549 cell line. This study evidenced that the EMT process is counteracted via the partial activation of a nuclear hormone receptor, Peroxisome proliferator-activated receptor (PPAR)-γ through QDs. Here, that work is extended to investigate the interplay between PPAR-γ partial activation and TGF-β1-induced EMT in human lung cancer A549 cells. The results reveal that TGF-β1 plays a critical role in suppressing PPAR-γ, which is markedly reversed and increased by partial agonists: QUE2FH and QUESH at both protein and transcriptional levels. The partial agonists not only stimulate PPAR-γ in a balanced manner but also prevent the loss of E-cadherin and acquisition of TGF-β1-induced mesenchymal markers (Snail, Slug, Vimentin, and Zeb-1). Subsequently, the effects are accompanied by attenuation of TGF-β1-induced migratory ability of A549 cells.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411 033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411 033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411 033, India
| |
Collapse
|
2
|
Zolghadr F, Bakhshinejad B, Davuchbabny S, Sarrafpour B, Seyedasli N. Critical regulatory levels in tumor differentiation: Signaling pathways, epigenetics and non-coding transcripts. Bioessays 2021; 43:e2000190. [PMID: 33644880 DOI: 10.1002/bies.202000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/07/2022]
Abstract
Approaches to induce tumor differentiation often result in manageable and therapy-naïve cellular states in cancer cells. This transformation is achieved by activating pathways that drive tumor cells away from plasticity, a state that commonly correlates with enhanced aggression, metastasis and resistance to therapy. Here, we discuss signaling pathways, epigenetics and non-coding RNAs as three main regulatory levels with the potential to drive tumor differentiation and hence as potential targets in differentiation therapy approaches. The success of an effective therapeutic regimen in one cancer, however, does not necessarily sustain across cancer types; a phenomenon largely resulting from heterogeneity in the genetic and physiological landscapes of tumor types necessitating an approach designed for each cancer's unique genetic and phenotypic build-up.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sapir Davuchbabny
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Sarrafpour
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Naisana Seyedasli
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
3
|
Ding X, Han X, Yuan H, Zhang Y, Gao Y. The Impact of PPARD and PPARG Polymorphisms on Glioma Risk and Prognosis. Sci Rep 2020; 10:5140. [PMID: 32198386 PMCID: PMC7083928 DOI: 10.1038/s41598-020-60996-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/04/2020] [Indexed: 02/01/2023] Open
Abstract
Recent studies showed that peroxisome proliferator-activated receptors (PPARs) had effects on the progression of multiple tumors, but the role of PPARD and PPARG in glioma remains poorly understand. We conducted a case-control study to investigate the association of polymorphisms in PPARD and PPARG with glioma risk and prognosis in the Chinese Han population. Seven polymorphisms (PPARD: rs2016520, rs67056409, rs1053049 and rs2206030; PPARG: rs2920503, rs4073770 and rs1151988) were genotyped using the Agena MassARRAY system in 568 glioma patients and 509 healthy controls. The odd ratios (OR) and 95% confidence interval (CI) were calculated to assess the association of PPARD and PPARG polymorphisms with glioma risk. The Multifactor dimensionality reduction (MDR) method was used to analysis interactions of genetic polymorphisms on glioma risk. Then, we conducted log-rank test, Kaplan-Meier analysis and Cox regression model to evaluate the relationship of PPARD and PPARG polymorphisms with glioma prognosis. We found PPARD polymorphisms (rs2016520, rs67056409, rs1053049) were significantly associated with glioma risk in multiple models (P < 0.05). Stratified analysis showed rs2016520, rs67056409, rs1053049 of PPARD significantly decreased risk of glioma in the subgroup of age > 40 and astrocytoma (P < 0.05). For male, PPARD rs1053049 had a strong relationship with glioma risk in allele (P = 0.041), dominant (P = 0.040) and additive (P = 0.040) models. The effect of PPARG rs2920503 on glioma risk was related to glioma grade (P < 0.05). MDR showed that a seven-locus model was the best polymorphisms interaction pattern. Moreover, surgery and chemotherapy had strongly impact on overall survival and progression free survival of glioma patients. Our findings suggested that PPARD and PPARG polymorphisms were associated with glioma risk and prognosis in the Chinese Han population, and further studies are need to confirm our results.
Collapse
Affiliation(s)
- Xiaoying Ding
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Xinsheng Han
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Haozheng Yuan
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yong Zhang
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
4
|
Meel MH, de Gooijer MC, Guillén Navarro M, Waranecki P, Breur M, Buil LCM, Wedekind LE, Twisk JWR, Koster J, Hashizume R, Raabe EH, Montero Carcaboso A, Bugiani M, van Tellingen O, van Vuurden DG, Kaspers GJL, Hulleman E. MELK Inhibition in Diffuse Intrinsic Pontine Glioma. Clin Cancer Res 2018; 24:5645-5657. [PMID: 30061363 DOI: 10.1158/1078-0432.ccr-18-0924] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/16/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brain tumor, for which no effective therapeutic options currently exist. We here determined the potential of inhibition of the maternal embryonic leucine zipper kinase (MELK) for the treatment of DIPG.Experimental Design: We evaluated the antitumor efficacy of the small-molecule MELK inhibitor OTSSP167 in vitro in patient-derived DIPG cultures, and identified the mechanism of action of MELK inhibition in DIPG by RNA sequencing of treated cells. In addition, we determined the blood-brain barrier (BBB) penetration of OTSSP167 and evaluated its translational potential by treating mice bearing patient-derived DIPG xenografts.Results: This study shows that MELK is highly expressed in DIPG cells, both in patient samples and in relevant in vitro and in vivo models, and that treatment with OTSSP167 strongly decreases proliferation of patient-derived DIPG cultures. Inhibition of MELK in DIPG cells functions through reducing inhibitory phosphorylation of PPARγ, resulting in an increase in nuclear translocation and consequent transcriptional activity. Brain pharmacokinetic analyses show that OTSSP167 is a strong substrate for both MDR1 and BCRP, limiting its BBB penetration. Nonetheless, treatment of Mdr1a/b;Bcrp1 knockout mice carrying patient-derived DIPG xenografts with OTSSP167 decreased tumor growth, induced remissions, and resulted in improved survival.Conclusions: We show a strong preclinical effect of the kinase inhibitor OTSSP167 in the treatment of DIPG and identify the MELK-PPARγ signaling axis as a putative therapeutic target in this disease. Clin Cancer Res; 24(22); 5645-57. ©2018 AACR.
