1
|
Lin W, Aluicio-Sarduy E, Houson HA, Barnhart TE, Tekin V, Jeffery JJ, Weichmann AM, Barrett KE, Lapi SE, Engle JW. Theranostic cobalt-55/58m for neurotensin receptor-mediated radiotherapy in vivo: A pilot study with dosimetry. Nucl Med Biol 2023; 118-119:108329. [PMID: 36805869 PMCID: PMC10121947 DOI: 10.1016/j.nucmedbio.2023.108329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Neurotensin receptor 1 (NTSR1) can stimulate tumor proliferation through neurotensin (NTS) activation and are overexpressed by a variety of cancers. The high binding affinity of NTS/NTSR1 makes radiolabeled NTS derivatives interesting for cancer diagnosis and staging. Internalization of NTS/NTSR1 also suggests therapeutic application with high LET alpha particles and low energy electrons. We investigated the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo using murine models xenografted with NTSR1-positive HT29 human colorectal adenocarcinoma cells, and utilized [55Co]Co-NOTA-NT-20.3 for dosimetry. METHODS Targeting properties and cytotoxicity of [55/58mCo]Co-NOTA-NT-20.3 were assessed with HT29 cells. Female nude mice were xenografted with HT29 tumors and administered [55Co or 58mCo]Co-NOTA-NT-20.3 to evaluate pharmacokinetics or for therapy, respectively. Dosimetry calculations followed the Medical Internal Radiation Dose (MIRD) formalism and human absorbed dose rate per unit activity were obtained from OpenDose. The pilot therapy study consisted of two groups (each N = 3) receiving 110 ± 15 MBq and 26 ± 6 MBq [58mCo]Co-NOTA-NT-20.3 one week after tumor inoculation, and control (N = 3). Tumor sizes and masses were measured twice a week after therapy. Complete blood count and kidney histology were also performed to assess toxicity. RESULTS HPLC measured radiochemical purity of [55,58mCo]Co-NOTA-NT-20.3 > 99 %. Labeled compounds retained NTS targeting properties. [58mCo]Co-NOTA-NT-20.3 exhibited cytotoxicity for HT29 cells and was >15× more potent than [58mCo]CoCl2. Xenografted tumors responded modestly to administered doses, but mice showed no signs of radiotoxicity. Absorbed dose to tumor and kidney with 110 MBq [58mCo]Co-NOTA-NT-20.3 were 0.6 Gy and 0.8 Gy, respectively, and other organs received less than half of the absorbed dose to tumor. Off-target radiation dose from cobalt-58g was small but reduces the therapeutic window. CONCLUSION The enhanced in vitro cytotoxicity and high tumor-to-background led us to investigate the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo. Although we were unable to induce tumor response commensurate with [177Lu]Lu-NT127 (NLys-Lys-Pro-Tyr-Tle-Leu) studies involving similar time-integrated activity, the absence of observed toxicity may constitute an opportunity for targeting vectors with improved uptake and/or retention to avoid the aftereffects of other high-LET radioactive emissions. Future studies with higher uptake, activity and/or multiple dosing regimens are warranted. The theranostic approach employed in this work was crucial for dosimetry analysis.
Collapse
Affiliation(s)
- Wilson Lin
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States.
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Volkan Tekin
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, United States
| | - Justin J Jeffery
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, United States
| | - Ashley M Weichmann
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, United States
| | - Kendall E Barrett
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States; Department of Radiology, University of Wisconsin, 600 Highland Ave., Madison, WI 53792, United States
| |
Collapse
|
2
|
Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases. Polymers (Basel) 2022; 14:polym14225014. [PMID: 36433141 PMCID: PMC9694910 DOI: 10.3390/polym14225014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides which are composed of a repeating disaccharide unit. They are also linked to core proteins to form proteoglycans (PGs). GAGs/PGs are major components of the cell surface and the extracellular matrix (ECM), and they display critical roles in development, normal function, and damage response in the body. Some properties (such as expression quantity, molecular weight, and sulfation pattern) of GAGs may be altered under pathological conditions. Due to the close connection between these properties and the function of GAGs/PGs, the alterations are often associated with enormous changes in the physiological/pathological status of cells and organs. Therefore, these GAGs/PGs may serve as marker molecules of disease. This review aimed to investigate the structural alterations and roles of GAGs/PGs in a range of diseases, such as atherosclerosis, cancer, diabetes, neurodegenerative disease, and virus infection. It is hoped to provide a reference for disease diagnosis, monitoring, prognosis, and drug development.
Collapse
|
3
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
4
|
Zheng B, Zhang P, Wang H, Wang J, Liu ZH, Zhang D. Advances in Research on Bladder Cancer Targeting Peptides: a Review. Cell Biochem Biophys 2021; 79:711-718. [PMID: 34468956 PMCID: PMC8558283 DOI: 10.1007/s12013-021-01019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 12/04/2022]
Abstract
Bladder cancer (Bca) is the second most common malignant tumor of the genitourinary system in Chinese male population with high potential of recurrence and progression. The overall prognosis has not been improved significantly for the past 30 years due to the lack of early theranostic technique. Currently the early theranostic technique for bladder cancer is mainly through the intravesical approach, but the clinical outcomes are poor due to the limited tumor-targeting efficiency. Therefore, the targeting peptides for bladder cancer provide possibility to advance intravesical theranostic technique. However, no systematic review has covered the wide use of the targeting peptides for intravesical theranostic techniques in bladder cancer. Herein, a summary of original researches introduces all aspects of the targeting peptides for bladder cancer, including the peptide screening, the targeting mechanism and its preclinical application.
Collapse
Affiliation(s)
- Bin Zheng
- Zhejiang Chinese Medical University, 310053, HangZhou, China
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, 310014, Hangzhou, China
| | - Pu Zhang
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, 310014, Hangzhou, China
| | - Heng Wang
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, 310014, Hangzhou, China
| | - Jinxue Wang
- Handan Central hospital, 056001, Handan, China
| | - Zheng Hong Liu
- Zhejiang Chinese Medical University, 310053, HangZhou, China
| | - DaHong Zhang
- Zhejiang Chinese Medical University, 310053, HangZhou, China.
| |
Collapse
|
5
|
Depau L, Brunetti J, Falciani C, Mandarini E, Riolo G, Zanchi M, Karousou E, Passi A, Pini A, Bracci L. Heparan Sulfate Proteoglycans Can Promote Opposite Effects on Adhesion and Directional Migration of Different Cancer Cells. J Med Chem 2020; 63:15997-16011. [PMID: 33284606 DOI: 10.1021/acs.jmedchem.0c01848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparan sulfate proteoglycans take part in crucial events of cancer progression, such as epithelial-mesenchymal transition, cell migration, and cell invasion. Through sulfated groups on their glycosaminoglycan chains, heparan sulfate proteoglycans interact with growth factors, morphogens, chemokines, and extracellular matrix (ECM) proteins. The amount and position of sulfated groups are highly variable, thus allowing differentiated ligand binding and activity of heparan sulfate proteoglycans. This variability and the lack of specific ligands have delayed comprehension of the molecular basis of heparan sulfate proteoglycan functions. Exploiting a tumor-targeting peptide tool that specifically recognizes sulfated glycosaminoglycans, we analyzed the role of membrane heparan sulfate proteoglycans in the adhesion and migration of cancer cell lines. Starting from the observation that the sulfated glycosaminoglycan-specific peptide exerts a different effect on adhesion, migration, and invasiveness of different cancer cell lines, we identified and characterized three cell migration phenotypes, where different syndecans are associated with alternative signaling for directional cell migration.
