1
|
He L, Zhang L, Peng Y, He Z. Selenium in cancer management: exploring the therapeutic potential. Front Oncol 2025; 14:1490740. [PMID: 39839762 PMCID: PMC11746096 DOI: 10.3389/fonc.2024.1490740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Selenium (Se) is important and plays significant roles in many biological processes or physiological activities. Prolonged selenium deficiency has been conclusively linked to an elevated risk of various diseases, including but not limited to cancer, cardiovascular disease, inflammatory bowel disease, Keshan disease, and acquired immunodeficiency syndrome. The intricate relationship between selenium status and health outcomes is believed to be characterized by a non-linear U-shaped dose-response curve. This review delves into the significance of maintaining optimal selenium levels and the detrimental effects that can arise from selenium deficiency. Of particular interest is the important role that selenium plays in both prevention and treatment of cancer. Finally, this review also explores the diverse classes of selenium entities, encompassing selenoproteins, selenium compounds and selenium nanoparticles, while examining the mechanisms and molecular targets of their anticancer efficacy.
Collapse
Affiliation(s)
- Lingwen He
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Lu Zhang
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Yulong Peng
- Department of Oncology, Dongguan Tungwah Hospital, Dongguan, China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Chen Y, Zhang Y, Wang X, Qiao S. Methylseleninic acid induces apoptosis of human bladder cancer cells through the ROS-mediated mitochondrial pathway. J Biochem Mol Toxicol 2023; 37:e23387. [PMID: 37247193 DOI: 10.1002/jbt.23387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/25/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
As the most common selenium derivative, methylseleninic acid (MSA) has attracted wide attention. Its apoptotic induction ability and the possible molecular mechanism in human bladder cancer (BC) J82 and T24 cells were investigated in the present study. We found that the survival of J82 and T24 cells were inhibited in a dose-dependent manner after MSA treatment. Propidium iodide (PI) staining and Annexin V-fluorescein isothiocyanate/PI double staining clarified that MSA stocked cells at G2 /M phase and caused apoptosis in J82 and T24 cells. Further, typical morphological features of apoptotic cells were also observed. Accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential were also detected by dichlorodihydrofluorescein diacetate and Rhodamin123 staining. Meanwhile, pretreatment with N-acetylcysteine, an ROS scavenging agent, found that the apoptosis of BC cells induced by MSA was related to the production of ROS. Western blot analysis results showed that MSA interrupted Bax/Bcl-2 balance, stimulated cytochrome c release into the cytoplasm, activated caspase-9 and caspase-3, and finally induced the apoptosis of the BC cells. These findings demonstrated that MSA was able to induce apoptosis in J82 and T24 cells through ROS-mediated mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinsheng Wang
- Postdoctoral Mobile Research Station, Tianjin Medical University, Tianjin, China
| | - Saifeng Qiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Mandal D, Sahu BR, Parija T. Combination of tamoxifen and D-limonene enhances therapeutic efficacy in breast cancer cells. Med Oncol 2023; 40:216. [PMID: 37391551 DOI: 10.1007/s12032-023-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/10/2023] [Indexed: 07/02/2023]
Abstract
Breast cancer one of the most common diseases in women, has a high death and morbidity rate. Tamoxifen being very much effective in the chemoprevention of breast cancer has been shown to develop resistance during the course of treatment making it difficult for patient's survival. By combining tamoxifen with naturally occurring substances having similar activities, might control the toxicity and increase the susceptibility towards the treatment. As a natural compound, D-limonene has been reported to inhibit the growth of certain malignancies significantly. The main goal of our work is to investigate the combinatorial antitumor effects of D-limonene and tamoxifen in MCF-7 cells, as well as understand the potential underlying anticancer mechanism. MTT assays, colony formation assays, DAPI and Annexin V-FITC labeling, flow cytometer analysis, and western blot analysis were used to explore the details of anticancer mechanism. The combined effects of tamoxifen with D-limonene have shown significant decrease in the cell viability of MCF 7 cells. According to flow cytometer analyses and Annexin V/PI staining, D-limonene has been found to increase tamoxifen-mediated apoptosis as compared to the treatment alone in these cells. Additionally, cell growth has been found to be arrested at G1 phase by regulating cyclin D1 and cyclin B1. Our research consequently provided the first evidence that combining D-limonene and tamoxifen might increase the anticancer efficacy by inducing apoptosis in MCF 7 breast cancer cells. This combinatorial treatment strategy demands more research which might fulfill the need for improved treatment efficacy in controlling breast cancer.
