1
|
Stewart M, Schisler JC. Targeting chaperone modifications: Innovative approaches to cancer treatment. J Biol Chem 2024:107907. [PMID: 39433125 DOI: 10.1016/j.jbc.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer and other chronic diseases are marked by alterations in the protein quality control system, affecting the post-translational destiny of various proteins that regulate, structure, and catalyze cellular processes. Cellular chaperones, also known as heat shock proteins (HSPs), are pivotal in this system, performing protein triage that often determines the fate of proteins they bind to. Grasping the regulatory mechanisms of HSPs and their associated cofactors is crucial for understanding protein quality control in both healthy and diseased states. Recent research has shed light on the interactions within the protein quality control system and how post-translational modifications (PTMs) govern protein interactions, function, and localization, which can drive or inhibit cell proliferation. This body of work encompasses critical elements of the heat shock response, including Heat Shock Protein 70 (HSP70), Heat Shock Protein 90 (HSP90), Carboxyl-terminus of HSC70 Interacting Protein (CHIP), and Heat Shock Protein Organizing Protein (HOP). This review aims to synthesize these advancements, offering a holistic understanding of the system and its response when commandeered by diseases like cancer. We focus on the mechanistic shift in co-chaperone engagement-transitioning from HOP to CHIP in association with HSP70 and HSP90-which could influence cellular growth and survival pathways. A comprehensive examination of PTM-driven regulation within the protein quality control network is presented, highlighting the roles of activation factors, chaperones, and co-chaperones. Our insights aim to inform new strategies for therapeutically targeting diseases by considering the entire heat shock response system.
Collapse
Affiliation(s)
- Mariah Stewart
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan C Schisler
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Department of Pathology and Lab Medicine and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Annexin A5 as a targeting agent for cancer treatment. Cancer Lett 2022; 547:215857. [DOI: 10.1016/j.canlet.2022.215857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
|
3
|
Aydin B, Arslan S, Bayraklı F, Karademir B, Arga KY. MicroRNA-Mediated Drug Repurposing Unveiled Potential Candidate Drugs for Prolactinoma Treatment. Neuroendocrinology 2022; 112:161-173. [PMID: 33706313 DOI: 10.1159/000515801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Prolactinomas, also called lactotroph adenomas, are the most encountered type of hormone-secreting pituitary neuroendocrine tumors in the clinic. The preferred first-line therapy is a medical treatment with dopamine agonists (DAs), mainly cabergoline, to reduce serum prolactin levels, tumor volume, and mass effect. However, in some cases, patients have displayed DA resistance with aggressive tumor behavior or are faced with recurrence after drug withdrawal. Also, currently used therapeutics have notorious side effects and impair the life quality of the patients. METHODS Since the amalgamation of clinical and laboratory data besides tumor histopathogenesis and transcriptional regulatory features of the tumor emerges to exhibit essential roles in the behavior and progression of prolactinomas; in this work, we integrated mRNA- and microRNA (miRNA)-level transcriptome data that exploit disease-specific signatures in addition to biological and pharmacological data to elucidate a rational prioritization of pathways and drugs in prolactinoma. RESULTS We identified 8 drug candidates through drug repurposing based on mRNA-miRNA-level data integration and evaluated their potential through in vitro assays in the MMQ cell line. Seven repurposed drugs including 5-fluorocytosine, nortriptyline, neratinib, puromycin, taxifolin, vorinostat, and zileuton were proposed as potential drug candidates for the treatment of prolactinoma. We further hypothesized possible mechanisms of drug action on MMQ cell viability through analyzing the PI3K/Akt signaling pathway and cell cycle arrest via flow cytometry and Western blotting. DISCUSSION We presented the transcriptomic landscape of prolactinoma through miRNA and mRNA-level data integration and proposed repurposed drug candidates based on this integration. We validated our findings through testing cell viability, cell cycle phases, and PI3K/Akt protein expressions. Effects of the drugs on cell cycle phases and inhibition of the PI3K/Akt pathway by all drugs gave us promising output for further studies using these drugs in the treatment of prolactinoma. This is the first study that reports miRNA-mediated repurposed drugs for prolactinoma treatment via in vitro experiments.