Collapse
Affiliation(s)
- Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | | - Giulia Riolo
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Marta Zanchi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
6
|
Endocytosis and Trafficking of Heparan Sulfate Proteoglycans in Triple-Negative Breast Cancer Cells Unraveled with a Polycationic Peptide. Int J Mol Sci 2020; 21:ijms21218282. [PMID: 33167372 PMCID: PMC7663799 DOI: 10.3390/ijms21218282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
The process of heparan sulfate proteoglycan (HSPG) internalization has been described as following different pathways. The tumor-specific branched NT4 peptide has been demonstrated to bind HSPGs on the plasma membrane and to be internalized in tumor cell lines. The polycationic peptide has been also shown to impair migration of different cancer cell lines in 2D and 3D models. Our hypothesis was that HSPG endocytosis could affect two important phenomena of cancer development: cell migration and nourishment. Using NT4 as an experimental tool mimicking heparin-binding ligands, we studied endocytosis and trafficking of HSPGs in a triple-negative human breast cancer cell line, MDA-MB-231. The peptide entered cells employing caveolin- or clathrin-dependent endocytosis and macropinocytosis, in line with what is already known about HSPGs. NT4 then localized in early and late endosomes in a time-dependent manner. The peptide had a negative effect on CDC42-activation triggered by EGF. The effect can be explained if we consider NT4 a competitive inhibitor of EGF on HS that impairs the co-receptor activity of the proteoglycan, reducing EGFR activation. Reduction of the invasive migratory phenotype of MDA-MB-231 induced by NT4 can be ascribed to this effect. RhoA activation was damped by EGF in MDA-MB-231. Indeed, EGF reduced RhoA-GTP and NT4 did not interfere with this receptor-mediated signaling. On the other hand, the peptide alone determined a small but solid reduction in active RhoA in breast cancer cells. This result supports the observation of few other studies, showing direct activation of the GTPase through HSPG, not mediated by EGF/EGFR.
Collapse
|
7
|
Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacol Res 2020; 162:105231. [PMID: 33027717 DOI: 10.1016/j.phrs.2020.105231] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Cancer is the second leading cause of death in the world and its treatment is extremely challenging, mainly due to its complexity. Cell-Penetrating Peptides (CPPs) are peptides that can transport into the cell a wide variety of biologically active conjugates (or cargoes), and are, therefore, promising in the treatment and in the diagnosis of several types of cancer. Some notable examples are TAT and Penetratin, capable of penetrating the central nervous system (CNS) and, therefore, acting in cancers of this system, such as Glioblastoma Multiforme (GBM). These above-mentioned peptides, conjugated with traditional chemotherapeutic such as Doxorubicin (DOX) and Paclitaxel (PTX), have also been shown to induce apoptosis of breast and liver cancer cells, as well as in lung cancer cells, respectively. In other cancers, such as esophageal cancer, the attachment of Magainin 2 (MG2) to Bombesin (MG2B), another CPP, led to pronounced anticancer effects. Other examples are CopA3, that selectively decreased the viability of gastric cancer cells, and the CPP p28. Furthermore, in preclinical tests, the anti-tumor efficacy of this peptide was evaluated on human breast cancer, prostate cancer, ovarian cancer, and melanoma cells in vitro, leading to high expression of p53 and promoting cell cycle arrest. Despite the numerous in vitro and in vivo studies with promising results, and the increasing number of clinical trials using CPPs, few treatments reach the expected clinical efficacy. Usually, their clinical application is limited by its poor aqueous solubility, immunogenicity issues and dose-limiting toxicity. This review describes the most recent advances and innovations in the use of CPPs in several types of cancer, highlighting their crucial importance for various purposes, from therapeutic to diagnosis. Further clinical trials with these peptides are warranted to examine its effects on various types of cancer.
Collapse
|
8
|
Campion O, Al Khalifa T, Langlois B, Thevenard-Devy J, Salesse S, Savary K, Schneider C, Etique N, Dedieu S, Devy J. Contribution of the Low-Density Lipoprotein Receptor Family to Breast Cancer Progression. Front Oncol 2020; 10:882. [PMID: 32850302 PMCID: PMC7406569 DOI: 10.3389/fonc.2020.00882] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) family comprises 14 single-transmembrane receptors sharing structural homology and common repeats. These receptors specifically recognize and internalize various extracellular ligands either alone or complexed with membrane-spanning co-receptors that are then sorted for lysosomal degradation or cell-surface recovery. As multifunctional endocytic receptors, some LDLR members from the core family were first considered as potential tumor suppressors due to their clearance activity against extracellular matrix-degrading enzymes. LDLRs are also involved in pleiotropic functions including growth factor signaling, matricellular proteins, and cell matrix adhesion turnover and chemoattraction, thereby affecting both tumor cells and their surrounding microenvironment. Therefore, their roles could appear controversial and dependent on the malignancy state. In this review, recent advances highlighting the contribution of LDLR members to breast cancer progression are discussed with focus on (1) specific expression patterns of these receptors in primary cancers or distant metastasis and (2) emerging mechanisms and signaling pathways. In addition, potential diagnosis and therapeutic options are proposed.
Collapse
Affiliation(s)
- Océane Campion
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Tesnim Al Khalifa
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Benoit Langlois
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jessica Thevenard-Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphanie Salesse
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Katia Savary
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Christophe Schneider
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Nicolas Etique
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jérôme Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
9
|
Brunetti J, Falciani C, Bernini A, Scali S, Bracci L, Lozzi L. Molecular definition of the interaction between a tumor-specific tetrabranched peptide and LRP6 receptor. Amino Acids 2020; 52:915-924. [PMID: 32556741 DOI: 10.1007/s00726-020-02860-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
The tumor-specific tetrabranched peptide NT4 binds membrane sulfate glycosaminoglycans and receptors belonging to the low density lipoprotein receptor-related protein (LRP) family, like LRP6, which are overexpressed in cancer. The binding occurs through a multimeric positively-charged motif of NT4 that interacts with negatively charged motives in both glycosaminoglycans and LRP receptors. LRP6 has an essential function in canonical Wnt signaling, acting together with receptors of the Frizzled family as coreceptor for Wnt ligands. The extracellular domain of LRP6 contains four YWTD β-propellers, which are fundamental for interactions with ligands, such as Wnt and Wnt inhibitors. To investigate the molecular interactions between the NT4 peptide and LRP6 receptor, we synthesized a library of epitope mapping peptides reproducing the YWTD β-propeller 3 and 4 of LRP6. The peptides that showed to bind NT4 represented the portion of LRP6 located on the top face of β-propeller 3 and contained negatively charged residues, including glutamic acid-708 which is known to be involved in Wnt3a interaction. The results pave the way for a possible development of peptide inhibitors of Wnt3a pathway to be used as drugs in oncology.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100, Siena, Italy.
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Silvia Scali
- Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luisa Lozzi
- Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
10
|
A New NT4 Peptide-Based Drug Delivery System for Cancer Treatment. Molecules 2020; 25:molecules25051088. [PMID: 32121130 PMCID: PMC7179244 DOI: 10.3390/molecules25051088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
The development of selective tumor targeting agents to deliver multiple units of chemotherapy drugs to cancer tissue would improve treatment efficacy and greatly advance progress in cancer therapy. Here we report a new drug delivery system based on a tetrabranched peptide known as NT4, which is a promising cancer theranostic by virtue of its high cancer selectivity. We developed NT4 directly conjugated with one, two, or three units of paclitaxel and an NT4-based nanosystem, using NIR-emitting quantum dots, loaded with the NT4 tumor-targeting agent and conjugated with paclitaxel, to obtain a NT4-QD-PTX nanodevice designed to simultaneously detect and kill tumor cells. The selective binding and in vitro cytotoxicity of NT4-QD-PTX were higher than for unlabeled QD-PTX when tested on the human colon adenocarcinoma cell line HT-29. NT4-QD-PTX tumor-targeted nanoparticles can be considered promising for early tumor detection and for the development of effective treatments combining simultaneous therapy and diagnosis.