Collapse
Affiliation(s)
- Deepa Mandal
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Bikash Ranjan Sahu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
- Department of Zoology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Tithi Parija
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
4
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
5
|
Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resist Updat 2022; 63:100844. [DOI: 10.1016/j.drup.2022.100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Pan S, Li T, Tan Y, Xu H. Selenium-containing nanoparticles synergistically enhance Pemetrexed&NK cell-based chemoimmunotherapy. Biomaterials 2021; 280:121321. [PMID: 34922271 DOI: 10.1016/j.biomaterials.2021.121321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022]
Abstract
NK cell-based immunotherapy and pemetrexed (Pem)-based chemotherapy have broad application prospects in cancer treatment. However, the over-expressed NK cell inhibitory receptor on the surface of cancer cells and the low cell internalization efficiency of Pem greatly limit their clinical application. Herein, we construct a series of selenium-containing nanoparticles to synergistically enhance Pem-based chemotherapy and NK cell-based immunotherapy. The nanoparticles could deliver Pem to tumor sites and strengthen the chemotherapy efficiency of Pem by seleninic acid, which is produced by the oxidation of β-seleno ester. Moreover, seleninic acid can block the expression of inhibitory receptors against NK cells, thereby activating the immunocompetence of NK cells. The in vitro and in vivo experiments reveal the potential chemo-enhancing and immune-activating mechanism of seleninic acid, emphasizing the promising prospects of this strategy in effective chemoimmunotherapy.
Collapse
Affiliation(s)
- Shuojiong Pan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Yizheng Tan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Varlamova EG, Turovsky EA. THE MAIN CYTOTOXIC EFFECTS OF METHYLSELENINIC ACID ON VARIOUS CANCER CELLS. Int J Mol Sci 2021; 22:6614. [PMID: 34205571 PMCID: PMC8234898 DOI: 10.3390/ijms22126614] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Studies of recent decades have repeatedly demonstrated the cytotoxic effect of selenium-containing compounds on cancer cells of various origins. Particular attention in these studies is paid to methylseleninic acid, a widespread selenium-containing compound of organic nature, for several reasons: it has a selective cytotoxic effect on cancer cells, it is cytotoxic in small doses, it is able to generate methylselenol, excluding the action of the enzyme β-lyase. All these qualities make methylseleninic acid an attractive substrate for the production of anticancer drugs on its basis with a well-pronounced selective effect. However, the studies available to date indicate that there is no strictly specific molecular mechanism of its cytotoxic effect in relation to different cancer cell lines and cancer models. This review contains generalized information on the dose- and time-dependent regulation of the toxic effect of methylseleninic acid on the proliferative properties of a number of cancer cell lines. In addition, special attention in this review is paid to the influence of this selenium-containing compound on the regulation of endoplasmic reticulum stress and on the expression of seven selenoproteins, which are localized in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya St. 3, Pushchino 142290, Moscow Region, Russia;