Collapse
Affiliation(s)
- Michaël H Meel
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Miriam Guillén Navarro
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Piotr Waranecki
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjolein Breur
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Levi C M Buil
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rintaro Hashizume
- Departments of Neurological Surgery, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eric H Raabe
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angel Montero Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dannis G van Vuurden
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Gertjan J L Kaspers
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Esther Hulleman
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands. .,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
5
|
Chen X, Li D, Gao Y, Cao Y, Hao B. Histone deacetylase SIRT6 inhibits glioma cell growth through down-regulating NOTCH3 expression. Acta Biochim Biophys Sin (Shanghai) 2018; 50:417-424. [PMID: 29659670 DOI: 10.1093/abbs/gmy019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Indexed: 01/05/2023] Open
Abstract
Gliomas are the most common brain tumors of the central nervous system. In this study, we investigated the molecular mechanisms and biological function of SIRT6 in human gliomas. The expression levels of SIRT6 in glioma tissues and cells were analyzed by qRT-PCR and western blot analysis. CCK8 and clonogenicity assays were performed to detect the cell proliferation. Furthermore, the migration and invasion of glioma cells were examined by transwell assays. It was found that the expression of SIRT6 was significantly lower in human glioma tissues or cell lines compared with the normal brain tissue or NHA. Up-regulated SIRT6 significantly decreased cell proliferation, migration and invasion of U87 and U251 cells. By contrast, knockdown of SIRT6 dramatically increased cell proliferation, migration and invasion of U87 and U251 cells. Moreover, over expression of NOTCH3 significantly increased the cell proliferation, migration, and invasion of U87 and U251 cells. However, these effects were abolished after overexpression of SIRT6. These results suggest that SIRT6 may suppress cell proliferation, migration, and invasion via inhibition of the NOTCH3 signaling pathway in glioma.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bin Hao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Chen L, Wang Y, He J, Zhang C, Chen J, Shi D. Long Noncoding RNA H19 Promotes Proliferation and Invasion in Human Glioma Cells by Downregulating miR-152. Oncol Res 2018; 26:1419-1428. [PMID: 29422115 PMCID: PMC7844716 DOI: 10.3727/096504018x15178768577951] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
miR-152 and lncRNA H19 have been frequently implicated in various cellular processes including cell proliferation, invasion, angiogenesis, and apoptosis. However, the interaction between miR-152 and H19 in glioma has never been reported. RT-qPCR was used to examine the expression of miR-152 and H19 in human glioma cell lines and normal human astrocytes (NHAs). The interaction between miR-152 and lncRNA H19 was assessed by dual-luciferase reporter assay. MTT assay and Transwell invasion assay were used to determine the proliferation and invasion of U251 and U87 cells. A xenograft tumor experiment was performed to confirm the role of H19 in vivo. The results showed that H19 expression was upregulated and miR-152 expression was downregulated in human glioma cell lines. H19 downregulation or miR-152 upregulation suppressed glioma cell proliferation and invasion in vitro. Moreover, H19 and miR-152 directly regulated each other. Furthermore, decreased miR-152 expression alleviated si-H19-induced inhibitory effects on proliferation and invasion in glioma cells. As expected, H19 silencing hindered glioma growth in vivo. Taken together, H19 promoted glioma cell proliferation and invasion by negatively regulating miR-152 expression, providing evidence for the potential application of H19 as a biomarker and therapy target for glioma.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurosurgery, 101st Hospital of PLA (Wuxi Taihu Hospital), Clinical Medical School of Anhui Medical University, Wuxi, P.R. China
| | - Yuhai Wang
- Department of Neurosurgery, 101st Hospital of PLA (Wuxi Taihu Hospital), Clinical Medical School of Anhui Medical University, Wuxi, P.R. China
| | - Jianqing He
- Department of Neurosurgery, 101st Hospital of PLA (Wuxi Taihu Hospital), Clinical Medical School of Anhui Medical University, Wuxi, P.R. China
| | - Chunlei Zhang
- Department of Neurosurgery, 101st Hospital of PLA (Wuxi Taihu Hospital), Clinical Medical School of Anhui Medical University, Wuxi, P.R. China
| | - Junhui Chen
- Department of Neurosurgery, 101st Hospital of PLA (Wuxi Taihu Hospital), Clinical Medical School of Anhui Medical University, Wuxi, P.R. China
| | - Dongliang Shi
- Department of Neurosurgery, 101st Hospital of PLA (Wuxi Taihu Hospital), Clinical Medical School of Anhui Medical University, Wuxi, P.R. China
| |
Collapse
|
7
|
Chen X, Gao Y, Li D, Cao Y, Hao B. LncRNA-TP53TG1 Participated in the Stress Response Under Glucose Deprivation in Glioma. J Cell Biochem 2017; 118:4897-4904. [PMID: 28569381 DOI: 10.1002/jcb.26175] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
Abstract
Gliomas are the most common brain tumors of the center nervous system. And long non-coding RNAs (lncRNAs) are non-protein coding transcripts, which have been considered as one type of gene expression regulator for cancer development. In this study, we investigated the role of lncRNA-TP53TG1 in response to glucose deprivation in human gliomas. The expression levels of TP53TG1 in glioma tissues and cells were analyzed by qRT-PCR. In addition, the influence of TP53TG1 on glucose metabolism related genes at the mRNA level during both high and low glucose treatment was detected by qRT-PCR. MTT, clonogenicity assays, and flow cytometry were performed to detect the cell proliferation and cell apoptosis. Furthermore, the migration of glioma cells was examined by Transwell assays. The expression of TP53TG1 was significantly higher in human glioma tissues or cell lines compared with normal brain tissue or NHA. Moreover, TP53TG1 and some tumor glucose metabolism related genes, such as GRP78, LDHA, and IDH1 were up-regulated significantly in U87 and LN18 cells under glucose deprivation. In addition, knockdown of TP53TG1 decreased cell proliferation and migration and down-regulated GRP78 and IDH1 expression levels and up-regulated PKM2 levels in U87 cells under glucose deprivation. However, over-expression of TP53TG1 showed the opposite tendency. Moreover, the effects of TP53TG1 were more remarkable in low glucose than that in high glucose. Our data showed that TP53TG1 under glucose deprivation may promote cell proliferation and migration by influencing the expression of glucose metabolism related genes in glioma. J. Cell. Biochem. 118: 4897-4904, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xin Chen