Collapse
Affiliation(s)
- Busra Aydin
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Sema Arslan
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Fatih Bayraklı
- Department of Neurosurgery, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
4
|
Emamian M, Abbaspour A, Shahani T, Biglari A, Sharafi A. Non-viral Suicide Gene Therapy: Cytosine Deaminase Gene Directed by VEGF Promoter and 5-fluorocytosine as a Gene Directed Enzyme/prodrug System in Breast Cancer Model. Drug Res (Stuttg) 2021; 71:395-406. [PMID: 34182589 DOI: 10.1055/a-1488-6054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study investigated the potential of vascular endothelial growth factor (VEGF) promoter to derive cytosine deaminase (CD) transfected by polyamidoamine (G4-PAMAM) dendrimers to 4T1 murine breast cancer cell line as gene-directed enzyme/prodrug therapy. The VEGF promoter and cytosine deaminase gene were cloned into the pEGFP-N1vector from the genomic DNA of 4T1 and E. coli, respectively. The frequency of transfection for VEGF-CD-pEGFP-N1 and pEGFP-N1- CD treated groups was 35±3 and 36±4, respectively. MTT assay was perform to evaluate the cytotoxic effects of converted 5-flurocytosine on 4T1 cells. Also, the optimal concentration of 5-FC in 4T1 cells transfected by VEGF-CD-pEGFP-N1 plasmid was evaluated. The GFP expression of transfected 4T1 cells by VEGF-CD-pEGFP-N1were observed by fluorescent microscopy and flowcytometry. Results demonstrated that the suicide CD gene was successfully expressed in 4T1 cells determined by RT-PCR and GFP expression. A concentration of 200 μg/ml 5-FC was identified as optimal dose of prodrug. Furthermore, the CD/5-FC enzyme/prodrug system not only demonstrated toxicity on transformed 4T1 cells but also exerted a 'bystander effect' determined by MTT assay. The results showed that by 35% transfection with VEGF-CD-pEGFP-N1and CD-pEGFP-N1 plasmids, 80% and 90% inhibition of the cells growth occurred, respectively.
Collapse
Affiliation(s)
- Manouchehr Emamian
- Department of Genetics & Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akbar Abbaspour
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tina Shahani
- Department of Genetics & Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Biglari
- Department of Genetics & Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J Biol Chem 2020; 295:11099-11117. [PMID: 32527727 DOI: 10.1074/jbc.rev120.011833] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes, including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, toward regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
6
|
Chen N, Zhao X, Wang F, Lu Z, Wang Y, Jin M. Proteomic study of sulfated polysaccharide from Enterobacter cloacae Z0206 against H2O2-induced oxidative damage in murine macrophages. Carbohydr Polym 2020; 237:116147. [DOI: 10.1016/j.carbpol.2020.116147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022]
|
7
|
A novel screening system based on gene targeting to enrich the modified mammalian cells: without leaving selection marker and additional sequence. 3 Biotech 2019; 9:357. [PMID: 31501758 DOI: 10.1007/s13205-019-1884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/26/2019] [Indexed: 10/26/2022] Open
Abstract
Gene targeting by homologous recombination (HR) has some disadvantages in screening modified cells that limits their use in targeting gene fragments in long exons. These disadvantages include retention of remaining selection marker after targeting, not removing cells with vector random integration, and leaving loxP sequences after removal of selection markers. Therefore, to overcome these disadvantages, we decided to design a eukaryotic two-step screening system to isolate the favorable, edited cells from undesirable cells in a gene targeting project. This system included two targeting plasmids containing one positive marker and two inducible negative markers. It was designed in such a way that, during the two-step HR and subsequent selection, only the well-edited cells survive and cells with vector random integration, and untargeted and episomal targeting plasmids are eliminated. The percentage of GFP-positive cells in two-step screening method (76.10 ± 3.50) was significantly higher than in the one-step screening method (0.90 ± 0.37) (p < 0.0001). GFP noise caused by the presence of the GFP-episomal expression plasmid had no significant effect on our results. We developed an efficient system to screen and enrich the HR-modified cells from undesired-HR and untargeted cells, without leaving the selection markers in mammalian cells. This method may be a promising method in ex vivo gene therapy approaches, especially when the target is a gene fragment within a large exon.