| | | |
Collapse
|
8
|
CSNK1G2 differently sensitizes tamoxifen-induced decrease in PI3K/AKT/mTOR/S6K and ERK signaling according to the estrogen receptor existence in breast cancer cells. PLoS One 2021; 16:e0246264. [PMID: 33861751 PMCID: PMC8051802 DOI: 10.1371/journal.pone.0246264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/17/2021] [Indexed: 11/19/2022] Open
Abstract
Tamoxifen (TAM) is a selective estrogen receptor modulator used for breast cancer patients. Prolonged use of tamoxifen is not recommended for some patients. In this study, we aimed to identify molecular targets sensitive to TAM using a genome-wide gene deletion library screening of fission yeast heterozygous mutants. From the screening, casein kinase 1 gamma 2 (CSNK1G2), a serine-/threonine protein kinase, was the most sensitive target to TAM with a significant cytotoxicity in estrogen receptor-positive (ER+) breast cancer cells but with only a slight toxicity in the case of ER- cells. In addition, tumor sphere formation and expression of breast stem cell marker genes such as CD44/CD2 were greatly inhibited by CSNK1G2 knockdown in ER+ breast cancer cells. Consistently, CSNK1G2 altered ERα activity via phosphorylation, specifically at serine (Ser)167, as well as the regulation of estrogen-responsive element (ERE) of estrogen-responsive genes such as CTSD and GREB1. However, ERα silencing almost completely blocked CSNK1G2-induced TAM sensitivity. In ER+ breast cancer cells, combined treatment with TAM and CSNK1G2 knockdown further enhanced the TAM-mediated decrease in phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (S6K) signaling but not extracellular signal-regulated kinase (ERK) signaling. Inversely, in ER- cells treated with TAM, only ERK and PI3K signaling was altered by CSNK1G2 knockdown. The CK1 inhibitor, D4476, partly mimicked the CSNK1G2 knockdown effect in ER+ breast cancer cells, but with a broader repression ranging from PI3K/AKT/mTOR/S6K to ERK signaling. Collectively, these results suggest that CSNK1G2 plays a key role in sensitizing TAM toxicity in ER+ and ER- breast cancer cells via differently regulating PI3K/AKT/mTOR/S6K and ERK signaling.
Collapse
|
9
|
Radomska D, Czarnomysy R, Radomski D, Bielawski K. Selenium Compounds as Novel Potential Anticancer Agents. Int J Mol Sci 2021; 22:ijms22031009. [PMID: 33498364 PMCID: PMC7864035 DOI: 10.3390/ijms22031009] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/21/2022] Open
Abstract
The high number of new cancer incidences and the associated mortality continue to be alarming, leading to the search for new therapies that would be more effective and less burdensome for patients. As there is evidence that Se compounds can have chemopreventive activity, studies have begun to establish whether these compounds can also affect already existing cancers. This review aims to discuss the different classes of Se-containing compounds, both organic and inorganic, natural and synthetic, and the mechanisms and molecular targets of their anticancer activity. The chemical classes discussed in this paper include inorganic (selenite, selenate) and organic compounds, such as diselenides, selenides, selenoesters, methylseleninic acid, 1,2-benzisoselenazole-3[2H]-one and selenophene-based derivatives, as well as selenoamino acids and Selol.