- Department of Brain and Spine Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Gao
- Department of Brain and Spine Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Deheng Li
- Department of Brain and Spine Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yiqun Cao
- Department of Brain and Spine Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Bin Hao
- Department of Brain and Spine Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| |
Collapse
|
8
|
Gu JJ, Zhang JH, Chen HJ, Wang SS. MicroRNA-130b promotes cell proliferation and invasion by inhibiting peroxisome proliferator-activated receptor-γ in human glioma cells. Int J Mol Med 2016; 37:1587-93. [PMID: 27122306 PMCID: PMC4866956 DOI: 10.3892/ijmm.2016.2580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-130b (miR-130b) is a novel tumor-related miRNA that has been found to be involved in several biological processes. However, there is limited evidence regarding the role of miR-130b in the tumorigenesis of human gliomas. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays were used to quantify miR-130b expression levels in human glioma tissues and glioma cell lines (U251, U87, SNB19 and LN229). The expression level of miR-130b was found to be markedly higher in human glioma tissues than in non-neoplastic brain specimens. Specifically, higher expression levels of miR-130b were observed in the glioma cell lines, compared with those in normal human astrocytes (NHA). We also confirmed that miR-130b interacted with the 3′-untranslated region of peroxisome proliferator-activated receptor-γ (PPAR-γ), which negatively affected the protein levels of E-cadherin. Furthermore, its effects on cell proliferation and invasion were examined using CCK8, colony formation, cell cycle and Transwell assays. We found that the upregulation of miR-130b induced cell proliferation, decreased the percentage of cells in the G0/G1 phase and enhanced the invasiveness of U251 glioma cells whereas the downregulation of miR-130b exerted opposing effects. Moreover, it was demonstrated that the downregulation of miR-130b in U251 glioma cells restored the expression of PPAR-γ and E-cadherin, and inhibited the expression of β-catenin. Notably, PPAR-γ knockdown abolished the inhibitory effect of miR-130b inhibitor on the proliferation and invasivness of U251 cells. Taken together, these findings suggest that miR-130b promotes the proliferation and invasion of U251 glioma cells by inhibiting PPAR-γ.
Collapse
Affiliation(s)
- Jian-Jun Gu
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Jian-He Zhang
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Hong-Jie Chen
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Shou-Sen Wang
- Department of Neurosurgery, Fuzhou General Hospital, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
9
|
Ching J, Amiridis S, Stylli SS, Morokoff AP, O'Brien TJ, Kaye AH. A novel treatment strategy for glioblastoma multiforme and glioma associated seizures: increasing glutamate uptake with PPARγ agonists. J Clin Neurosci 2014; 22:21-8. [PMID: 25439749 DOI: 10.1016/j.jocn.2014.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The established role of glutamate in the pathogenesis of glioma-associated seizures (GAS) led us to investigate a novel treatment method using an established drug class, peroxisome proliferator activated receptor (PPAR) gamma agonists. Previously, sulfasalazine has been shown to prevent release of glutamate from glioma cells and prevent GAS in rodent models. However, raising protein mediated glutamate transport via excitatory amino acid transporter 2 (EAAT2) has not been investigated previously to our knowledge. PPAR gamma agonists are known to upregulate functional EAAT2 expression in astrocytes and prevent excitotoxicity caused by glutamate excess. These agents are also known to have anti-neoplastic mechanisms. Herein we discuss and review the potential mechanisms of these drugs and highlight a novel potential treatment for GAS.
Collapse
Affiliation(s)
- Jared Ching
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Stephanie Amiridis
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Andrew P Morokoff
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
10
|
van Noort V, Schölch S, Iskar M, Zeller G, Ostertag K, Schweitzer C, Werner K, Weitz J, Koch M, Bork P. Novel drug candidates for the treatment of metastatic colorectal cancer through global inverse gene-expression profiling. Cancer Res 2014; 74:5690-9. [PMID: 25038229 DOI: 10.1158/0008-5472.can-13-3540] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug-induced gene-expression profiles that invert disease profiles have recently been illustrated to be a starting point for drug repositioning. In this study, we validate this approach and focus on prediction of novel drugs for colorectal cancer, for which there is a pressing need to find novel antimetastatic compounds. We computationally predicted three novel and still unknown compounds against colorectal cancer: citalopram (an antidepressant), troglitazone (an antidiabetic), and enilconazole (a fungicide). We verified the compounds by in vitro assays of clonogenic survival, proliferation, and migration and in a subcutaneous mouse model. We found evidence that the mode of action of these compounds may be through inhibition of TGFβ signaling. Furthermore, one compound, citalopram, reduced tumor size as well as the number of circulating tumor cells and metastases in an orthotopic mouse model of colorectal cancer. This study proposes citalopram as a potential therapeutic option for patients with colorectal cancer, illustrating the potential of systems pharmacology.