Collapse
|
8
|
Elaimy AL, Ahsan A, Marsh K, Pratt WB, Ray D, Lawrence TS, Nyati MK. ATM is the primary kinase responsible for phosphorylation of Hsp90α after ionizing radiation. Oncotarget 2018; 7:82450-82457. [PMID: 27738310 PMCID: PMC5347704 DOI: 10.18632/oncotarget.12557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 90 is a chaperone that plays an essential role in the stabilization of a large number of signal transduction molecules, many of which are associated with oncogenesis. An Hsp90 isoform (Hsp90α) has been shown to be selectively phosphorylated on two N-terminal threonine residues (threonine 5 and 7) and is involved in the DNA damage response and apoptosis. However, the kinase that phosphorylates Hsp90α after ionizing radiation (IR) and its role in post-radiation DNA repair remains unclear. Inasmuch as several proteins of the DNA damage response machinery are Hsp90 clients, the functional consequences of Hsp90α phosphorylation following IR have implications for the design of novel radiosensitizing agents that specifically target the Hsp90α isoform. Here we show that ATM phosphorylates Hsp90α at the T5/7 residues immediately after IR. The kinetics of Hsp90α T5/7 phosphorylation correlate with the kinetics of H2AX S139 phosphorylation (γH2AX). Although Hsp90α is located in both the cytoplasm and nucleus, only nuclear Hsp90α is phosphorylated by ATM after IR. The siRNA mediated knockdown of Hsp90α sensitizes head and neck squamous cell carcinoma cells, lung cancer cells and lung fibroblasts to IR. Furthermore, MEF cells that are Hsp90α null have reduced levels of γH2AX indicating that Hsp90α is important for the formation of γH2AX. Thus, this study provides evidence that Hsp90α is a component of the signal transduction events mediated by ATM following IR, and that Hsp90α loss decreases γH2AX levels. This work supports additional investigation into Hsp90α T5/7 phosphorylation with the goal of developing targeted radiosensitizing therapies.
Collapse
Affiliation(s)
- Ameer L Elaimy
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Aarif Ahsan
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Katherine Marsh
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - William B Pratt
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Dipankar Ray
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Mukesh K Nyati
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Nosareva OL, Ryazantseva NV, Stepovaya EA, Shakhristova EV, Stepanova EA, Gulaya VS. [The role of heat shock proteins 27 and 70 in redox-dependent regulation of apoptosis in Jurkat tumor cells]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:670-673. [PMID: 28026811 DOI: 10.18097/pbmc20166206670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heat shock proteins Hsp) act as molecular chaperones, protecting enzymes and other proteins against reactive oxygen species. The objective of the study was to investigate the role of Hsp27 in maintaining the balance of the glutathione system and Hsp70 concentrations as well as in implementing Jurkat tumor cell apoptosis. Addition of the Hsp27 inhibitor KRIBB3 (5-(5-ethyl-2-hydroxy-4-methoxyphenyl)-4-(4-methoxyphenyl)-isoxazol) to Jurkat cells resulted in glutathione redox imbalance (increased GSSG and increased glutathione reductase activity), a decrease in Hsp70 concentrations, and also increased cell apoptosis as compared with to the intact cell culture. The proposed selective regulation of chaperone activity is a promising direction in regulating apoptosis at the cellular level.