Collapse
|
10
|
Huang S, Wang H, Chen W, Zhan M, Xu S, Huang X, Lin R, Shen H, Wang J. Tamoxifen inhibits cell proliferation by impaired glucose metabolism in gallbladder cancer. J Cell Mol Med 2019; 24:1599-1613. [PMID: 31782270 PMCID: PMC6991689 DOI: 10.1111/jcmm.14851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/27/2019] [Accepted: 11/02/2019] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is the leading malignancy of biliary system showing refractory chemoresistance to current first‐line drugs. Growing epidemiological evidences have established that the incidence of GBC exhibits significant gender predominance with females two‐threefold higher than males, suggesting oestrogen/oestrogen receptors (ERs) signalling might be a critical driver of tumorigenesis in gallbladder. This study aims to evaluate the antitumour activity of tamoxifen (TAM), a major agent of hormonal therapy for breast cancer, in preclinical GBC model. Quantitative real‐time PCR was used to investigate mRNA levels. Protein expression was measured by immunohistochemistry and Western blot. Glycolytic levels were measured by glucose consumption and lactic acid measurement. The antitumour activity of TAM alone or with cisplatin was examined with CCK8 assay, colony formation, flow cytometry and in vivo models. The results revealed that ERɑ expression was higher in GBC tissues and predicted poor clinical outcomes. TAM was showed effective against a variety of GBC cell lines. Mechanical investigations revealed that TAM enabled potent reactive oxygen species (ROS) production by reduced nuclear factor Nrf2 expression and its target genes, leading to the activation of AMPK, which subsequently induced impaired glycolysis and survival advantages. Notably, TAM was demonstrated to sensitize GBC cells to cisplatin (CDDP) both in vitro and in vivo. In agreement with these findings, elimination of oestrogens by ovariectomy in nude mice prevented CDDP resistance. In summary, these results provide basis for TAM treatment for GBC and shed novel light on the potential application of endocrine therapy for patients with GBC.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xince Huang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruirong Lin
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Tan HW, Mo HY, Lau ATY, Xu YM. Selenium Species: Current Status and Potentials in Cancer Prevention and Therapy. Int J Mol Sci 2018; 20:ijms20010075. [PMID: 30585189 PMCID: PMC6337524 DOI: 10.3390/ijms20010075] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Selenium (Se) acts as an essential trace element in the human body due to its unique biological functions, particularly in the oxidation-reduction system. Although several clinical trials indicated no significant benefit of Se in preventing cancer, researchers reported that some Se species exhibit superior anticancer properties. Therefore, a reassessment of the status of Se and Se compounds is necessary in order to provide clearer insights into the potentiality of Se in cancer prevention and therapy. In this review, we organize relevant forms of Se species based on the three main categories of Se-inorganic, organic, and Se-containing nanoparticles (SeNPs)-and overview their potential functions and applications in oncology. Here, we specifically focus on the SeNPs as they have tremendous potential in oncology and other fields. In general, to make better use of Se compounds in cancer prevention and therapy, extensive further study is still required to understand the underlying mechanisms of the Se compounds.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
12
|
Lobb RJ, Jacobson GM, Cursons RT, Jameson MB. The Interaction of Selenium with Chemotherapy and Radiation on Normal and Malignant Human Mononuclear Blood Cells. Int J Mol Sci 2018; 19:ijms19103167. [PMID: 30326581 PMCID: PMC6214079 DOI: 10.3390/ijms19103167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 01/17/2023] Open
Abstract
Selenium, a trace element with anticancer properties, can reduce harmful toxicities of chemotherapy and radiotherapy without compromising efficacy. However, the dose-response relationship in normal versus malignant human cells is unclear. We evaluated how methylseleninic acid (MSA) modulates the toxicity and efficacy of chemotherapy and radiation on malignant and non-malignant human mononuclear blood cells in vitro. We specifically investigated its effects on endoplasmic reticulum stress induction, intracellular glutathione concentration, DNA damage and viability of peripheral blood mononuclear cells and THP1 monocytic leukaemia cells in response to radiation, cytosine arabinoside or doxorubicin chemotherapy. MSA, at lower concentrations, induced protective responses in normal cells but cytotoxic effects in malignant cells, alone and in conjunction with chemotherapy or radiation. However, in normal cells higher concentrations of MSA were directly toxic and increased the cytotoxicity of radiation but not chemotherapy. In malignant cells higher MSA concentrations were generally more effective in combination with cancer treatments. Thus, optimal MSA concentrations differed between normal and malignant cells and treatments. This work supports clinical reports that selenium can significantly reduce dose-limiting toxicities of anticancer therapies and potentially improve efficacy of anticancer treatments. The optimal selenium compound and dose is not yet determined.