Collapse
Affiliation(s)
- Vera van Noort
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany. Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg, Leuven, Belgium
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Murat Iskar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany
| | - Kristina Ostertag
- Department of General, Gastrointestinal and Transplant Surgery, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Christine Schweitzer
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kristin Werner
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moritz Koch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. Moritz.Koch@uniklinikum
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany. Max-Delbrück-Centre (MDC) for Molecular Medicine, Berlin, Germany. Moritz.Koch@uniklinikum
| |
Collapse
|
11
|
Tabatabai MA, Kengwoung-Keumo JJ, Eby WM, Bae S, Manne U, Fouad M, Singh KP. A New Robust Method for Nonlinear Regression. ACTA ACUST UNITED AC 2014; 5:211. [PMID: 26185732 DOI: 10.4172/2155-6180.1000211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND When outliers are present, the least squares method of nonlinear regression performs poorly. The main purpose of this paper is to provide a robust alternative technique to the Ordinary Least Squares nonlinear regression method. This new robust nonlinear regression method can provide accurate parameter estimates when outliers and/or influential observations are present. METHOD Real and simulated data for drug concentration and tumor size-metastasis are used to assess the performance of this new estimator. Monte Carlo simulations are performed to evaluate the robustness of our new method in comparison with the Ordinary Least Squares method. RESULTS In simulated data with outliers, this new estimator of regression parameters seems to outperform the Ordinary Least Squares with respect to bias, mean squared errors, and mean estimated parameters. Two algorithms have been proposed. Additionally and for the sake of computational ease and illustration, a Mathematica program has been provided in the Appendix. CONCLUSION The accuracy of our robust technique is superior to that of the Ordinary Least Squares. The robustness and simplicity of computations make this new technique more appropriate and useful tool for the analysis of nonlinear regressions.
Collapse
Affiliation(s)
- M A Tabatabai
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - J J Kengwoung-Keumo
- Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
| | - W M Eby
- Department of Mathematics, New Jersey City University, Jersey City, NJ 07305, USA
| | - S Bae
- Department of Medicine Division of Preventive Medicine and Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA
| | - U Manne
- Department of Pathology and Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA
| | - M Fouad
- Department of Medicine Division of Preventive Medicine and Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA
| | - K P Singh
- Department of Medicine Division of Preventive Medicine and Comprehensive Cancer Center, University of Alabama Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
An Z, Liu X, Song H, Choi C, Kim WD, Yu JR, Park WY. Effect of troglitazone on radiation sensitivity in cervix cancer cells. Radiat Oncol J 2012; 30:78-87. [PMID: 22984686 PMCID: PMC3429892 DOI: 10.3857/roj.2012.30.2.78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 04/26/2012] [Accepted: 05/10/2012] [Indexed: 01/19/2023] Open
Abstract
Purpose Troglitazone (TRO) is a peroxisome proliferator-activated receptor γ (PPARγ) agonist. TRO has antiproliferative activity on many kinds of cancer cells via G1 arrest. TRO also increases Cu2+/Zn2+-superoxide dismutase (CuZnSOD) and catalase. Cell cycle, and SOD and catalase may affect on radiation sensitivity. We investigated the effect of TRO on radiation sensitivity in cancer cells in vitro. Materials and Methods Three human cervix cancer cell lines (HeLa, Me180, and SiHa) were used. The protein expressions of SOD and catalase, and catalase activities were measured at 2-10 µM of TRO for 24 hours. Cell cycle was evaluated with flow cytometry. Reactive oxygen species (ROS) was measured using 2',7'-dichlorofluorescin diacetate. Cell survival by radiation was measured with clonogenic assay. Results By 5 µM TRO for 24 hours, the mRNA, protein expression and activity of catalase were increased in all three cell lines. G0-G1 phase cells were increased in HeLa and Me180 by 5 µM TRO for 24 hours, but those were not increased in SiHa. By pretreatment with 5 µM TRO radiation sensitivity was increased in HeLa and Me180, but it was decreased in SiHa. In Me180, with 2 µM TRO which increased catalase but not increased G0-G1 cells, radiosensitization was not observed. ROS produced by radiation was decreased with TRO. Conclusion TRO increases radiation sensitivity through G0-G1 arrest or decreases radiation sensitivity through catalase-mediated ROS scavenging according to TRO dose or cell types. The change of radiation sensitivity by combined with TRO is not dependent on the PPARγ expression level.
Collapse
Affiliation(s)
- Zhengzhe An
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju, Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Rosiglitazone suppresses glioma cell growth and cell cycle by blocking the transforming growth factor-beta mediated pathway. Neurochem Res 2012; 37:2076-84. [PMID: 22707243 DOI: 10.1007/s11064-012-0828-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/10/2012] [Accepted: 06/08/2012] [Indexed: 12/25/2022]
Abstract
Glioma is one of the most malignant tumors in the central nervous system. As a peroxisome proliferator-activated receptor γ (PPAR-γ) activator, the thiazolidinediones (TZDs) induce growth arrest and cell death in a broad spectrum of tumor cells. In this study, we investigated the role of rosiglitazone in glioma cells. We found that rosiglitazone, a member of TZDs, suppresses growth of human glioma cell lines U87 and U251. Rosiglitazone also induces cell cycle arrest and apoptosis, which may be the mechanism of its anti-proliferation effect. Next, we found that rosiglitazone suppresses the expression of TGF-beta and its receptor TGF-betaR2, and suppresses phosphorylation of Smad3. Rosiglitazone also inhibits formation of the Smad3/Smad4 complex. Furthermore, Rosiglitazone affects the expression of Smad3/Smad4 associated regulators of gene expression, including p21 and c-Myc. These results suggest that rosiglitazone suppresses growth and cell cycle of human glioma cells by blocking the TGF-beta mediated pathway.
