1
|
Yu PW, Kao G, Dai Z, Nasertorabi F, Zhang Y. Rational design of humanized antibody inhibitors for cathepsin S. Arch Biochem Biophys 2024; 751:109849. [PMID: 38061628 PMCID: PMC10872949 DOI: 10.1016/j.abb.2023.109849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Cathepsin S (CTSS) is involved in pathogenesis of many human diseases. Inhibitors blocking its protease activity hold therapeutic potential. In comparison to small-molecule inhibitors, monoclonal antibodies capable of inhibiting CTSS enzymatic activity may possess advantageous pharmacological properties. Here we designed and produced inhibitory antibodies targeting human CTSS by genetically fusing the propeptide of procathepsin S (proCTSS) with antibodies in clinic. The resulting antibody fusions in full-length or fragment antigen-binding format could be stably expressed and potently inhibit CTSS proteolytic activity in high specificity. These fusion antibodies not only demonstrate a new approach for facile synthesis of antibody inhibitors against CTSS, but also represent novel anti-CTSS therapeutic candidates.
Collapse
Affiliation(s)
- Po-Wen Yu
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Guoyun Kao
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fariborz Nasertorabi
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, USC Structure Biology Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
2
|
Smyth P, Ferguson L, Burrows JF, Burden RE, Tracey SR, Herron ÚM, Kovaleva M, Williams R, Porter AJ, Longley DB, Barelle CJ, Scott CJ. Evaluation of variable new antigen receptors (vNARs) as a novel cathepsin S (CTSS) targeting strategy. Front Pharmacol 2023; 14:1296567. [PMID: 38116078 PMCID: PMC10728302 DOI: 10.3389/fphar.2023.1296567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Aberrant activity of the cysteine protease Cathepsin S (CTSS) has been implicated across a wide range of pathologies. Notably in cancer, CTSS has been shown to promote tumour progression, primarily through facilitating invasion and migration of tumour cells and augmenting angiogenesis. Whilst an attractive therapeutic target, more efficacious CTSS inhibitors are required. Here, we investigated the potential application of Variable New Antigen Receptors (vNARs) as a novel inhibitory strategy. A panel of potential vNAR binders were identified following a phage display panning process against human recombinant proCTSS. These were subsequently expressed, purified and binding affinity confirmed by ELISA and SPR based approaches. Selected lead clones were taken forward and were shown to inhibit CTSS activity in recombinant enzyme activity assays. Further assessment demonstrated that our lead clones functioned by a novel inhibitory mechanism, by preventing the activation of proCTSS to the mature enzyme. Moreover, using an intrabody approach, we exhibited the ability to express these clones intracellularly and inhibit CTSS activity whilst lead clones were also noted to impede cell invasion in a tumour cell invasion assay. Collectively, these findings illustrate a novel mechanistic approach for inhibiting CTSS activity, with anti-CTSS vNAR clones possessing therapeutic potential in combating deleterious CTSS activity. Furthermore, this study exemplifies the potential of vNARs in targeting intracellular proteins, opening a range of previously "undruggable" targets for biologic-based therapy.
Collapse
Affiliation(s)
- P. Smyth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | | | - J. F. Burrows
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - R. E. Burden
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - S. R. Tracey
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Ú. M. Herron
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | | | - R. Williams
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - A. J. Porter
- Elasmogen Ltd., Aberdeen, United Kingdom
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - D. B. Longley
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | | | - C. J. Scott
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
3
|
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022; 88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jutharat Sasiwachirangkul
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Rich Williams
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
4
|
Munikishore R, Wang LL, Zhang S, Zhao QS, Zuo Z. An efficient and concise synthesis of a selective small molecule non-peptide inhibitor of cathepsin L: KGP94. Bioorg Chem 2021; 116:105317. [PMID: 34488126 DOI: 10.1016/j.bioorg.2021.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/04/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022]
Abstract
KGP94 is a potent, selective, and competitive inhibitor of the lysosomal endopeptidase enzyme (Cathepsin L) currently in preclinical trials for the treatment of metastatic cancer, which is a leading cause of cancer-associated death. Herein, we report two new synthetic routes for synthesizing the target compound through four consecutive steps, using a Weinreb amide approach starting from a common 3-bromobenzoyl chloride. A key step in the approach is a coupling reaction of a readily available Grignard reagent with amide 4 to produce 6, a previously unreported coupling pattern. These new strategies offer an efficient and alternative approach to synthesis of target compound with an excellent overall yield.