Collapse
Affiliation(s)
- Richard J Lobb
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
| | - Gregory M Jacobson
- Department of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand.
| | - Ray T Cursons
- Department of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand.
| | - Michael B Jameson
- Oncology Department, Waikato Hospital, Hamilton 3204, New Zealand.
- Waikato Clinical Campus, Faculty of Medical and Health Sciences, University of Auckland, Hamilton 3204, New Zealand.
| |
Collapse
|
13
|
Li W, Shi X, Xu Y, Wan J, Wei S, Zhu R. Tamoxifen promotes apoptosis and inhibits invasion in estrogen‑positive breast cancer MCF‑7 cells. Mol Med Rep 2017; 16:478-484. [PMID: 28534964 DOI: 10.3892/mmr.2017.6603] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/14/2017] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen (TAM) is the earliest non-steroidal antiestrogen drug, which has been widely used in endocrine therapy targeting breast cancer. The aim of the present study was to investigate the effect of TAM on the proliferation, apoptosis, migration and invasion of the estrogen‑positive (ER+) breast cancer cell line MCF‑7 in vitro, and elucidate its mechanisms. It was demonstrated that TAM suppressed proliferation, migration and invasion, and induced apoptosis in MCF‑7 cells. Further investigation revealed that the mitochondrial membrane potential and the amount of ATP were significantly decreased following the treatment of MCF‑7 cells with TAM. Mitochondria are an important source of reactive oxygen species (ROS) and they are also the target of ROS as well. In the present study, TAM promoted the formation of ROS in MCF‑7 cells. In conclusion, these results reveal the underlying mechanism by which TAM induces ER+ breast cancer cell apoptosis and inhibits invasion, thereby supporting the use of TAM in breast cancer treatment.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xingpeng Shi
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yan Xu
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianmei Wan
- Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P.R. China
| | - Shaohua Wei
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ran Zhu
- Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
14
|
Subramani T, Yeap SK, Ho WY, Ho CL, Osman CP, Ismail NH, Rahman NMANA, Alitheen NB. Nordamnacanthal potentiates the cytotoxic effects of tamoxifen in human breast cancer cells. Oncol Lett 2014; 9:335-340. [PMID: 25435988 PMCID: PMC4247001 DOI: 10.3892/ol.2014.2697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 04/10/2014] [Indexed: 11/30/2022] Open
Abstract
Tamoxifen (TAM) is the mainline drug treatment for breast cancer, despite its side effects and the development of resistance. As an alternative approach, in the present study a novel combination therapy was established through combining TAM with nordamnacanthal (NDAM) in order to investigate the additive effect of these drugs in MCF-7 human breast cancer cells. A significant dose-dependent reduction in cell viability and an increase in apoptosis were observed in the MCF-7 cells cotreated with TAM and NDAM compared with the untreated control cells or the cells treated with TAM and NDAM alone (P<0.05). The cytotoxic influence of the combination of TAM and NDAM was found to be two-fold that of the individual agents. Annexin V/propidium iodide double-staining revealed the typical nuclear features of apoptosis. Furthermore, an increase in the proportion of apoptotic, Annexin V-positive cells was observed with the combination therapy. Moreover, this apoptotic induction was associated with a collapse of the mitochondrial membrane potential and the generation of reactive oxygen species. To the best of our knowledge, the findings of the present study are the first to suggest that combining TAM with NDAM may be a potential combination therapy for the treatment of breast cancer and may have the potential to minimize or eliminate the side effects associated with high doses of TAM.