Collapse
|
14
|
PPARγ Promotes Growth and Invasion of Thyroid Cancer Cells. PPAR Res 2011; 2011:171765. [PMID: 22194735 PMCID: PMC3236353 DOI: 10.1155/2011/171765] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/17/2011] [Indexed: 11/17/2022] Open
Abstract
Undifferentiated (anaplastic) thyroid cancer (ATC) is one of the most aggressive human malignancies and no effective therapy is currently available. We show here that PPARγ levels are elevated in cells derived from ATC. Depletion of PPARγ in HTh74 ATC cells resulted in decreased cell growth, cell cycle arrest and a reduction in pRb and cyclin A and B1 levels. We further showed that both flank and orthotopic thyroid tumors derived from PPARγ-depleted cells grew more slowly than PPARγ-expressing cells. When PPARγ was overexpressed in more differentiated thyroid cancer BCPAP cells which lack PPARγ, there was increased growth and raised pRb and cyclin A and B1 levels. Finally, PPARγ depletion in ATC cells decreased their invasive capacity whereas overexpression in PTC cells increased invasiveness. These data suggest that PPARγ may play a detrimental role in thyroid cancer and that targeting it therapeutically may lead to improved treatment of advanced thyroid cancer.
Collapse
|
15
|
Cytotoxicity of troglitazone through PPARγ-independent pathway and p38 MAPK pathway in renal cell carcinoma. Cancer Lett 2011; 312:219-27. [PMID: 21903322 DOI: 10.1016/j.canlet.2011.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/01/2011] [Accepted: 08/10/2011] [Indexed: 11/24/2022]
Abstract
Agonists of peroxisome proliferator-activated receptor gamma (PPARγ) have been examined as chemopreventive and chemotherapeutic agents. The aim was to investigate the cytotoxicity of troglitazone (TGZ) and its mechanisms in terms of PPARγ dependency and the p38 mitogen-activated protein kinase (MAPK) pathway in three human renal cell carcinoma (RCC) cell lines, 786-O, Caki-2 and ACHN cells. TGZ induced apoptosis and exerted cytotoxicity in a PPARγ-independent manner. We demonstrated that TGZ activated the p38 MAPK pathway and was involved in the cytotoxicity of TGZ. It was also revealed that TGZ induced G(2)/M cell cycle arrest through activation of p38 MAPK.
Collapse
|
16
|
Peroxisome Proliferator-Activated Receptors (PPARs) as Potential Inducers of Antineoplastic Effects in CNS Tumors. PPAR Res 2011; 2008:204514. [PMID: 18725982 PMCID: PMC2517124 DOI: 10.1155/2008/204514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 05/29/2008] [Accepted: 06/24/2008] [Indexed: 01/27/2023] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS). The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy.
Collapse
|
17
|
Rosiglitazone Suppresses the Growth and Invasiveness of SGC-7901 Gastric Cancer Cells and Angiogenesis In Vitro via PPARgamma Dependent and Independent Mechanisms. PPAR Res 2011; 2008:649808. [PMID: 18810275 PMCID: PMC2542845 DOI: 10.1155/2008/649808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Accepted: 07/01/2008] [Indexed: 12/18/2022] Open
Abstract
Although thiazolidinediones (TZDs) were found to be ligands for peroxisome proliferators-activated receptorγ (PPARγ), the mechanism by which TZDs exert their anticancer effect remains unclear. Furthermore, the effect of TZDs on metastatic and angiogenesis potential of cancer cells is unknown. Our results in this paper show that rosiglitazone inhibited SGC-7901 gastric cancer cells growth, caused G1 cell cycle arrest and induced apoptosis in a dose-dependent manner. The effects of rosiglitazone on SGC-7901 cancer cells were completely reversed by treatment with PPARγ antagonist GW9662. Rosiglitazone inhibited SGC-7901 cell migration, invasiveness, and the expression of MMP-2 in dose-dependent manner via PPARγ-independent manner. Rosiglitazone reduced the VEGF induced angiogenesis of HUVEC in dose-dependent manner through PPARγ-dependent pathway. Moreover, rosiglitazone did not affect the expression of VEGF by SGC-7901 cells. Our results demonstrated that by PPARγ ligand, rosiglitazone inhibited growth and invasiveness of SGC-7901 gastric cancer cells and angiogenesis in vitro via PPARγ-dependent or -independent pathway.
Collapse
|
18
|
PPAR Gamma Activators: Off-Target Against Glioma Cell Migration and Brain Invasion. PPAR Res 2011; 2008:513943. [PMID: 18815619 PMCID: PMC2542841 DOI: 10.1155/2008/513943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/02/2008] [Indexed: 11/18/2022] Open
Abstract
Today, there is increasing evidence that PPARγ agonists, including thiazolidinediones (TDZs) and nonthiazolidinediones, block the motility and invasiveness of glioma cells and other highly migratory tumor entities. However, the mechanism(s) by which PPARγ activators mediate their antimigratory and anti-invasive properties remains elusive. This letter gives a short review on the debate and adds to the current knowledge by applying a PPARγ inactive derivative of the TDZ troglitazone (Rezulin) which potently counteracts experimental glioma progression in a PPARγ independent manner.
Collapse
|
19
|
A Novel Mechanism of PPARgamma Regulation of TGFbeta1: Implication in Cancer Biology. PPAR Res 2011; 2008:762398. [PMID: 18615188 PMCID: PMC2443397 DOI: 10.1155/2008/762398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/28/2008] [Accepted: 06/09/2008] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) and retinoic acid X-receptor (RXR) heterodimer, which regulates cell growth and differentiation, represses the TGFβ1 gene that encodes for the protein involved in cancer biology. This review will introduce the novel mechanism associated with the inhibition of the TGFβ1 gene by PPARγ activation, which regulates the dephosphorylation of Zf9 transcription factor. Pharmacological manipulation of TGFβ1 by PPARγ activators can be applied for treating TGFβ1-induced pathophysiologic disorders such as cancer metastasis and fibrosis. In this article, we will discuss the opposing effects of TGFβ on tumor growth and metastasis, and address the signaling pathways regulated by PPARγ for tumor progression and suppression.