Collapse
Affiliation(s)
- Rachakunta Munikishore
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650 201, Yunnan province, People's Republic of China
| | - Liang-Liang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650 201, Yunnan province, People's Republic of China.
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650 201, Yunnan province, People's Republic of China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650 201, Yunnan province, People's Republic of China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650 201, Yunnan province, People's Republic of China.
| |
Collapse
|
5
|
Shi X, Zhang Y. A humanized antibody inhibitor for cathepsin L. Protein Sci 2020; 29:1924-1930. [PMID: 32683733 DOI: 10.1002/pro.3913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Cathepsin L (CTSL) is a cysteine protease involved in a variety of physiological and pathological processes. Potent inhibitors against CTSL have long been sought for drug development. Due to insufficient specificity and suboptimal pharmacological properties for current CTSL inhibitors, novel agents are still required for selectively blocking CTSL activity. Here we generated a humanized antibody inhibitor of CTSL by genetically fusing the inhibitory propeptide of procathepsin L to the N-terminus of the light chain of a humanized antibody. The resulting antibody fusion could be stably expressed and displays highly potent inhibition activity and specificity toward CTSL. This work demonstrates a new approach for the rapid generation of antibody inhibitors of CTSL. It can possibly be extended to create inhibitory antibodies targeting other cathepsin proteases, providing novel research and therapeutic tools.
Collapse
Affiliation(s)
- Xiaojing Shi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,Research Center for Liver Diseases, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Brown R, Nath S, Lora A, Samaha G, Elgamal Z, Kaiser R, Taggart C, Weldon S, Geraghty P. Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respir Res 2020; 21:111. [PMID: 32398133 PMCID: PMC7216426 DOI: 10.1186/s12931-020-01381-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Dysregulated expression and activity of cathepsin S (CTSS), a lysosomal protease and a member of the cysteine cathepsin protease family, is linked to the pathogenesis of multiple diseases, including a number of conditions affecting the lungs. Extracellular CTSS has potent elastase activity and by processing cytokines and host defense proteins, it also plays a role in the regulation of inflammation. CTSS has also been linked to G-coupled protein receptor activation and possesses an important intracellular role in major histocompatibility complex class II antigen presentation. Modulated CTSS activity is also associated with pulmonary disease comorbidities, such as cancer, cardiovascular disease, and diabetes. CTSS is expressed in a wide variety of immune cells and is biologically active at neutral pH. Herein, we review the significance of CTSS signaling in pulmonary diseases and associated comorbidities. We also discuss CTSS as a plausible therapeutic target and describe recent and current clinical trials examining CTSS inhibition as a means for treatment.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sridesh Nath
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Alnardo Lora
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ghassan Samaha
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ziyad Elgamal
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ryan Kaiser
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Clifford Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
| |
Collapse
|
7
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Wilkinson RDA, Young A, Burden RE, Williams R, Scott CJ. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Mol Cancer 2016; 15:29. [PMID: 27097645 PMCID: PMC4839156 DOI: 10.1186/s12943-016-0513-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/09/2016] [Indexed: 12/27/2022] Open
Abstract
Background Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Methods Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true Ki values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. Results We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. Conclusions In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0513-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard D A Wilkinson
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Andrew Young
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Roberta E Burden
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Rich Williams
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom.
| | - Christopher J Scott
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom.