Collapse
Affiliation(s)
- Tamilselvan Subramani
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Wan Yang Ho
- Faculty of Medicine and Health Science, School of Biomedical Sciences, The University of Nottingham Malaysia Campus, Semenyih, Selangor 43500, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Che Puteh Osman
- Faculty of Applied Sciences, Universiti Teknologi Mara, Shah Alam, Selangor 40450, Malaysia
| | - Nor Hadiani Ismail
- Faculty of Applied Sciences, Universiti Teknologi Mara, Shah Alam, Selangor 40450, Malaysia
| | - Nik Mohd Afizan Nik Abdul Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
15
|
Yeh WL, Lin HY, Wu HM, Chen DR. Combination treatment of tamoxifen with risperidone in breast cancer. PLoS One 2014; 9:e98805. [PMID: 24886861 PMCID: PMC4041865 DOI: 10.1371/journal.pone.0098805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/07/2014] [Indexed: 12/21/2022] Open
Abstract
Tamoxifen has long been used and still is the most commonly used endocrine therapy for treatment of both early and advanced estrogen receptor-positive breast cancer in pre- and post-menopause women. Tamoxifen exerts its cytotoxic effect primarily through cytostasis which is associated with the accumulation of cells in the G0/G1 phase of the cell cycle. Apoptotic activity can also be exerted by tamoxifen which involves cleavage of caspase 9, caspase 7, caspase 3, and poly-ADP-ribose polymerase (PARP). Down-regulation of anti-apoptotic proteins Bcl-2 and Bcl-xL and up-regulation of pro-apoptotic proteins Bax and Bak have also been observed. In addition, stress response protein of GRP 94 and GRP 78 have also been induced by tamoxifen in our study. However, side effects occur during tamoxifen treatment in breast cancer patients. Researching into combination regimen of tamoxifen and drug(s) that relieves tamoxifen-induced hot flushes is important, because drug interactions may decrease tamoxifen efficacy. Risperidone has been shown to be effective in reducing or eliminating hot flushes on women with hormonal variations. In this present study, we demonstrated that combination of tamoxifen with risperidone did not interfered tamoxifen-induced cytotoxic effects in both in vitro and in vivo models, while fluoxetine abrogated the effects of tamoxifen. This is the first paper suggesting the possibility of combination treatment of tamoxifen with risperidone in breast cancer patients, providing a conceivable resolution of tamoxifen-induced side effects without interfering the efficacy of tamoxifen against breast cancer.
Collapse
Affiliation(s)
- Wei-Lan Yeh
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua, Taiwan
- * E-mail: (DRC); (WLY)
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Hung-Ming Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Dar-Ren Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
- * E-mail: (DRC); (WLY)
| |
Collapse
|
16
|
Chiang EC, Bostwick DG, Waters DJ. Homeostatic housecleaning effect of selenium: evidence that noncytotoxic oxidant-induced damage sensitizes prostate cancer cells to organic selenium-triggered apoptosis. Biofactors 2013; 39:575-88. [PMID: 23625367 DOI: 10.1002/biof.1106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/28/2013] [Indexed: 01/01/2023]
Abstract
The anti-cancer activity of organic selenium has been most consistently documented at supra-nutritional levels at which selenium-dependent, antioxidant enzymes are maximized in both expression and activity. Thus, there is a strong imperative to identify mechanisms other than antioxidant protection to account for selenium's anti-cancer activity. In vivo work in dogs showed that dietary selenium supplementation decreased DNA damage but increased apoptosis in the prostate, leading to a new hypothesis: Organic selenium exerts its cancer preventive effect by selectively increasing apoptosis in DNA-damaged cells. Here, we test whether organic selenium (methylseleninic acid; MSA) triggers more apoptosis in human and canine prostate cancer cells that have more DNA damage (strand breaks) created by hydrogen-peroxide (H₂O₂) at noncytotoxic doses prior to MSA exposure. Apoptosis triggered by MSA was significantly higher in H₂O₂-damaged cells. A supra-additive effect was observed--the extent of MSA-triggered apoptosis in H₂O₂-damaged cells exceeded the sum of apoptosis induced by MSA or H₂O₂ alone. However, neither the persistence of H₂O₂-induced DNA damage, nor the activation of mitogen-activated protein kinases was required to sensitize cells to MSA-triggered apoptosis. Our results document that selenium can exert a "homeostatic housecleaning" effect--a preferential elimination of DNA-damaged cells. This work introduces a new and potentially important perspective on the anti-cancer action of selenium in the aging prostate that is independent of its role in antioxidant protection.