Collapse
|
20
|
PPAR-gamma Thiazolidinedione Agonists and Immunotherapy in the Treatment of Brain Tumors. PPAR Res 2011; 2008:547470. [PMID: 18509487 PMCID: PMC2396217 DOI: 10.1155/2008/547470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 04/19/2008] [Indexed: 01/28/2023] Open
Abstract
Thiazolidinediones (TZDs) are selective agonists of the peroxisome proliferator-activated receptor (PPAR) gamma, a transcription factor belonging to the superfamily of nuclear hormone receptors. Although activation of PPARγ by TZDs has been best characterized by its ability to regulate expression of genes associated with lipid metabolism, PPARγ agonists have other physiological effects including modulating pro- and anti-inflammatory gene expression and inducing apoptosis in several cell types including glioma cells and cell lines. Immunotherapeutic approaches to reducing brain tumors are focused on means to reduce the immunosuppressive responses of tumors which dampen the ability of cytotoxic T-lymphocytes to kill tumors. Initial studies from our lab show that combination of an immunotherapeutic strategy with TZD treatment provides synergistic benefit in animals with implanted tumors. The potential of this combined approach for treatment of brain tumors is reviewed in this report.
Collapse
|
21
|
Akinyeke TO, Stewart LV. Troglitazone suppresses c-Myc levels in human prostate cancer cells via a PPARγ-independent mechanism. Cancer Biol Ther 2011; 11:1046-58. [PMID: 21525782 DOI: 10.4161/cbt.11.12.15709] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Troglitazone is a ligand for the peroxisome proliferator activated receptor gamma (PPARγ) that decreases growth of human prostate cancer cells in vitro and in vivo. However, the mechanism by which troglitazone reduces prostate cancer cell growth is not fully understood. To understand the signaling pathways involved in troglitazone-induced decreases in prostate cancer growth, we examined the effect of troglitazone on androgen-independent C4-2 human prostate cancer cells. Initial experiments revealed troglitazone inhibited C4-2 cell proliferation by arresting cells in the G(0)/G(1) phase of the cell cycle and inducing apoptosis. Since the proto-oncogene product c-Myc regulates both apoptosis and cell cycle progression, we next examined whether troglitazone altered expression of c-Myc. Troglitazone decreased c-Myc protein levels as well as expression of downstream targets of c-Myc in a dose-dependent manner. In C4-2 cells, troglitazone-induced decreases in c-Myc protein involve proteasome-mediated degradation of c-Myc protein as well as reductions in c-Myc mRNA levels. It appears that troglitazone stimulates degradation of c-Myc by increasing c-Myc phosphorylation, for the level of phosphorylated c-Myc was elevated in prostate cancer cells exposed to troglitazone. While troglitazone dramatically decreased the amount of c-Myc within C4-2 cells, the PPARγ ligands ciglitazone, rosiglitazone and pioglitazone did not reduce c-Myc protein levels. Furthermore the down-regulation of c-Myc by troglitazone was not blocked by the PPARγ antagonist GW9662 and siRNA-mediated decreases in PPARγ protein. Thus, our data suggest that troglitazone reduces c-Myc protein independently of PPARγ.
Collapse
Affiliation(s)
- Tunde O Akinyeke
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | | |
Collapse
|
22
|
Zhang X, Zhao WE, Hu L, Zhao L, Huang J. Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARγ) in K562 cancer cells. Arch Biochem Biophys 2011; 512:96-106. [PMID: 21620794 DOI: 10.1016/j.abb.2011.05.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/10/2011] [Accepted: 05/12/2011] [Indexed: 01/04/2023]
Abstract
As one of the main micronutrients in vegetables and fruit carotenoids are almost daily intaken in significant quantity. Although the pharmacological roles of carotenoids in the prevention and reduction of cancer incidence have received more and more attention, the exact molecular mechanisms underlying anticancer effects of carotenoids remain unclear yet. Activated peroxisome proliferator-activated receptor gamma (PPARγ) plays an inhibitory role in cancer cell proliferation and growth. Involvement of PPARγ in the growth inhibition of leukemia K562 cells by carotenoids was investigated in the present study. The results demonstrated that β-carotene, astaxanthin, capsanthin, and bixin inhibited the proliferation and decreased the viability of leukemia K562 cells in dose- and time-dependent manners, induced cell apoptosis, and interfered with cell cycle progression. Pretreatment with GW9662, a potent antagonist of PPARγ, partly attenuated the inhibition of K562 cell proliferation by the four carotenoids at 8μM. These carotenoids up-regulated the expression of PPARγ and p21 and down-regulated the expression of cyclin D1 in a dose-dependent manner. In addition, β-carotene, astaxanthin, capsanthin and bixin also up-regulated the expression of Nrf2, an important transcription factor in Keap1-Nrf2/EpRE/ARE signaling pathway. It appears to us that PPARγ signaling pathways and Keap1-Nrf2/EpRE/ARE signaling pathway were involved in the inhibition of K562 cell proliferation by carotenoids and the up-regulation of PPARγ expression at least partly contributed to the antiproliferative effects of β-carotene, astaxanthin, capsanthin, and bixin on K562 cells.