Collapse
Affiliation(s)
- O L Nosareva
- Siberian State Medical University, Tomsk, Russia
| | | | | | | | | | - V S Gulaya
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
10
|
A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes. Biochem Biophys Res Commun 2015; 465:769-76. [PMID: 26301633 DOI: 10.1016/j.bbrc.2015.08.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/20/2015] [Indexed: 11/23/2022]
Abstract
Several light-regulated genetic circuits have been applied to spatiotemporally control transgene expression in mammalian cells. However, simultaneous regulation of multiple genes using one genetic device by light has not yet been reported. In this study, we engineered a bidirectional expression module based on LightOn system. Our data showed that both reporter genes could be regulated at defined and quantitative levels. Simultaneous regulation of four genes was further achieved in cultured cells and mice. Additionally, we successfully utilized the bidirectional expression module to monitor the expression of a suicide gene, showing potential for photodynamic gene therapy. Collectively, we provide a robust and useful tool to simultaneously control multiple genes expression by light, which will be widely used in biomedical research and biotechnology.
Collapse
|
11
|
Ghosh AC, Shimell M, Leof ER, Haley MJ, O'Connor MB. UPRT, a suicide-gene therapy candidate in higher eukaryotes, is required for Drosophila larval growth and normal adult lifespan. Sci Rep 2015; 5:13176. [PMID: 26271729 PMCID: PMC4536494 DOI: 10.1038/srep13176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/06/2015] [Indexed: 11/09/2022] Open
Abstract
Uracil phosphoribosyltransferase (UPRT) is a pyrimidine salvage pathway enzyme that catalyzes the conversion of uracil to uridine monophosphate (UMP). The enzyme is highly conserved from prokaryotes to humans and yet phylogenetic evidence suggests that UPRT homologues from higher-eukaryotes, including Drosophila, are incapable of binding uracil. Purified human UPRT also do not show any enzymatic activity in vitro, making microbial UPRT an attractive candidate for anti-microbial drug development, suicide-gene therapy, and cell-specific mRNA labeling techniques. Nevertheless, the enzymatic site of UPRT remains conserved across the animal kingdom indicating an in vivo role for the enzyme. We find that the Drosophila UPRT homologue, krishah (kri), codes for an enzyme that is required for larval growth, pre-pupal/pupal viability and long-term adult lifespan. Our findings suggest that UPRT from all higher eukaryotes is likely enzymatically active in vivo and challenges the previous notion that the enzyme is non-essential in higher eukaryotes and cautions against targeting the enzyme for therapeutic purposes. Our findings also suggest that expression of the endogenous UPRT gene will likely cause background incorporation when using microbial UPRT as a cell-specific mRNA labeling reagent in higher eukaryotes.
Collapse
Affiliation(s)
- Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emma R Leof
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Macy J Haley
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Vlaski M, Negroni L, Kovacevic-Filipovic M, Guibert C, de la Grange PB, Rossignol R, Chevaleyre J, Duchez P, Lafarge X, Praloran V, Schmitter JM, Ivanovic Z. Hypoxia/Hypercapnia-Induced Adaptation Maintains Functional Capacity of Cord Blood Stem and Progenitor Cells at 4°C. J Cell Physiol 2014; 229:2153-65. [DOI: 10.1002/jcp.24678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/20/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Marija Vlaski
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
- UMR 5164 CNRS/Université Bordeaux Segalen; Bordeaux France
| | - Luc Negroni
- UMR 5248 CNRS/Université Bordeaux Segalen; Bordeaux France
| | | | | | - Philippe Brunet de la Grange
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
- UMR 5164 CNRS/Université Bordeaux Segalen; Bordeaux France
| | | | - Jean Chevaleyre
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
- UMR 5164 CNRS/Université Bordeaux Segalen; Bordeaux France
| | - Pascale Duchez
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
- UMR 5164 CNRS/Université Bordeaux Segalen; Bordeaux France