Collapse
|
11
|
Brunetti J, Riolo G, Depau L, Mandarini E, Bernini A, Karousou E, Passi A, Pini A, Bracci L, Falciani C. Unraveling Heparan Sulfate Proteoglycan Binding Motif for Cancer Cell Selectivity. Front Oncol 2019; 9:843. [PMID: 31620357 PMCID: PMC6759624 DOI: 10.3389/fonc.2019.00843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Membrane heparan sulfate proteoglycans (HSPG) regulate cell proliferation, migration, and differentiation and are therefore considered key players in cancer cell development processes. Here, we used the NT4 peptide to investigate how the sulfation pattern of HSPG on cells drives binding specificity. NT4 is a branched peptide that binds the glycosaminoglycan (GAG) chains of HSPG. It has already been shown to inhibit growth factor-induced migration and invasiveness of cancer cells, implying antagonist binding of HSPG. The binding affinity of NT4 with recombinant HSPG showed that NT4 bound glypican-3 and -4 and, with lower affinity, syndecan-4. NT4 binding to the cancer cell membrane was inversely correlated with sulfatase expression. NT4 binding was higher in cell lines with lower expression of SULF-1 and SULF-2, which confirms the determinant role of sulfate groups for recognition by NT4. Using 8-mer and 9-mer heparan sulfate (HS) oligosaccharides with analog disaccharide composition and different sulfation sites, a possible recognition motif was identified that includes repeated 6-O-sulfates alternating with N- and/or 2-O-sulfates. Molecular modeling provided a fully descriptive picture of binding architecture, showing that sulfate groups on opposite sides of the oligosaccharide can interact with positive residues on two peptide sequences of the branched structure, thus favoring multivalent binding and explaining the high affinity and selectivity of NT4 for highly sulfated GAGs. NT4 and possibly newly selected branched peptides will be essential probes for reconstructing and unraveling binding sites for cancer-involved ligands on GAGs and will pave the way for new cancer detection and treatment options.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulia Riolo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
12
|
Systematic Meta-Analysis Identifies Co-Expressed Kinases and GPCRs in Ovarian Cancer Tissues Revealing a Potential for Targeted Kinase Inhibitor Delivery. Pharmaceutics 2019; 11:pharmaceutics11090454. [PMID: 31480803 PMCID: PMC6781325 DOI: 10.3390/pharmaceutics11090454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
The use of many anticancer drugs is problematic due to severe adverse effects. While the recent clinical launch of several kinase inhibitors led to tremendous progress, these targeted agents tend to be of non-specific nature within the kinase target class. Moreover, target mediated adverse effects limit the exploitation of some very promising kinase targets, including mitotic kinases. A future strategy will be the development of nanocarrier-based systems for the active delivery of kinase inhibitors using cancer specific surface receptors. The G-protein-coupled-receptors (GPCRs) represent the largest cell surface receptor family and some members are known to be frequently overexpressed in various cancer types. In the presented study, we used ovarian cancer tissues as an example to systematically identify concurrently overexpressed GPCRs and kinases. The rationale of this approach will guide the future design of nanoparticles, which will dock to GPCRs on cancer cells via specific ligands and deliver anticancer compounds after receptor mediated internalization. In addition to this, the approach is expected to be most effective by matching the inhibitor profiles of the delivered kinase inhibitors to the observed kinase gene expression profiles. We validated the suggested strategy in a meta-analysis, revealing overexpression of selected GPCRs and kinases in individual samples of a large ovarian cancer data set. The presented data demonstrate a large untapped potential for personalized cancer therapy using high-end targeted nanopharmaceuticals with kinase inhibitors.
Collapse
|
13
|
Brunetti J, Falciani C, Bracci L, Pini A. Branched peptides as bioactive molecules for drug design. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jlenia Brunetti
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| | - Chiara Falciani
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| | - Luisa Bracci
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| | - Alessandro Pini
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| |
Collapse
|
14
|
Castro RI, Forero-Doria O, Guzmán L. Perspectives of Dendrimer-based Nanoparticles in Cancer Therapy. AN ACAD BRAS CIENC 2018; 90:2331-2346. [PMID: 30066746 DOI: 10.1590/0001-3765201820170387] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/21/2017] [Indexed: 01/05/2023] Open
Abstract
Currently, cancer is the second most common cause of death in the United States, exceeded only by heart disease. Chemotherapy traditionally suffers from a non-specific distribution, with only a small fraction of the drug reaching the tumor, in this sense, the use of dendrimers incorporating drugs non-covalently encapsulated inside the dendrimer or covalently conjugated have proven to be effectives against different cancer cell lines. However, at present the dendrimers used as drug-carriers still do not meet the necessary characteristic to be considered as an ideal dendrimer for drug delivery; high toxicity, bio-degradability, low toxicity, biodistribution characteristics, and favorable retention with appropriate specificity and bioavailability have not been fully covered by the current available dendrimers. However, the development and study of new dendrimers drug-carriers continues to be an important tool in the cancer therapy as they can be functionalized with varied ligands to reach the tumor tissue through the different body barriers in the body with minimal loss of activity in the bloodstream, have the ability to selectively kill tumor cells without affecting the normal cells and most important with a release mechanism controlling actively. Given the continuous efforts and research in this area of interest, we presented in this review the work done with a special emphasis on the development of dendrimers as a major tool in the combination with drugs, as a potential adjunctive agent in anticancer therapy.
Collapse
Affiliation(s)
- Ricardo I Castro
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, 5 Poniente, 1670, Talca, Chile.,Escuela de Obstetricia y Puericultura, Facultad de Ciencias Biomedicas, Universidad Autónoma de Chile, 5 Poniente, 1670, Talca, Chile
| | - Oscar Forero-Doria
- Instituto de Química de Recursos Naturales, Universidad de Talca, Avenida Lircay, s/n, Casilla 747-721, Talca, Chile
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e InmunoHematología, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay, s/n, Casilla 747-721, Talca, Chile
| |
Collapse
|
15
|
Large set data mining reveals overexpressed GPCRs in prostate and breast cancer: potential for active targeting with engineered anti-cancer nanomedicines. Oncotarget 2018; 9:24882-24897. [PMID: 29861840 PMCID: PMC5982759 DOI: 10.18632/oncotarget.25427] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
Over 800 G-protein-coupled receptors (GPCRs) are encoded by the human genome and many are overexpressed in tumors. GPCRs are triggered by ligand molecules outside the cell and activate internal signal transduction pathways driving cellular responses. The receptor signals are desensitized by receptor internalization and this mechanism can be exploited for the specific delivery of ligand-linked drug molecules directly into cells. Detailed expression analysis in cancer tissue can inform the design of GPCR-ligand decorated drug carriers for active tumor cell targeting. The active targeting process utilizes ligand receptor interactions leading to binding and in most cases internalization of the ligand-attached drug carrier resulting in effective targeting of cancer cells. In this report public microarray data from the Gene Expression Omnibus (GEO) repository was used to identify overexpressed GPCRs in prostate and breast cancer tissues. The analyzed data confirmed previously known cancer receptor associations and identified novel candidates for potential active targeting. Prioritization of the identified targeting receptors is also presented based on high expression levels and frequencies in cancer samples but low expression in healthy tissue. Finally, some selected examples were used in ligand docking studies to assess the feasibility for chemical conjugation to drug nanocarriers without interference of receptor binding and activation. The presented data demonstrate a large untapped potential to improve efficacy and safety of current and future anti-cancer compounds through active targeting of GPCRs on cancer cells.
Collapse
|
16
|
Bracci L, Mandarini E, Brunetti J, Depau L, Pini A, Terzuoli L, Scali S, Falciani C. The GAG-specific branched peptide NT4 reduces angiogenesis and invasiveness of tumor cells. PLoS One 2018; 13:e0194744. [PMID: 29566097 PMCID: PMC5864057 DOI: 10.1371/journal.pone.0194744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Heparan sulfate proteoglycans, HSPGs, modulate major transformations of cancer cells, leading to tumor growth, invasion and metastasis. HSPGs also regulate neo-angiogenesis which prompts cancer progression and metastatic spread. A different aspect of heparin and analogs is their prominent role in the coagulation of blood. The interplay between coagulation and metastasis is being actively studied: anticoagulants such as heparin-derivatives have anticancer activity and procoagulants, such as thrombin, positively modulate proliferation, migration and invasion. The branched peptide NT4 binds to HSPGs and targets selectively cancer cells and tissues. For this, it had been extensively investigated in the last years and it proved to be efficient as chemotherapeutic and tumor tracer in in vivo models of cancer. We investigated the effects of the branched peptide in terms of modulation of angiogenesis and invasiveness of cancer cells. NT4 proved to have a major impact on endothelial cell proliferation, migration and tube formation, particularly when induced by FGF2 and thrombin. In addition, NT4 had important effects on aggressive tumor cells migration and invasion and it also had an anticoagulant profile.The peptide showed very interesting evidence of interference with tumor invasion pathways, offering a cue for its development as a tumor-targeting drug, and also for its use in the study of links between coagulation and tumor progression involving HSPGs.