| |
Collapse
|
9
|
Microbial inhibitors of cysteine proteases. Med Microbiol Immunol 2016; 205:275-96. [DOI: 10.1007/s00430-016-0454-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
|
10
|
Strategies for detection and quantification of cysteine cathepsins-evolution from bench to bedside. Biochimie 2016; 122:48-61. [DOI: 10.1016/j.biochi.2015.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022]
|
11
|
Basu S, Harris H, Larsson A, Vasson MP, Wolk A. Is There Any Role for Serum Cathepsin S and CRP Levels on Prognostic Information in Breast Cancer? The Swedish Mammography Cohort. Antioxid Redox Signal 2015; 23:1298-302. [PMID: 26079659 DOI: 10.1089/ars.2015.6404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Breast cancer is the most common cancer among women, and both low-grade inflammation and cathepsins might have important roles in breast cancer. We questioned whether prediagnostic circulating levels of C-reactive protein (CRP), cathepsin B, and cathepsin S were associated with breast cancer risk. Sixty-nine incident breast cancer cases diagnosed after blood collection and 719 controls from the Swedish Mammography Cohort were analyzed for systemic CRP, cathepsin B, and cathepsin S. Cathepsin S and inflammation (high-sensitivity CRP [hsCRP])-adjusted cathepsin S were inversely associated with breast cancer risk (cathepsin S: odds ratio [OR] for top vs. bottom tertile=0.46; 95% confidence interval [CI]=0.23-0.92; p(trend)=0.02; hsCRP-adjusted cathepsin S: OR of 0.44; 95% CI=0.22-0.87; p(trend)=0.02). hsCRP was significantly associated with increased breast cancer risk (OR for top vs. bottom tertile=2.01; 95% CI=1.02-3.95; p(trend)=0.04). No significant association was observed between cathepsin B and breast cancer risk (OR for top vs. bottom tertile=0.67; 95% CI=0.32-1.40; ptrend=0.30). These observations lead to the hypothesis that levels of cathepsin S and hsCRP observed in women who later developed breast cancer may provide prognostic information regarding tumor development and need to be evaluated in prospective studies.
Collapse
Affiliation(s)
- Samar Basu
- 1 Chaire d'Excellence Program, Laboratoire de Biochimie, Biologie Moléculaire et Nutrition, Faculté de Pharmacie, Université d'Auvergne , Clermont-Ferrand, France .,2 Oxidative Stress and Inflammation, Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University , Uppsala, Sweden
| | - Holly Harris
- 3 Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute , Stockholm, Sweden .,4 Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital , Boston, Massachusetts
| | - Anders Larsson
- 5 Clinical Chemistry, Department of Medical Science, Faculty of Medicine, Uppsala University , Uppsala, Sweden
| | - Marie-Paule Vasson
- 1 Chaire d'Excellence Program, Laboratoire de Biochimie, Biologie Moléculaire et Nutrition, Faculté de Pharmacie, Université d'Auvergne , Clermont-Ferrand, France
| | - Alicja Wolk
- 3 Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute , Stockholm, Sweden
| |
Collapse
|
12
|
Sobotič B, Vizovišek M, Vidmar R, Van Damme P, Gocheva V, Joyce JA, Gevaert K, Turk V, Turk B, Fonović M. Proteomic Identification of Cysteine Cathepsin Substrates Shed from the Surface of Cancer Cells. Mol Cell Proteomics 2015; 14:2213-28. [PMID: 26081835 DOI: 10.1074/mcp.m114.044628] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
Extracellular cysteine cathepsins are known to drive cancer progression, but besides degradation of extracellular matrix proteins little is known about their physiological substrates and thus the molecular mechanisms they deploy. One of the major mechanisms used by other extracellular proteases to facilitate cancer progression is proteolytic release of the extracellular domains of transmembrane proteins or ectodomain shedding. Here we show using a mass spectrometry-based approach that cathepsins L and S act as sheddases and cleave extracellular domains of CAM adhesion proteins and transmembrane receptors from the surface of cancer cells. In cathepsin S-deficient mouse pancreatic cancers, processing of these cathepsin substrates is highly reduced, pointing to an essential role of cathepsins in extracellular shedding. In addition to influencing cell migration and invasion, shedding of surface proteins by extracellular cathepsins impacts intracellular signaling as demonstrated for regulation of Ras GTPase activity, thereby providing a putative mechanistic link between extracellular cathepsin activity and cancer progression. The MS data is available via ProteomeXchange with identifier PXD002192.