| | - Xavier Lafarge
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
| | | | | | - Zoran Ivanovic
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
- UMR 5164 CNRS/Université Bordeaux Segalen; Bordeaux France
| |
Collapse
|
13
|
Lv Z, Zhang TY, Yin JC, Wang H, Sun T, Chen LQ, Bai FL, Wu W, Ren GP, Li DS. Enhancement of Anti-tumor Activity of Newcastle Disease Virus by the Synergistic Effect of Cytosine Deaminase. Asian Pac J Cancer Prev 2013; 14:7489-96. [DOI: 10.7314/apjcp.2013.14.12.7489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Zarogoulidis P, Darwiche K, Sakkas A, Yarmus L, Huang H, Li Q, Freitag L, Zarogoulidis K, Malecki M. Suicide Gene Therapy for Cancer - Current Strategies. ACTA ACUST UNITED AC 2013; 4. [PMID: 24294541 DOI: 10.4172/2157-7412.1000139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current cancer treatments may create profound iatrogenic outcomes. The adverse effects of these treatments still remain, as the serious problems that practicing physicians have to cope with in clinical practice. Although, non-specific cytotoxic agents constitute an effective treatment modality against cancer cells, they also tend to kill normal, quickly dividing cells. On the other hand, therapies targeting the genome of the tumors are both under investigation, and some others are already streamlined to clinical practice. Several approaches have been investigated in order to find a treatment targeting the cancer cells, while not affecting the normal cells. Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into cancer cells. The two major suicide gene therapeutic strategies currently pursued are: cytosine deaminase/5-fluorocytosine and the herpes simplex virus/ganciclovir. The novel strategies include silencing gene expression, expression of intracellular antibodies blocking cells' vital pathways, and transgenic expression of caspases and DNases. We analyze various elements of cancer cells' suicide inducing strategies including: targets, vectors, and mechanisms. These strategies have been extensively investigated in various types of cancers, while exploring multiple delivery routes including viruses, non-viral vectors, liposomes, nanoparticles, and stem cells. We discuss various stages of streamlining of the suicide gene therapy into clinical oncology as applied to different types of cancer. Moreover, suicide gene therapy is in the center of attention as a strategy preventing cancer from developing in patients participating in the clinical trials of regenerative medicine. In oncology, these clinical trials are aimed at regenerating, with the aid of stem cells, of the patients' organs damaged by pathologic and/or iatrogenic factors. However, the stem cells carry the risk of neoplasmic transformation. We discuss cell suicide inducing strategies aimed at preventing stem cell-originated cancerogenesis.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU ; Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany, EU
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Suicide gene therapy in cancer: where do we stand now? Cancer Lett 2012; 324:160-70. [PMID: 22634584 DOI: 10.1016/j.canlet.2012.05.023] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/11/2012] [Accepted: 05/21/2012] [Indexed: 12/21/2022]
Abstract
Suicide gene therapy is based on the introduction into tumor cells of a viral or a bacterial gene, which allows the conversion of a non-toxic compound into a lethal drug. Although suicide gene therapy has been successfully used in a large number of in vitro and in vivo studies, its application to cancer patients has not reached the desirable clinical significance. However, recent reports on pre-clinical cancer models demonstrate the huge potential of this strategy when used in combination with new therapeutic approaches. In this review, we summarize the different suicide gene systems and gene delivery vectors addressed to cancer, with particular emphasis on recently developed systems and associated bystander effects. In addition, we review the different strategies that have been used in combination with suicide gene therapy and provide some insights into the future directions of this approach, particularly towards cancer stem cell eradication.