Collapse
Affiliation(s)
- Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lucia Terzuoli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Silvia Scali
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- * E-mail:
| |
Collapse
|
17
|
Brunetti J, Riolo G, Gentile M, Bernini A, Paccagnini E, Falciani C, Lozzi L, Scali S, Depau L, Pini A, Lupetti P, Bracci L. Near-infrared quantum dots labelled with a tumor selective tetrabranched peptide for in vivo imaging. J Nanobiotechnology 2018; 16:21. [PMID: 29501065 PMCID: PMC5834876 DOI: 10.1186/s12951-018-0346-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
Background Near-infrared quantum dots (NIR QDs) are a new class of fluorescent labels with excellent bioimaging features, such as high fluorescence intensity, good fluorescence stability, sufficient electron density, and strong tissue-penetrating ability. For all such features, NIR QDs have great potential for early cancer diagnosis, in vivo tumor imaging and high resolution electron microscopy studies on cancer cells. Results In the present study we constructed NIR QDs functionalized with the NT4 cancer-selective tetrabranched peptides (NT4-QDs). We observed specific uptake of NT4-QDs in human cancer cells in in vitro experiments and a much higher selective accumulation and retention of targeted QDs at the tumor site, compared to not targeted QDs, in a colon cancer mouse model. Conclusions NIR QDs labelled with the tetrabranched NT4 peptide have very promising performance for selective addressing of tumor cells in vitro and in vivo, proving rising features of NT4-QDs as theranostics. Electronic supplementary material The online version of this article (10.1186/s12951-018-0346-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy.
| | - Giulia Riolo
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | | | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | | | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Luisa Lozzi
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Silvia Scali
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| |
Collapse
|
18
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
19
|
Middel S, Panse CH, Nawratil S, Diederichsen U. Native Chemical Ligation Directed by Photocleavable Peptide Nucleic Acid (PNA) Templates. Chembiochem 2017; 18:2328-2332. [PMID: 28987009 DOI: 10.1002/cbic.201700487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 11/10/2022]
Abstract
A novel peptide-peptide ligation strategy is introduced that has the potential to provide peptide libraries of linearly or branched coupled fragments and will be suited to introduce simultaneous protein modifications at different ligation sites. Ligation is assisted by templating peptide nucleic acid (PNA) strands, and therefore, ligation specificity is solely encoded by the PNA sequence. PNA templating, in general, allows for various kinds of covalent ligation reactions. As a proof of principle, a native chemical ligation strategy was elaborated. This PNA-templated ligation includes easy on-resin procedures to couple linkers and PNA to the respective peptides, and a traceless photocleavage of the linker/PNA oligomer after the ligation step. A 4,5-dimethoxy-2-nitrobenzaldehyde-based linker that allowed the photocleavable linkage of two bio-oligomers was developed.
Collapse
Affiliation(s)
- Stephen Middel
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Cornelia H Panse
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Swantje Nawratil
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
20
|
Neurotensin receptor 1 facilitates intracellular and transepithelial delivery of macromolecules. Eur J Pharm Biopharm 2017; 119:300-309. [DOI: 10.1016/j.ejpb.2017.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/02/2017] [Accepted: 06/28/2017] [Indexed: 01/11/2023]
|
21
|
Coupling to a cancer-selective heparan-sulfate-targeted branched peptide can by-pass breast cancer cell resistance to methotrexate. Oncotarget 2017; 8:76141-76152. [PMID: 29100299 PMCID: PMC5652693 DOI: 10.18632/oncotarget.19056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/18/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer-selective tetra-branched peptides, named NT4, can be coupled to different functional units for cancer cell imaging or therapy. NT4 peptides specifically bind to lipoprotein receptor-related proteins (LRP) receptors and to heparan sulfate chains on membrane proteoglycans and can be efficiently internalized by cancer cells expressing these membrane targets. Since binding and internalization of NT4 peptides is mediated by specific NT4 receptors on cancer cell membranes and this may allow drug resistance produced by drug membrane transporters to be by-passed, we tested the ability of drug-armed NT4 to by-pass drug resistance in cancer cell lines. We found that MTX-conjugated NT4 allows drug resistance to be by-passed in MTX-resistant human breast cancer cells lacking expression of folate reduced carrier. NT4 peptides appear to be extremely promising cancer-selective targeting agents that can be exploited as theranostics in personalized oncological applications.
Collapse
|
22
|
Ringhieri P, Mannucci S, Conti G, Nicolato E, Fracasso G, Marzola P, Morelli G, Accardo A. Liposomes derivatized with multimeric copies of KCCYSL peptide as targeting agents for HER-2-overexpressing tumor cells. Int J Nanomedicine 2017; 12:501-514. [PMID: 28144135 PMCID: PMC5245980 DOI: 10.2147/ijn.s113607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mixed liposomes, obtained by coaggregation of 1,2-dioleoyl-sn-glycero-3-phosphocholine and of the synthetic monomer containing a gadolinium complex ([C18]2DTPA[Gd]) have been prepared. Liposomes externally decorated with KCCYSL (P6.1 peptide) sequence in its monomeric, dimeric, and tetrameric forms are studied as target-selective delivery systems toward cancer cells overexpressing human epidermal growth factor receptor-2 (HER-2) receptors. Derivatization of liposomal surface with targeting peptides is achieved using the postmodification method: the alkyne-peptide derivative Pra-KCCYSL reacts, through click chemistry procedures, with a synthetic surfactant modified with 1, 2, or 4 azido moieties previously inserted in liposome formulation. Preliminary in vitro data on MDA-MB-231 and BT-474 cells indicated that liposomes functionalized with P6.1 peptide in its tetrameric form had better binding to and uptake into BT-474 cells compared to liposomes decorated with monomeric or dimeric versions of the P6.1 peptide. BT-474 cells treated with liposomes functionalized with the tetrameric form of P6.1 showed high degree of liposome uptake, which was comparable with the uptake of anti-HER-2 antibodies such as Herceptin. Moreover, magnetic MRI experiments have demonstrated the potential of liposomes to act as MRI contrast agents.