Collapse
Affiliation(s)
- Barbara Sobotič
- From the ‡Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; §International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Matej Vizovišek
- From the ‡Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; §International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Robert Vidmar
- From the ‡Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; §International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Petra Van Damme
- ¶Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; ‖Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | - Vasilena Gocheva
- **Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Johanna A Joyce
- **Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kris Gevaert
- ¶Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; ‖Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | - Vito Turk
- From the ‡Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; §International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia; ‡‡Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Boris Turk
- From the ‡Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; ‡‡Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; §§Center of Excellence NIN, Ljubljana, Slovenia; ¶¶Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Marko Fonović
- From the ‡Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; ‡‡Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
13
|
Demidyuk IV, Shubin AV, Gasanov EV, Kostrov SV. Propeptides as modulators of functional activity of proteases. Biomol Concepts 2015; 1:305-22. [PMID: 25962005 DOI: 10.1515/bmc.2010.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.
Collapse
|
14
|
Rodrigues T, Lin YC, Hartenfeller M, Renner S, Lim YF, Schneider G. Repurposing de novo designed entities reveals phosphodiesterase 3B and cathepsin L modulators. Chem Commun (Camb) 2015; 51:7478-81. [DOI: 10.1039/c5cc01376c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Scaffold hopping: a computational algorithm correctly predicted the macromolecular target ofde novogenerated small molecular entities.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Swiss Federal Institute of Technology (ETH)
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| | - Yen-Chu Lin
- Swiss Federal Institute of Technology (ETH)
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| | - Markus Hartenfeller
- Swiss Federal Institute of Technology (ETH)
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
- Novartis Pharma AG
| | | | - Yi Fan Lim
- Swiss Federal Institute of Technology (ETH)
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| | - Gisbert Schneider
- Swiss Federal Institute of Technology (ETH)
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| |
Collapse
|
15
|
Weldon S, McNally P, McAuley DF, Oglesby IK, Wohlford-Lenane CL, Bartlett JA, Scott CJ, McElvaney NG, Greene CM, McCray PB, Taggart CC. miR-31 dysregulation in cystic fibrosis airways contributes to increased pulmonary cathepsin S production. Am J Respir Crit Care Med 2014; 190:165-74. [PMID: 24940638 DOI: 10.1164/rccm.201311-1986oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Cathepsin S (CTSS) activity is increased in bronchoalveolar lavage (BAL) fluid from patients with cystic fibrosis (CF). This activity contributes to lung inflammation via degradation of antimicrobial proteins, such as lactoferrin and members of the β-defensin family. OBJECTIVES In this study, we investigated the hypothesis that airway epithelial cells are a source of CTSS, and mechanisms underlying CTSS expression in the CF lung. METHODS Protease activity was determined using fluorogenic activity assays. Protein and mRNA expression were analyzed by ELISA, Western blotting, and reverse-transcriptase polymerase chain reaction. MEASUREMENTS AND MAIN RESULTS In contrast to neutrophil elastase, CTSS activity was detectable in 100% of CF BAL fluid samples from patients without Pseudomonas aeruginosa infection. In this study, we identified epithelial cells as a source of pulmonary CTSS activity with the demonstration that CF airway epithelial cells express and secrete significantly more CTSS than non-CF control cells in the absence of proinflammatory stimulation. Furthermore, levels of the transcription factor IRF-1 correlated with increased levels of its target gene CTSS. We discovered that miR-31, which is decreased in the CF airways, regulates IRF-1 in CF epithelial cells. Treating CF bronchial epithelial cells with a miR-31 mimic decreased IRF-1 protein levels with concomitant knockdown of CTSS expression and secretion. CONCLUSIONS The miR-31/IRF-1/CTSS pathway may play a functional role in the pathogenesis of CF lung disease and may open up new avenues for exploration in the search for an effective therapeutic target.