Collapse
Affiliation(s)
- Xia Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, No. 100 Science Road, Zhengzhou 450001, PR China
| | | | | | | | | |
Collapse
|
23
|
Hölsken A, Gebhardt M, Buchfelder M, Fahlbusch R, Blümcke I, Buslei R. EGFR Signaling Regulates Tumor Cell Migration in Craniopharyngiomas. Clin Cancer Res 2011; 17:4367-77. [PMID: 21562037 DOI: 10.1158/1078-0432.ccr-10-2811] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Annett Hölsken
- Department of Neuropathology, Hospital of the Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Peroxisome proliferator-activated receptor γ agonist pioglitazone inhibits β-catenin-mediated glioma cell growth and invasion. Mol Cell Biochem 2011; 349:1-10. [DOI: 10.1007/s11010-010-0637-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/28/2010] [Indexed: 12/20/2022]
|
25
|
Tapia-Pérez JH, Kirches E, Mawrin C, Firsching R, Schneider T. Cytotoxic effect of different statins and thiazolidinediones on malignant glioma cells. Cancer Chemother Pharmacol 2010; 67:1193-201. [DOI: 10.1007/s00280-010-1535-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/15/2010] [Indexed: 01/11/2023]
|
26
|
Mita R, Beaulieu MJ, Field C, Godbout R. Brain fatty acid-binding protein and omega-3/omega-6 fatty acids: mechanistic insight into malignant glioma cell migration. J Biol Chem 2010; 285:37005-15. [PMID: 20834042 DOI: 10.1074/jbc.m110.170076] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Malignant gliomas (MG) are highly infiltrative tumors that consistently recur despite aggressive treatment. Brain fatty acid-binding protein (FABP7), which binds docosahexaenoic acid (DHA) and arachidonic acid (AA), localizes to sites of tumor infiltration and is associated with a poor prognosis in MG. Manipulation of FABP7 expression in MG cell lines affects cell migration, suggesting a role for FABP7 in tumor infiltration and recurrence. Here, we show that DHA inhibits and AA stimulates migration in an FABP7-dependent manner in U87 MG cells. We demonstrate that DHA binds to and sequesters FABP7 to the nucleus, resulting in decreased cell migration. This anti-migratory effect is partially dependent on peroxisome proliferator-activated receptor γ, a DHA-activated transcription factor. Conversely, AA-bound FABP7 stimulates cell migration by activating cyclooxygenase-2 and reducing peroxisome proliferator-activated receptor γ levels. Our data provide mechanistic insight as to why FABP7 is associated with a poor prognosis in MG and suggest that relative levels of DHA and AA in the tumor environment can make a profound impact on tumor growth properties. We propose that FABP7 and its fatty acid ligands may be key therapeutic targets for controlling the dissemination of MG cells within the brain.
Collapse
Affiliation(s)
- Raja Mita
- Department of Oncology, School of Cancer, Engineering and Imaging Sciences, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2
| | | | | | | |
Collapse
|
27
|
Benedetti E, Galzio R, D'Angelo B, Cerù MP, Cimini A. PPARs in Human Neuroepithelial Tumors: PPAR Ligands as Anticancer Therapies for the Most Common Human Neuroepithelial Tumors. PPAR Res 2010; 2010:427401. [PMID: 20339586 PMCID: PMC2841252 DOI: 10.1155/2010/427401] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/14/2009] [Accepted: 02/11/2010] [Indexed: 12/22/2022] Open
Abstract
Neuroepithelial tumors represent a heterogeneous class of human tumors including benignant and malignant tumors. The incidence of central nervous system neoplasms ranges from 3.8 to 5.1 cases per 100,000 in the population. Among malignant neuroepithelial tumors, with regard to PPAR ligands, the most extensively studied were tumors of astrocytic origin and neuroblastoma. PPARs are expressed in developing and adult neuroepithelial cells, even if with different localization and relative abundance. The majority of malignant neuroepithelial tumors have poor prognosis and do not respond to conventional therapeutic protocols, therefore, new therapeutic approaches are needed. Natural and synthetic PPAR ligands may represent a starting point for the formulation of new therapeutic approaches to be used as coadjuvants to the standard therapeutic protocols. This review will focus on the major studies dealing with PPAR expression in gliomas and neuroblastoma and the therapeutic implications of using PPAR agonists for the treatment of these neoplasms.
Collapse
Affiliation(s)
- Elisabetta Benedetti
- Department of Basic and Applied Biology, University of L'Aquila, 67100 L'Aquila, Italy
| | - Renato Galzio
- Department of Health Sciences (Neurosurgery), University of L'Aquila, 67100 L'Aquila, Italy
| | - Barbara D'Angelo
- Department of Basic and Applied Biology, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Paola Cerù
- Department of Basic and Applied Biology, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Basic and Applied Biology, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
28
|
Steffan JJ, Cardelli JA. Thiazolidinediones induce Rab7-RILP-MAPK-dependent juxtanuclear lysosome aggregation and reduce tumor cell invasion. Traffic 2009; 11:274-86. [PMID: 20015112 DOI: 10.1111/j.1600-0854.2009.01012.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acidic extracellular pH (pHe) has been shown to stimulate peripheral lysosome trafficking, resulting in cathepsin B secretion and tumor invasion. In addition, inhibitors of sodium-proton exchangers (NHE) such as EIPA, cariporide and s3226, as well as the non-specific NHE inhibitor, troglitazone (Tro), blocked these changes. In this paper, we report a differential ability of the thiazolidinedione (TZD) family of compounds to induce a time-dependent retrograde aggregation of lysosomes over the microtubule-organizing center (MTOC) in tumor cells exposed to acidic pHe. This trafficking event depended on microtubules and the MAP-Kinase pathway, but was independent of Rho GTPase activity. Expression of shRNA implicated Rab7 in this process, and subcellular fractionation revealed that levels of Rab7, RILP and Erk1/2 were increased on lysosomes purified from cells treated with Tro. In addition, DN-RILP overexpression studies indicated that this Rab7 effector also played a role in TZD-induced retrograde trafficking. Tro was able to prevent acidic pHe-induced cell invasion. Finally, DU145 prostate tumor cells stably over-expressing WT-RILP, a condition where lysosomes aggregate to the MTOC in the absence of Tro, did not invade in response to acidic pHe, suggesting that the regulation of lysosome trafficking is an inherently important aspect of tumor cell invasion.