Collapse
Affiliation(s)
- Paola Ringhieri
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Napoli
| | | | - Giamaica Conti
- Department of Neurological Biomedical and Movement Sciences
| | - Elena Nicolato
- Department of Neurological Biomedical and Movement Sciences
| | | | | | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Napoli
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Napoli
| |
Collapse
|
23
|
Jia Y, Zhang W, Fan W, Brusnahan S, Garrison J. Investigation of the Biological Impact of Charge Distribution on a NTR1-Targeted Peptide. Bioconjug Chem 2016; 27:2658-2668. [PMID: 27661393 DOI: 10.1021/acs.bioconjchem.6b00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurotensin receptor 1 (NTR1) has been shown to be a promising target, due to its increased level of expression relative to normal tissue, for pancreatic and colon cancers. This has prompted the development of a variety of NTR1-targeted radiopharmaceuticals, based on the neurotensin (NT) peptide, for diagnostic and radiotherapeutic applications. A major obstacle for the clinical translation of NTR1-targeted radiotherapeutics would likely be nephrotoxicity due to the high levels of kidney retention. It is well-known that for many peptide-based agents, renal uptake is influenced by the overall molecular charge. Herein, we investigated the effect of charge distribution on receptor binding and kidney retention. Using the [(N-α-Me)Arg8,Dmt11,Tle12]NT(6-13) targeting vector, three peptides (177Lu-K2, 177Lu-K4, and 177Lu-K6), with the Lys moved closer (K6) or further away (K2) from the pharmacophore, were synthesized. In vitro competitive binding, internalization and efflux, and confocal microscopy studies were conducted using the NTR1-positive HT-29, human colon cancer cell line. The 177/natLu-K6 demonstrated the highest binding affinity (21.8 ± 1.2 nM) and the highest level of internalization (4.06% ± 0.20% of the total added amount). In vivo biodistribution, autoradiography, and metabolic studies of 177Lu-radiolabeled K2, K4, and K6 were examined using CF-1 mice. 177Lu-K4 and 177Lu-K6 gave the highest levels of in vivo uptake in NTR1-positive tissues, whereas 177Lu-K2 yielded nearly 2-fold higher renal uptake relative to the other radioconjugates. In conclusion, the position of the Lys (positively charged amino acid) influences the receptor binding, internalization, in vivo NTR1-targeting efficacy, and kidney retention profile of the radioconjugates. In addition, we have found that hydrophobicity likely play a role in the unique biodistribution profiles of these agents.
Collapse
Affiliation(s)
- Yinnong Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Wei Fan
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Susan Brusnahan
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Jered Garrison
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| |
Collapse
|
24
|
Brunetti J, Roscia G, Lampronti I, Gambari R, Quercini L, Falciani C, Bracci L, Pini A. Immunomodulatory and Anti-inflammatory Activity in Vitro and in Vivo of a Novel Antimicrobial Candidate. J Biol Chem 2016; 291:25742-25748. [PMID: 27758868 PMCID: PMC5207269 DOI: 10.1074/jbc.m116.750257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Indexed: 01/24/2023] Open
Abstract
The synthetic antimicrobial peptide SET-M33 has strong activity against bacterial infections caused by Gram-negative bacteria. It is currently in preclinical development as a new drug to treat lung infections caused by Gram-negative bacteria. Here we report its strong anti-inflammatory activity in terms of reduced expression of a number of cytokines, enzymes, and signal transduction factors involved in inflammation triggered by LPS from Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Sixteen cytokines and other major agents involved in inflammation were analyzed in macrophages and bronchial cells after stimulation with LPS and incubation with SET-M33. The bronchial cells were obtained from a cystic fibrosis patient. A number of these proteins showed up to 100% reduction in expression as measured by RT-PCR, Western blotting, or Luminex technology. LPS neutralization was also demonstrated in vivo by challenging bronchoalveolar lavage of SET-M33-treated mice with LPS, which led to a sharp reduction in TNF-α with respect to non-SET-M33-treated animals. We also describe a strong activity of SET-M33 in stimulating cell migration of keratinocytes in wound healing experiments in vitro, demonstrating a powerful immunomodulatory action generally characteristic of molecules taking part in innate immunity.
Collapse
Affiliation(s)
- Jlenia Brunetti
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Roscia
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Ilaria Lampronti
- the Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy, and
| | - Roberto Gambari
- the Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy, and
| | - Leila Quercini
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | | | - Luisa Bracci
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Pini
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy,
| |
Collapse
|
25
|
Insights into the role of sulfated glycans in cancer cell adhesion and migration through use of branched peptide probe. Sci Rep 2016; 6:27174. [PMID: 27255651 PMCID: PMC4891694 DOI: 10.1038/srep27174] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
The tetra-branched peptide NT4 selectively binds to different human cancer cells and tissues. NT4 specifically binds to sulfated glycosaminoglycans on cancer cell membranes. Since sulfated glycosaminoglycans are involved in cancer cell interaction with the extracellular matrix, we evaluated the effect of NT4 on cancer cell adhesion and migration. We demonstrated here that the branched peptide NT4 binds sulfated glycosaminoglycans with high affinity and with preferential binding to heparan sulfate. NT4 inhibits cancer cell adhesion and migration on different proteins, without modifying cancer cell morphology or their ability to produce protrusions, but dramatically affecting the directionality and polarity of cell movement. Results obtained by taking advantage of the selective targeting of glycosaminoglycans chains by NT4, provide insights into the role of heparan sulfate proteoglycans in cancer cell adhesion and migration and suggest a determinant role of sulfated glycosaminoglycans in the control of cancer cell directional migration.
Collapse
|
26
|
Brunetti J, Falciani C, Roscia G, Pollini S, Bindi S, Scali S, Arrieta UC, Gómez-Vallejo V, Quercini L, Ibba E, Prato M, Rossolini GM, Llop J, Bracci L, Pini A. In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Sci Rep 2016; 6:26077. [PMID: 27169671 PMCID: PMC4864329 DOI: 10.1038/srep26077] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/25/2016] [Indexed: 11/24/2022] Open
Abstract
A synthetic antimicrobial peptide was identified as a possible candidate for the development of a new antibacterial drug. The peptide, SET-M33L, showed a MIC90 below 1.5 μM and 3 μM for Pseudomonas aeruginosa and Klebsiella pneumoniae, respectively. In in vivo models of P. aeruginosa infections, the peptide and its pegylated form (SET-M33L-PEG) enabled a survival percentage of 60–80% in sepsis and lung infections when injected twice i.v. at 5 mg/Kg, and completely healed skin infections when administered topically. Plasma clearance showed different kinetics for SET-M33L and SET-M33L-PEG, the latter having greater persistence two hours after injection. Bio-distribution in organs did not show significant differences in uptake of the two peptides. Unlike colistin, SET-M33L did not select resistant mutants in bacterial cultures and also proved non genotoxic and to have much lower in vivo toxicity than antimicrobial peptides already used in clinical practice. The characterizations reported here are part of a preclinical development plan that should bring the molecule to clinical trial in the next few years.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Giulia Roscia
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Simona Pollini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Stefano Bindi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Clinical Pathology Laboratory, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, viale Bracci, Siena, Italy
| | - Silvia Scali
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Unai Cossio Arrieta
- Radiochemistry and Nuclear Imaging Group CIC biomaGUNE, San Sebastián, Spain
| | | | - Leila Quercini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Ibba
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Prato
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Gian Maria Rossolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy.,Don Carlo Gnocchi Foundation I.R.C.C.S., Florence, Italy
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group CIC biomaGUNE, San Sebastián, Spain
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Clinical Pathology Laboratory, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, viale Bracci, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Clinical Pathology Laboratory, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, viale Bracci, Siena, Italy
| |
Collapse
|
27
|
Tumor-selective peptide-carrier delivery of Paclitaxel increases in vivo activity of the drug. Sci Rep 2015; 5:17736. [PMID: 26626158 PMCID: PMC4667195 DOI: 10.1038/srep17736] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022] Open
Abstract
Taxanes are highly effective chemotherapeutic drugs against proliferating cancer and an established option in the standard treatment of ovarian and breast cancer. However, treatment with paclitaxel is associated with severe side effects, including sensory axonal neuropathy, and its poor solubility in water complicates its formulation. In this paper we report the in vitro and in vivo activity of a new form of paclitaxel, modified for conjugation with a tumor-selective tetrabranched peptide carrier (NT4). NT4 selectively targets tumor cells by binding to membrane sulfated glycosaminoglycans (GAG) and to endocytic receptors, like LRP1 and LRP6, which are established tumor markers. Biological activity of NT4-paclitaxel was tested in vitro on MDA-MB 231 and SKOV-3 cell lines, representing breast and ovarian cancer, respectively, and in vivo in an orthotopic mouse model of human breast cancer. Using in vivo bioluminescence imaging, we found that conjugation of paclitaxel with the NT4 peptide led to increased therapeutic activity of the drug in vivo. NT4-paclitaxel induced tumor regression, whereas treatment with unconjugated paclitaxel only produced a reduction in tumor growth. Moreover, unlike paclitaxel, NT4-paclitaxel is very hydrophilic, which may improve its pharmacokinetic profile and allow the use of less toxic dilution buffers, further decreasing its general chemotherapic toxicity.