Collapse
Affiliation(s)
- Sinéad Weldon
- 1 Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Antibody targeting of cathepsin S inhibits angiogenesis and synergistically enhances anti-VEGF. PLoS One 2010; 5. [PMID: 20824056 PMCID: PMC2932732 DOI: 10.1371/journal.pone.0012543] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/11/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development. METHODOLOGY/PRINCIPAL FINDINGS Cathepsin S expression and secretion from endothelial cells was characterised using RT-PCR and western blotting. We further show that cathepsin S promotes pericellular hydrolysis of extracellular matrix components in the tumour microenvironment and facilitates endothelial invasion. The cathepsin S inhibitory antibody, Fsn0503, blocks extracellular proteolysis, inhibiting endothelial invasion and tube formation in cell-based assays. The anti-angiogenic effects of Fsn0503 were also shown in vivo where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed. CONCLUSIONS/SIGNIFICANCE Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis.
Collapse
|
17
|
Identification and pre-clinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie 2010; 92:1618-24. [PMID: 20447439 DOI: 10.1016/j.biochi.2010.04.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/26/2010] [Indexed: 01/21/2023]
Abstract
Proteolytic activity is required for several key processes in cancer development and progression, including tumor growth, invasion and metastasis. Accordingly, high levels of protease expression and activity have been found to correlate with malignant progression and poor patient prognosis in a wide variety of human cancers. Members of the papain family of cysteine cathepsins are among the protease classes that have been functionally implicated in cancer. Therefore, the discovery of effective cathepsin inhibitors has considerable potential for anti-cancer therapy. In this study we describe the identification of a novel, reversible cathepsin inhibitor, VBY-825, which has high potency against cathepsins B, L, S and V. VBY-825 was tested in a pre-clinical model of pancreatic islet cancer and found to significantly decrease tumor burden and tumor number. Thus, the identification of VBY-825 as a new and effective anti-tumor drug encourages the therapeutic application of cathepsin inhibitors in cancer.
Collapse
|
18
|
Production of recombinant proteins in Escherichia coli using an N-terminal tag derived from sortase. Protein Expr Purif 2010; 70:143-50. [DOI: 10.1016/j.pep.2009.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 11/18/2022]
|
19
|
Scott CJ, Taggart CC. Biologic protease inhibitors as novel therapeutic agents. Biochimie 2010; 92:1681-8. [PMID: 20346385 DOI: 10.1016/j.biochi.2010.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/16/2010] [Indexed: 12/23/2022]
Abstract
Deregulated proteolytic activities frequently have causative or exacerbative functions in pathological conditions such as cancer and inflammatory disease. Many proteases therefore represent therapeutic targets, but the generation of successful small molecule drugs is often limited by the ability to achieve sufficient specificity of action. Consequently, several proteases have been deemed as unsuitable drug targets due to the inability to target them successfully. In an effort to circumvent these issues, much interest has recently focused on the development and application of biologic inhibitors. In this review, the latest research in the development of biologic protease inhibitors is examined. This includes a review of engineered kunitz and other inhibitory domains as well as the application of antibodies as therapeutically viable inhibitors.