Collapse
|
16
|
Lee CF, Griffiths S, Rodríguez-Suárez E, Pierce A, Unwin RD, Jaworska E, Evans CA, J Gaskell S, Whetton AD. Assessment of downstream effectors of BCR/ABL protein tyrosine kinase using combined proteomic approaches. Proteomics 2011; 10:3321-42. [PMID: 20706980 DOI: 10.1002/pmic.201000176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Leukaemic transformation is frequently associated with the aberrant activity of a protein tyrosine kinase (PTK). As such it is of clinical relevance to be able to map the effects of these leukaemogenic PTKs on haemopoietic cells at the level of phosphorylation modulation. In this paradigm study we have employed a range of proteomic approaches to analyse the effects of one such PTK, BCR/ABL. We have employed phosphoproteome enrichment techniques allied to peptide and protein quantification to identify proteins and pathways involved in cellular transformation. Amongst the proteins shown to be regulated at the post-translational level were cofilin, an actin-severing protein thus linked to altered motility and Cbl an E3 ubiquitin ligase integrally linked to the control of tyrosine kinase signalling (regulated by 5 and 6 PTKs respectively). The major class of proteins identified however were molecular chaperones. We also showed that HSP90 phosphorylation is altered by BCR/ABL action and that HSP90 plays a crucial role in oncogene stability. Further investigation with another six leukaemogenic PTKs demonstrates that this HSP90 role in oncogene stability appears to be a common phenomenon in a range of leukaemias. This opens up the potential opportunity to treat different leukaemias with HSP90 inhibitors.
Collapse
Affiliation(s)
- Chia Fang Lee
- Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer, Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Wolfson Molecular Imaging Centre, Withington, Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maciollek A, Munteanu M, Ritter H. New Generation of Polymeric Drugs: Copolymer from NIPAAM and Cyclodextrin Methacrylate Containing Supramolecular-Attached Antitumor Derivative. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200900436] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Warmann SW, Armeanu S, Heigoldt H, Ruck P, Vonthein R, Heitmann H, Seitz G, Lemken ML, Bitzer M, Fuchs J, Lauer UM. Adenovirus-mediated cytosine deaminase/5-fluorocytosine suicide gene therapy of human hepatoblastoma in vitro. Pediatr Blood Cancer 2009; 53:145-51. [PMID: 19213079 DOI: 10.1002/pbc.21956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Multidrug resistance is a key factor for the sobering outcome of relapsed and metastatic human hepatoblastoma (HB). Gene directed treatment approaches were recently identified as possible treatment options against advanced HB, in which standard chemotherapy regimens are partially insufficient. The aim of this study was to systematically analyze the effects of suicide gene therapy in three HB cell lines using a yeast-derived cytosine deaminase (YCD)-combined yeast uracil phosphoribosyltransferase (YUPRT)-based adenovirus-mediated gene transfer. PROCEDURE YCD and YUPRT were fused to form the bifunctional suicide gene SuperCD. Adeonoviral vectors were used for transduction. Tumor cells transduced at MOI 50 were incubated with 5-fluorocytosine (5-FC) in ascending concentrations. RESULTS Transduction rates were 87.8% (+6.7) in the mixed HB cell line HUH6, 98.6% (+1.4) in the epithelial HB cell line HepT1 and 93.6% (+0.6) in the multifocal HB embryonal cell line HepT3, respectively. In HepT3 and HepT1 cells suicide gene therapy with SuperCD/5-FC was highly effective leading to HB cell damage far above those of application of the prodrug 5-FC only. In HUH6 cells the approach had no effect due to a lack in activity of the CMV promoter being employed for transcription of the SuperCD transgene. CONCLUSION Assuming employment of fully active promoters, the SuperCD/5-FC approach may serve as a potentially useful anti-tumor strategy against advanced HB.