Collapse
|
28
|
Wynn JE, Santos WL. HIV-1 drug discovery: targeting folded RNA structures with branched peptides. Org Biomol Chem 2015; 13:5848-58. [PMID: 25958855 PMCID: PMC4511164 DOI: 10.1039/c5ob00589b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is an RNA virus that is prone to high rates of mutation. While the disease is managed with current antiretroviral therapies, drugs with a new mode of action are needed. A strategy towards this goal is aimed at targeting the native three-dimensional fold of conserved RNA structures. This perspective highlights medium-sized peptides and peptidomimetics used to target two conserved RNA structures of HIV-1. In particular, branched peptides have the capacity to bind in a multivalent fashion, utilizing a large surface area to achieve the necessary affinity and selectivity toward the target RNA.
Collapse
Affiliation(s)
- Jessica E Wynn
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
29
|
Rizzi A, Malfacini D, Cerlesi MC, Ruzza C, Marzola E, Bird MF, Rowbotham DJ, Salvadori S, Guerrini R, Lambert DG, Calo G. In vitro and in vivo pharmacological characterization of nociceptin/orphanin FQ tetrabranched derivatives. Br J Pharmacol 2015; 171:4138-53. [PMID: 24903280 DOI: 10.1111/bph.12799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE An innovative chemical approach, named peptide welding technology (PWT), allows the synthesis of multibranched peptides with extraordinary high yield, purity and reproducibility. With this approach, three different tetrabranched derivatives of nociceptin/orphanin FQ (N/OFQ) have been synthesized and named PWT1-N/OFQ, PWT2-N/OFQ and PWT3-N/OFQ. In the present study we investigated the in vitro and in vivo pharmacological profile of PWT N/OFQ derivatives and compared their actions with those of the naturally occurring peptide. EXPERIMENTAL APPROACH The following in vitro assays were used: receptor and [(35)S]-GTPγS binding, calcium mobilization in cells expressing the human N/OFQ peptide (NOP) receptor, or classical opioid receptors and chimeric G proteins, electrically stimulated mouse vas deferens bioassay. In vivo experiments were performed; locomotor activity was measured in normal mice and in animals with the NOP receptor gene knocked out [NOP(-/-)]. KEY RESULTS In vitro PWT derivatives of N/OFQ behaved as high affinity potent and rather selective full agonists at human recombinant and animal native NOP receptors. In vivo PWT derivatives mimicked the inhibitory effects exerted by the natural peptide on locomotor activity showing 40-fold higher potency and extremely longer lasting action. The effects of PWT2-N/OFQ were no longer evident in NOP(-/-) mice. CONCLUSIONS AND IMPLICATIONS The results showed that the PWT can be successfully applied to the peptide sequence of N/OFQ to generate tetrabranched derivatives characterized by a pharmacological profile similar to the native peptide and associated with a higher potency and marked prolongation of action in vivo.
Collapse
Affiliation(s)
- A Rizzi
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Neurotensin branched peptide as a tumor-targeting agent for human bladder cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:173507. [PMID: 25984525 PMCID: PMC4423026 DOI: 10.1155/2015/173507] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/20/2015] [Indexed: 11/26/2022]
Abstract
Despite recent advances in multimodal therapy, bladder cancer still ranks ninth in worldwide cancer incidence. New molecules which might improve early diagnosis and therapeutic efficiency for tumors of such high epidemiological impact therefore have very high priority. In the present study, the tetrabranched neurotensin peptide NT4 was conjugated with functional units for cancer-cell imaging or therapy and was tested on bladder cancer cell lines and specimens from bladder cancer surgical resections, in order to evaluate its potential for targeted personalized therapy of bladder cancer. Fluorophore-conjugated NT4 distinguished healthy and cancer tissues with good statistical significance (P < 0.05). NT4 conjugated to methotrexate or gemcitabine was cytotoxic for human bladder cancer cell lines at micromolar concentrations. Their selectivity for bladder cancer tissue and capacity to carry tracers or drugs make NT4 peptides candidate tumor targeting agents for tracing cancer cells and for personalized therapy of human bladder cancer.
Collapse
|
31
|
A novel phage-library-selected peptide inhibits human TNF-α binding to its receptors. Molecules 2014; 19:7255-68. [PMID: 24896264 PMCID: PMC6271742 DOI: 10.3390/molecules19067255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 12/31/2022] Open
Abstract
We report the identification of a new human tumor necrosis factor-alpha (TNF-α) specific peptide selected by competitive panning of a phage library. Competitive elution of phages was obtained using the monoclonal antibody adalimumab, which neutralizes pro-inflammatory processes caused by over-production of TNF-α in vivo, and is used to treat severe symptoms of rheumatoid arthritis. The selected peptide was synthesized in monomeric and branched form and analyzed for binding to TNF-α and competition with adalimumab and TNF-α receptors. Results of competition with TNF-α receptors in surface plasmon resonance and melanoma cells expressing both TNF receptors make the peptide a candidate compound for the development of a novel anti-TNF-α drug.
Collapse
|
32
|
Accardo A, Aloj L, Aurilio M, Morelli G, Tesauro D. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomedicine 2014; 9:1537-57. [PMID: 24741304 PMCID: PMC3970945 DOI: 10.2147/ijn.s53593] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Active targeting by means of drug encapsulated nanoparticles decorated with targeting bioactive moieties represents the next frontier in drug delivery; it reduces drug side effects and increases the therapeutic index. Peptides, based on their chemical and biological properties, could have a prevalent role to direct drug encapsulated nanoparticles, such as liposomes, micelles, or hard nanoparticles, toward the tumor tissues. A considerable number of molecular targets for peptides are either exclusively expressed or overexpressed on both cancer vasculature and cancer cells. They can be classified into three wide categories: integrins; growth factor receptors (GFRs); and G-protein coupled receptors (GPCRs). Therapeutic agents based on nanovectors decorated with peptides targeting membrane receptors belonging to the GPCR family overexpressed by cancer cells are reviewed in this article. The most studied targeting membrane receptors are considered: somatostatin receptors; cholecystokinin receptors; receptors associated with the Bombesin like peptides family; luteinizing hormone-releasing hormone receptors; and neurotensin receptors. Nanovectors of different sizes and shapes (micelles, liposomes, or hard nanoparticles) loaded with doxorubicin or other cytotoxic drugs and externally functionalized with natural or synthetic peptides are able to target the overexpressed receptors and are described based on their formulation and in vitro and in vivo behaviors.
Collapse
Affiliation(s)
- Antonella Accardo
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| | - Luigi Aloj
- Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale", Napoli, Italy
| | - Michela Aurilio
- Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale", Napoli, Italy
| | - Giancarlo Morelli
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| | - Diego Tesauro
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
33
|
Falciani C, Lozzi L, Scali S, Brunetti J, Bracci L, Pini A. Site-specific pegylation of an antimicrobial peptide increases resistance to Pseudomonas aeruginosa elastase. Amino Acids 2014; 46:1403-7. [PMID: 24510250 DOI: 10.1007/s00726-014-1686-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/24/2014] [Indexed: 12/19/2022]
Abstract
M33 is a branched peptide currently under preclinical characterization for the development of a new antibacterial drug against gram-negative bacteria. Here, we report its pegylation at the C-terminus of the three-lysine-branching core and the resulting increase in stability to Pseudomonas aeruginosa elastase. This protease is a virulence factor that acts by destroying peptides of the native immune system. Peptide resistance to this protease is an important feature for M33-Peg activity against Pseudomonas.