Collapse
Affiliation(s)
- Christopher J Scott
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | | |
Collapse
|
20
|
Higgins WJ, Fox DM, Kowalski PS, Nielsen JE, Worrall DM. Heparin enhances serpin inhibition of the cysteine protease cathepsin L. J Biol Chem 2009; 285:3722-3729. [PMID: 19959474 DOI: 10.1074/jbc.m109.037358] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycosaminoglycan heparin is known to possess antimetastatic activity in experimental models and preclinical studies, but there is still uncertainty over its mechanism of action in this respect. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III, but a similar cofactor role has not been previously investigated for proteases linked to metastasis. The squamous cell carcinoma antigens (serpins B3 and B4) are tumor-associated proteins that can inhibit papain-like cysteine proteases, including cathepsins L, K, and S. In this study, we show that SCCA-1 (B3) and SCCA-2 (B4) can bind heparin as demonstrated by affinity chromatography, native PAGE gel shifts, and intrinsic fluorescence quenching. Binding was specific for heparin and heparan sulfate but not other glycosaminoglycans. The presence of heparin accelerated inhibition of cathepsin L by both serpins, and in the case of SCCA-1, heparin increased the second order inhibition rate constant from 5.4 x 10(5) to >10(8), indicating a rate enhancement of at least 180-fold. A templating mechanism was shown, consistent with ternary complex formation. Furthermore, SCCA-1 inhibition of cathepsin L-like proteolytic activity secreted from breast and melanoma cancer cell lines was significantly enhanced by heparin. This is the first example of glycosaminoglycan enhancement of B-clade serpin activity and the first report of heparin acting as a cofactor in serpin cross-class inhibition of cysteine proteases. Most importantly, this finding raises the possibility that the anticancer properties of heparin may be due, at least partly, to enhanced inhibition of prometastatic proteases.
Collapse
Affiliation(s)
- Wayne J Higgins
- From the University College Dublin School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Denise M Fox
- From the University College Dublin School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Piotr S Kowalski
- From the University College Dublin School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jens E Nielsen
- From the University College Dublin School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - D Margaret Worrall
- From the University College Dublin School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
21
|
Burden RE, Gormley JA, Jaquin TJ, Small DM, Quinn DJ, Hegarty SM, Ward C, Walker B, Johnston JA, Olwill SA, Scott CJ. Antibody-Mediated Inhibition of Cathepsin S Blocks Colorectal Tumor Invasion and Angiogenesis. Clin Cancer Res 2009; 15:6042-51. [DOI: 10.1158/1078-0432.ccr-09-1262] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Hsing LC, Kirk EA, McMillen TS, Hsiao SH, Caldwell M, Houston B, Rudensky AY, LeBoeuf RC. Roles for cathepsins S, L, and B in insulitis and diabetes in the NOD mouse. J Autoimmun 2009; 34:96-104. [PMID: 19664906 DOI: 10.1016/j.jaut.2009.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/25/2009] [Accepted: 07/11/2009] [Indexed: 12/22/2022]
Abstract
We developed a panel of non-obese diabetic (NOD) mice deficient in major lysosomal cysteine proteases (cathepsins S, L and B) to identify protease enzymes essential for autoimmune diabetes. Null alleles for cathepsins (Cts) S, L or B were introgressed onto the NOD genetic background with 19 Idd markers at homozygosity. Diabetes onset was determined among females aged up to 6 months. We evaluated insulitis and sialadenitis in tissues using histology and computer assisted morphology. NOD mice deficient in Ctss or Ctsb were partially protected from diabetes with incidence at 33% and 28%, respectively, versus wild-type NOD (69%; p < 0.00001). NODs lacking cathepsin L (Ctsl-/-) are completely protected from IDDM, as originally shown by others. Ctsl, Ctss, or Ctsb heterozygous mice were able to develop IDDM, although incidence levels were significantly lower for Ctsb+/- (50%) and Ctsl+/- (55%) as compared to NODs (69%; p < 0.03). Ctsl-/- mice contain functional, diabetogenic T cells and an enriched Foxp3+ regulatory T cell population, and diabetes resistance was due to the presence of an expanded population of regulatory T cells. These data provide additional information about the potency of the diabetogenic T cell population in Ctsl-/- mice which were comparable in potency to wild-type NOD mice. These data illustrate the critical contribution of each of these proteases in determining IDDM in the NOD mouse and provide a useful set of models for further studies.
Collapse
Affiliation(s)
- Lianne C Hsing
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109-8050, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Seo HR, Bae S, Lee YS. Radiation-induced cathepsin S is involved in radioresistance. Int J Cancer 2009; 124:1794-801. [DOI: 10.1002/ijc.24095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|