Collapse
Affiliation(s)
- Steven W Warmann
- Department of Pediatric Surgery, University Children's Hospital Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang SY, Zhang DS, Han JQ, Zhang N, Zhang SZ, Mu WL, Wei FC. Radiosensitization and Anti-tumour Effects of Cytosine Deaminase and Thymidine Kinase Fusion Suicide Gene in Human Adenoid Cystic Carcinoma Cells. J Int Med Res 2009; 37:479-90. [PMID: 19383243 DOI: 10.1177/147323000903700224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex virus thymidine kinase (HSV-TK) and Escherichia coli cytosine deaminase (CD) can convert innocuous prodrugs into cytotoxic metabolites and are being investigated for use in gene therapy for cancer. Human adenoid cystic carcinoma (ACC-2) cells transduced with a CD/HSV-TK fusion gene (ACC-2/CD-TK cells) were found to be more sensitive to radiation than ACC-2 cells when exposed to 5-fluorocytosine (5-FC; 40 μg/ml) plus ganciclovir (0.1 μg/ml) for 48 h before irradiation. Analysis of radiation survival curves for cells exposed to 5-FC plus ganciclovir before irradiation showed that ACC-2 cells had a higher capacity for sublethal damage repair (Dq value) and greater cellular radiosensitivity (D0 value) than ACC-2/CD-TK cells. Colony formation rate after 2 Gy of irradiation was significantly greater for ACC-2 than for ACC-2/CD-TK cells when cells were treated with 5-FC plus ganciclovir before irradiation. This study, therefore, indicates that addition of radiation might substantially improve the therapeutic potential of CD-TK fusion gene therapy of human adenoid cystic carcinomas.
Collapse
Affiliation(s)
- S-Y Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Tongji University, Shanghai, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - D-S Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - J-Q Han
- Institute of Cancer Research, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - N Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - S-Z Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - W-L Mu
- Medical Research Centre, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - F-C Wei
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
20
|
Gillet JP, Macadangdang B, Fathke RL, Gottesman MM, Kimchi-Sarfaty C. The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol Biol 2009; 542:5-54. [PMID: 19565894 DOI: 10.1007/978-1-59745-561-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During the last 4 decades, gene therapy has moved from preclinical to clinical studies for many diseases ranging from monogenic recessive disorders such as hemophilia to more complex diseases such as cancer, cardiovascular disorders, and human immunodeficiency virus (HIV). To date, more than 1,340 gene therapy clinical trials have been completed, are ongoing, or have been approved in 28 countries, using more than 100 genes. Most of those clinical trials (66.5%) were aimed at the treatment of cancer. Early hype, failures, and tragic events have now largely been replaced by the necessary stepwise progress needed to realize clinical benefits. We now understand better the strengths and weaknesses of various gene transfer vectors; this facilitates the choice of appropriate vectors for individual diseases. Continuous advances in our understanding of tumor biology have allowed the development of elegant, more efficient, and less toxic treatment strategies. In this introductory chapter, we review the history of gene therapy since the early 1960s and present in detail two major recurring themes in gene therapy: (1) the development of vector and delivery systems and (2) the design of strategies to fight or cure particular diseases. The field of cancer gene therapy experienced an "awkward adolescence." Although this field has certainly not yet reached maturity, it still holds the potential of alleviating the suffering of many individuals with cancer.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
21
|
Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C. Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 2008; 12:743-61. [PMID: 18266962 PMCID: PMC4401125 DOI: 10.1111/j.1582-4934.2008.00273.x] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many different external and intrinsic apoptotic stimuli induce the accumulation in the cells of a set of proteins known as stress or heat shock proteins (HSPs). HSPs are conserved proteins present in both prokaryotes and eukaryotes. These proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and by preventing their aggregation. HSPs have a protective function, that is they allow the cells to survive to otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Several of these proteins have demonstrated to directly interact with components of the cell signalling pathways, for example those of the tightly regulated caspasedependent programmed cell death machinery, upstream, downstream and at the mitochondrial level. HSPs can also affect caspase-independent apoptosis-like process by interacting with apoptogenic factors such as apoptosis-inducing factor (AIF) or by acting at the lysosome level. This review will describe the different key apoptotic proteins interacting with HSPs and the consequences of these interactions in cell survival, proliferation and apoptotic processes. Our purpose will be illustrated by emerging strategies in targeting these protective proteins to treat haematological malignancies.
Collapse
|