Collapse
Affiliation(s)
- Chiara Falciani
- Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Minervini A, Siena G, Falciani C, Carini M, Bracci L. Branched peptides as novel tumor-targeting agents for bladder cancer. Expert Rev Anticancer Ther 2014; 12:699-701. [DOI: 10.1586/era.12.57] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Falciani C, Brunetti J, Lelli B, Ravenni N, Lozzi L, Depau L, Scali S, Bernini A, Pini A, Bracci L. Cancer Selectivity of Tetrabranched Neurotensin Peptides Is Generated by Simultaneous Binding to Sulfated Glycosaminoglycans and Protein Receptors. J Med Chem 2013; 56:5009-18. [DOI: 10.1021/jm400329p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
- Istituto Toscano Tumori (ITT), Via Fiorentina 1, 53100 Siena,
Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Barbara Lelli
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Niccolò Ravenni
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Luisa Lozzi
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Silvia Scali
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Andrea Bernini
- Department of Biotechnology,
Chemistry, and Pharmacy, University of Siena, Via Fiorentina 1, 53100 Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
- Istituto Toscano Tumori (ITT), Via Fiorentina 1, 53100 Siena,
Italy
| |
Collapse
|
36
|
Falciani C, Brunetti J, Lelli B, Accardo A, Tesauro D, Morelli G, Bracci L. Nanoparticles exposing neurotensin tumor-specific drivers. J Pept Sci 2013; 19:198-204. [PMID: 23436714 DOI: 10.1002/psc.2493] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/09/2013] [Accepted: 01/17/2013] [Indexed: 11/06/2022]
Abstract
Nanoparticles have attracted much attention for their potential application as in vivo carriers of drugs. Labeling of nanoparticles with bioactive markers that are able to direct them toward specific biological target receptors has led to a new generation of drug delivery systems. In particular, low molecular weight peptides that remain stable in vivo could be promising tools to selectively drive nanoparticles loaded with active components to tumor cells. We reported, recently, that tetrabranched neurotensin peptides (NT4) may be used to selectively target tumor cells with liposomes. Liposomes functionalized with tetrabranched neurotensin peptide, NT4, and loaded with doxorubicin showed clear advantages in cell binding, anthracyclin internalization, and cytotoxicity in respect of not functionalized liposomes. In this study, we compare branched (NT4) versus linear (NT) peptides in the ability to drive liposomes to target cells and deliver their toxic cargo. We showed here that the more densely decorated liposomes had a better activity profile in terms of drug delivery. Presentation of peptides to the cell membranes in the grouped shape provided by branched structure facilitates liposome cell binding and fusion.
Collapse
Affiliation(s)
- Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Falciani C, Lozzi L, Pollini S, Luca V, Carnicelli V, Brunetti J, Lelli B, Bindi S, Scali S, Di Giulio A, Rossolini GM, Mangoni ML, Bracci L, Pini A. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS One 2012; 7:e46259. [PMID: 23056272 PMCID: PMC3462775 DOI: 10.1371/journal.pone.0046259] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/31/2012] [Indexed: 01/21/2023] Open
Abstract
The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33 peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively. M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against bacterial pathogens of clinical importance.
Collapse
Affiliation(s)
- Chiara Falciani
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Luisa Lozzi
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Simona Pollini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Vincenzo Luca
- Dipartimento di Scienze Biochimiche A. Fanelli, Università di Roma, La Sapienza, Roma, Italy
| | - Veronica Carnicelli
- Dipartimento di Scienze e Tecnologie Biomediche, Università di L’Aquila, L’Aquila, Italy
| | | | - Barbara Lelli
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Stefano Bindi
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Silvia Scali
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Antonio Di Giulio
- Dipartimento di Scienze e Tecnologie Biomediche, Università di L’Aquila, L’Aquila, Italy
| | - Gian Maria Rossolini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Maria Luisa Mangoni
- Dipartimento di Scienze Biochimiche A. Fanelli, Università di Roma, La Sapienza, Roma, Italy
| | - Luisa Bracci
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Alessandro Pini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
- * E-mail:
| |
Collapse
|
38
|
Li D, Diao J, Wang D, Liu J, Zhang J. Design, synthesis and biological evaluation of folate-porphyrin: a new photosensitizer for targeted photodynamic therapy. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424610002379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel folate-porphyrin conjugate 1 for targeted photodynamic therapy of tumor was designed and synthesized. The results of fluorescence spectroscopy and confocal laser scanning microscope demonstrated that the cellular uptake of conjugate 1 by HeLa cells was 35 times higher than that of precursor porphyrin 3 after 24 h incubation, and that the presence of excessive free folic acid inhibited the cellular uptake of conjugate 1. Cytotoxicity against folate-receptor positive HeLa cells in vitro measured by MTT assay demonstrated that conjugate 1 exhibited much lower dark cytotoxicity but significant photocytotoxicity, with 86.4% of cell growth inhibition ratio after irradiation. However, conjugate 1 induced lower photocytotoxicity for normal cells and folate-receptor negative cells. These results suggest that folate-porphyrin like photosensitizers could induce a potentially useful targeted photodynamic therapy modality for folate-receptor-positive cancer cells due to the folate-receptor mediated endocytosis.
Collapse
Affiliation(s)
- Donghong Li
- State Key Laboratory of Trauma, Burn and Combined Injury, the 2nd Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junlin Diao
- State Key Laboratory of Trauma, Burn and Combined Injury, the 2nd Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dong Wang
- Cancer Center, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jianchang Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, the 2nd Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jiaotao Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, the 2nd Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
39
|
Zhang X, Liu H, Miao Z, Kimura R, Fan F, Cheng Z. Macrocyclic chelator assembled RGD multimers for tumor targeting. Bioorg Med Chem Lett 2011; 21:3423-6. [PMID: 21524578 PMCID: PMC3098922 DOI: 10.1016/j.bmcl.2011.03.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
Abstract
Macrocyclic chelators have been extensively used for complexation of metal ions. A widely used chelator, DOTA, has been explored as a molecular platform to assemble multiple bioactive peptides in this paper. The multivalent DOTA-peptide bioconjugates demonstrate promising tumor targeting ability.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University Medical Center, California, 94305, USA
- Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College, Tsinghua University, Tianjin, 300192, China
| | - Hongguang Liu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University Medical Center, California, 94305, USA
| | - Zheng Miao
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University Medical Center, California, 94305, USA
| | - Richard Kimura
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University Medical Center, California, 94305, USA
| | - Feiyue Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College, Tsinghua University, Tianjin, 300192, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University Medical Center, California, 94305, USA
| |
Collapse
|
40
|
Röhrich A, Bergmann R, Kretzschmann A, Noll S, Steinbach J, Pietzsch J, Stephan H. A novel tetrabranched neurotensin(8-13) cyclam derivative: synthesis, 64Cu-labeling and biological evaluation. J Inorg Biochem 2011; 105:821-32. [PMID: 21497581 DOI: 10.1016/j.jinorgbio.2011.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/21/2011] [Accepted: 02/21/2011] [Indexed: 12/11/2022]
Abstract
New macrocyclic 1,4,8,11-tetraazacyclotetradecane (cyclam) derivatives with 1, 2 and 4 neurotensin(8-13) units 4, 5 and 7 have been synthesized. Compounds 4 and 5 were prepared by the reaction of non-stabilized neurotensin(8-13) and cyclamtetrapropionic acid 2 using 1-ethyl-3-(3-dimethylaminocarbonyl)carbodiimide-hydrochloride and N-hydroxysulfosuccinimide. The tetrameric compound 7 was synthesized by Michael addition of neurotensin(8-13) acrylamide 6 and cyclam 1. The copper(II) complexation behavior of 4, 5 and 7 was investigated by UV/visible spectrophotometry and shows that the metal center resides inside the N4 chromophore with additional apical interactions established with pendant arms. The novel tetrabranched NT(8-13) cyclam 7 with nanomolar neurotensin receptor 1 binding affinity was efficiently radiolabeled with (64)Cu under mild conditions. (64)Cu⊂7 showed slow transchelation in the presence of a large amount of cyclam as competing ligand, while it completely remains intact in the presence of EDTA. The in vivo behavior of (64)Cu⊂7 was studied in rats and mice. The metabolic stability in rodent models was high with a half-life of intact (64)Cu⊂7 in plasma of 34 min in rats and 60 min in the mice, respectively. The binding affinity was high enough to demonstrate in vivo binding of (64)Cu⊂7 to NTR1 overexpressing HT-29 tumor xenotransplants in nude mice. Regarding elimination, (64)Cu⊂7 showed a substantial renal and reticuloendothelial accumulation. On the other hand, metabolization of the compound in vivo with a resulting metabolite-postulated to be the (64)Cu-cyclam-tetraarginine complex-also showed long retention in the circulating blood, preventing a better contrast of tumor imaging.