Collapse
Affiliation(s)
- Joshua J Steffan
- Department of Microbiology and Immunology and The Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
29
|
Persaud-Sawin DA, Banach L, Harry GJ. Raft aggregation with specific receptor recruitment is required for microglial phagocytosis of Abeta42. Glia 2009; 57:320-35. [PMID: 18756527 DOI: 10.1002/glia.20759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microglial phagocytosis contributes to the maintenance of brain homeostasis. Mechanisms involved, however, remain unclear. Using Abeta(42) solely as a stimulant, we provide novel insight into regulation of microglial phagocytosis by rafts. We demonstrate the existence of an Abeta(42) threshold level of 250 pg/mL, above which microglial phagocytic function is impaired. Low levels of Abeta(42) facilitate fluorescent bead uptake, whereas phagocytosis is inhibited when Abeta(42) accumulates. We also show that region-specific raft clustering occurs before microglial phagocytosis. Low Abeta(42) levels stimulated this type of raft aggregation, but high Abeta(42) levels inhibited it. Additionally, treatment with high Abeta(42) concentrations caused a redistribution of the raft structural protein flotillin1 from low to higher density fractions along a sucrose gradient. This suggests a loss of raft structural integrity. Certain non-steroidal anti-inflammatory drugs, e.g., the cyclooxygenase 2-specific nonsteroidal anti-inflammatory drugs, celecoxib, raise Abeta(42) levels. We demonstrated that prolonged celecoxib exposure can disrupt rafts in a manner similar to that seen in an elevated Abeta(42) environment: abnormal raft aggregation and Flot1 distribution. This resulted in aberrant receptor recruitment to rafts and impaired receptor-mediated phagocytosis by microglial cells. Specifically, recruitment of the scavenger receptor CD36 to rafts during active phagocytosis was affected. Thus, we propose that maintaining raft integrity is crucial for determining microglial phagocytic outcomes and disease progression.
Collapse
Affiliation(s)
- Dixie-Ann Persaud-Sawin
- Laboratory of Neurobiology, Neurotoxicology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
30
|
Tuettenberg J, Grobholz R, Seiz M, Brockmann MA, Lohr F, Wenz F, Vajkoczy P. Recurrence pattern in glioblastoma multiforme patients treated with anti-angiogenic chemotherapy. J Cancer Res Clin Oncol 2009; 135:1239-44. [PMID: 19277712 DOI: 10.1007/s00432-009-0565-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 02/16/2009] [Indexed: 01/28/2023]
Abstract
PURPOSE Glioblastoma multiforme is the prototype of an angiogenic tumour. Under experimental conditions, anti-angiogenic therapy strategies lead to an increased invasion. Here we report on the pattern of tumour recurrence in glioblastoma patients treated with an anti-angiogenic chemotherapy. PATIENTS AND METHODS A total of 32 patients with glioblastoma multiforme and a residual tumour mass after operation were treated with a continuous low-dose chemotherapy with temozolomide and a COX-II inhibitor, a presumably anti-angiogenic therapy. RESULTS While anti-tumour activity of this therapy regimen was excellent with a mean overall time to progression of 10.4 (+/-0.9) months and a mean overall survival of 17.8 (+/-1.5) months, an unusually high rate of distant recurrences was observed (62.5%). CONCLUSION Patients treated with an anti-angiogenic chemotherapy experience distant recurrences at a higher rate than reported for conventional therapies. This may reflect an anti-angiogenic therapy-induced activation of glioma invasion confirming similar recently published experimental results.
Collapse
Affiliation(s)
- Jochen Tuettenberg
- Department of Neurosurgery, Universitätsmedizin Mannheim, University of Heidelberg, 68167 Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Wu M, Melichian DS, Chang E, Warner-Blankenship M, Ghosh AK, Varga J. Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:519-33. [PMID: 19147827 DOI: 10.2353/ajpath.2009.080574] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nuclear hormone receptor, peroxisome proliferator-activated receptor (PPAR)-gamma, originally identified as a key mediator of adipogenesis, is expressed widely and implicated in diverse biological responses. Both natural and synthetic agonists of PPAR-gamma abrogated the stimulation of collagen synthesis and myofibroblast differentiation induced by transforming growth factor (TGF)-beta in vitro. To characterize the role of PPAR-gamma in the fibrotic process in vivo, the synthetic agonist rosiglitazone was used in a mouse model of scleroderma. Rosiglitazone attenuated bleomycin-induced skin inflammation and dermal fibrosis as well as subcutaneous lipoatrophy and counteracted the up-regulation of collagen gene expression and myofibroblast accumulation in the lesioned skin. Rosiglitazone treatment reduced the induction of the early-immediate transcription factor Egr-1 in situ without also blocking the activation of Smad2/3. In both explanted fibroblasts and skin organ cultures, rosiglitazone prevented the stimulation of collagen gene transcription and cell migration elicited by TGF-beta. Rosiglitazone-driven adipogenic differentiation of both fibroblasts and preadipocytes was abrogated in the presence of TGF-beta; this effect was accompanied by the concomitant down-regulation of cellular PPAR-gamma mRNA expression. Collectively, these results indicate that rosiglitazone treatment attenuates inflammation, dermal fibrosis, and subcutaneous lipoatrophy via PPAR-gamma in a mouse model of scleroderma and suggest that pharmacological PPAR-gamma ligands, widely used as insulin sensitizers in the treatment of type-2 diabetes mellitus, may be potential therapies for scleroderma.
Collapse
Affiliation(s)
- Minghua Wu
- Section of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | | | | | | | | | | |
Collapse
|