Collapse
Affiliation(s)
- Anika Röhrich
- Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Falciani C, Accardo A, Brunetti J, Tesauro D, Lelli B, Pini A, Bracci L, Morelli G. Target-selective drug delivery through liposomes labeled with oligobranched neurotensin peptides. ChemMedChem 2011; 6:678-85. [PMID: 21370475 DOI: 10.1002/cmdc.201000463] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/10/2011] [Indexed: 11/06/2022]
Abstract
The structure and the in vitro behavior of liposomes filled with the cytotoxic drug doxorubicin (Doxo) and functionalized on the external surface with a branched moiety containing four copies of the 8-13 neurotensin (NT) peptide is reported. The new functionalized liposomes, DOPC-NT₄Lys(C₁₈)₂, are obtained by co-aggregation of the DOPC phospholipid with a new synthetic amphiphilic molecule, NT₄ Lys(C₁₈)₂, which contains a lysine scaffold derivatized with a lipophilic moiety and a tetrabranched hydrophilic peptide, NT8-13, a neurotensin peptide fragment well known for its ability to mimic the neurotensin peptide in receptor binding ability. Dynamic light scattering measurements indicate a value for the hydrodynamic radius (RH) of 88.3±4.4 nm. The selective internalization and cytotoxicity of DOPC-NT₄ Lys(C₁₈)₂ liposomes containing Doxo, as compared to pure DOPC liposomes, were tested in HT29 human colon adenocarcinoma and TE671 human rhabdomyosarcoma cells, both of which express neurotensin receptors. Peptide-functionalized liposomes show a clear advantage in comparison to pure DOPC liposomes with regard to drug internalization in both HT29 and TE671 tumor cells: FACS analysis indicates an increase in fluorescence signal of the NT₄-liposomes, compared to the DOPC pure analogues, in both cell lines; cytotoxicity of DOPC-NT₄ Lys(C₁₈)₂-Doxo liposomes is increased four-fold with respect to DOPC-Doxo liposomes in both HT29 and TE671 cell lines. These effects could to be ascribed to the higher rate of internalization for DOPC-NT₄ Lys(C₁₈)₂-Doxo liposomes, due to stronger binding driven by a lower dissociation constant of the NT₄-liposomes that bind the membrane onto a specific protein, in contrast to DOPC liposomes, which approach the plasma membrane unselectively.
Collapse
Affiliation(s)
- Chiara Falciani
- Laboratory of Molecular Biotechnology, Department of Molecular Biology, University of Siena, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Synthesis of neurotensin(8–13)–phosphopeptide heterodimers via click chemistry. Bioorg Med Chem Lett 2010; 20:3306-9. [DOI: 10.1016/j.bmcl.2010.04.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 11/19/2022]
|
43
|
Chuang KH, Wang HE, Chen FM, Tzou SC, Cheng CM, Chang YC, Tseng WL, Shiea J, Lin SR, Wang JY, Chen BM, Roffler SR, Cheng TL. Endocytosis of PEGylated Agents Enhances Cancer Imaging and Anticancer Efficacy. Mol Cancer Ther 2010; 9:1903-12. [DOI: 10.1158/1535-7163.mct-09-0899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Falciani C, Brunetti J, Pagliuca C, Menichetti S, Vitellozzi L, Lelli B, Pini A, Bracci L. Design and In vitro Evaluation of Branched Peptide Conjugates: Turning Nonspecific Cytotoxic Drugs into Tumor-Selective Agents. ChemMedChem 2010; 5:567-74. [DOI: 10.1002/cmdc.200900527] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Seale-Goldsmith MM, Leary JF. Nanobiosystems. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:553-67. [PMID: 20049817 DOI: 10.1002/wnan.49] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
'Nanobiosystems' is a relatively new term describing objects in the size range below 150 nm and having structures or functions that link to biological functions. Key features are that these nanosized objects typically self-assemble, are not capable of self-replication, and have functions that take advantage of its size. Nanobiosystems can be made entirely of biological or organic molecules that are organized into nanoparticles (e.g., liposomes, dendrimers) or be totally inorganic (with the exception of surface coatings used for biocompatibility) nanoparticles (e.g., gold, iron oxide, quantum dot nanocrystals). More complex nanobiosystems are inorganic/biologic hybrid composites that may include complex multilayered structures with targeting molecules (e.g., peptides, antibodies, aptamers), cell entry-promoting molecules (e.g., HIV-tat peptide sequence), drugs (small molecules), genes (therapeutic genes, reporter genes), and core nanomaterials (e.g., gold, quantum dot, iron oxide) that give the nanobiosystems sometimes unique detection capabilities by a variety of optical and non-optical modalities (fluorescence, surface plasmon resonance, magnetic resonance imaging).
Collapse
|
46
|
Pini A, Falciani C, Mantengoli E, Bindi S, Brunetti J, Iozzi S, Rossolini GM, Bracci L. A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J 2009; 24:1015-22. [PMID: 19917670 DOI: 10.1096/fj.09-145474] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe the nonnatural antimicrobial peptide KKIRVRLSA (M33) and its capacity to neutralize LPS-induced cytokine release, preventing septic shock in animals infected with bacterial species of clinical interest. M33 showed strong resistance to proteolytic degradation when synthesized in tetrabranched form with 4 peptides linked by a lysine core, making it suitable for use in vivo. HPLC and mass spectrometry demonstrated its stability in serum beyond 24 h. M33 was found to be very selective for gram-negative bacteria. Minimal inhibitory concentration (MIC) ranged from 0.3 to 3 muM for multidrug resistant clinical isolates of several pathogenic species, including Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. M33 neutralized LPS derived from P. aeruginosa and K. pneumoniae, and prevented TNF-alpha release from LPS-activated macrophages, with an EC(50) of 3.8e-8 M and 2.8e-7 M, respectively, as detected by sandwich ELISA. M33 activity was also tested in sepsis animal models. It averted septic shock symptoms due to Escherichia coli and P. aeruginosa in doses compatible with clinical use (5-25 mg/kg). These properties make tetrabranched M33 peptide a good candidate for the development of a new antibacterial drug.-Pini, A., Falciani, C., Mantengoli, E., Bindi, S., Brunetti, J., Iozzi, S., Rossolini, G. M., Bracci, L. A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo.
Collapse
Affiliation(s)
- Alessandro Pini
- University of Siena, Molecular Biology Department, Section of Biochemistry, Via Fiorentina 1, 53100, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 2009; 109:3141-57. [PMID: 19534493 DOI: 10.1021/cr900174j] [Citation(s) in RCA: 565] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Scott H Medina
- University of Michigan, Department of Biomedical Engineering, 1101 Beal Avenue, Lurie Biomedical Engineering Building, Room 2150, Ann Arbor, Michigan 48109-2110, USA
| | | |
Collapse
|
48
|
Alves F, Dullin C, Napp J, Missbach-Guentner J, Jannasch K, Mathejczyk J, Pardo LA, Stühmer W, Tietze LF. Concept of a selective tumour therapy and its evaluation by near-infrared fluorescence imaging and flat-panel volume computed tomography in mice. Eur J Radiol 2009; 70:286-93. [DOI: 10.1016/j.ejrad.2009.01.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 11/17/2022]
|
49
|
Falciani C, Pini A, Bracci L. Oligo-branched peptides for tumor targeting: from magic bullets to magic forks. Expert Opin Biol Ther 2009; 9:171-8. [DOI: 10.1517/14712590802620501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|