Collapse
Affiliation(s)
- Emily C Chiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN; Center on Aging and the Life Course, Purdue University, West Lafayette, IN; Gerald P. Murphy Cancer Foundation, West Lafayette, IN
| | | | | |
Collapse
|
17
|
Melo M, de Oliveira I, Grivicich I, Guecheva T, Saffi J, Henriques J, Rosa R. Diphenyl diselenide protects cultured MCF-7 cells against tamoxifen-induced oxidative DNA damage. Biomed Pharmacother 2013; 67:329-35. [DOI: 10.1016/j.biopha.2011.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/28/2011] [Indexed: 12/23/2022] Open
|
18
|
Mahn A, Reyes A. An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. FOOD SCI TECHNOL INT 2013; 18:503-14. [PMID: 23175779 DOI: 10.1177/1082013211433073] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Broccoli offers many heath-promoting properties owing to its content of antioxidant and anticarcinogenic compounds. The concentration and bioavailability of polyphenols, glucosinolates, sulforaphane and selenium depend on plant biochemistry, cultivation strategy and type of processing. In this article, the main biochemical properties of broccoli are reviewed regarding their health-promoting effects. Additionally, the way these properties are affected by processing is discussed. Steaming and drying result in an apparent increment of sulforaphane content as well as antioxidant activity, most likely due to an increase of the extractability of antioxidants and sulforaphane. Freezing and boiling diminish polyphenols concentration, mainly due to volatilization and leaching into the cooking water. In view of these results, the optimization of broccoli processing in order to maximize the content of bioactive compounds should be possible. The effect of processing on selenium compounds has been poorly studied so far, and therefore this topic should be investigated in the future. Finally, the effect of operating conditions in different drying processes on the content of bioactive compounds in broccoli should be investigated in a greater depth.
Collapse
Affiliation(s)
- Andrea Mahn
- Universidad de Santiago de Chile, Santiago, Chile.
| | | |
Collapse
|
19
|
Sanmartín C, Plano D, Sharma AK, Palop JA. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int J Mol Sci 2012; 13:9649-9672. [PMID: 22949823 PMCID: PMC3431821 DOI: 10.3390/ijms13089649] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in different physiological functions of the human body and plays a role in cancer prevention and treatment. Induction of apoptosis is considered an important cellular event that can account for the cancer preventive effects of Se. The mechanisms of Se-induced apoptosis are associated with the chemical forms of Se and their metabolism as well as the type of cancer studied. So, some selenocompounds, such as SeO2 involve the activation of caspase-3 while sodium selenite induces apoptosis in the absence of the activation of caspases. Modulation of mitochondrial functions has been reported to play a key role in the regulation of apoptosis and also to be one of the targets of Se compounds. Other mechanisms for apoptosis induction are the modulation of glutathione and reactive oxygen species levels, which may function as intracellular messengers to regulate signaling pathways, or the regulation of kinase, among others. Emerging evidence indicates the overlaps between the apoptosis and other types of cell death such as autophagy. In this review we report different processes of cell death induced by Se compounds in cancer treatment and prevention.
Collapse
Affiliation(s)
- Carmen Sanmartín
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-948-425-600; Fax: +34-948-425-649
| | - Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Juan Antonio Palop
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
| |
Collapse
|
20
|
Metals and breast cancer: risk factors or healing agents? J Toxicol 2011; 2011:159619. [PMID: 21804822 PMCID: PMC3143443 DOI: 10.1155/2011/159619] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/24/2011] [Indexed: 12/18/2022] Open
Abstract
Metals and metal compounds are part of our environment. Several metals are essential for physiological functions (e.g., zinc or magnesium); while the beneficial effects of others are uncertain (e.g., manganese), some metals are proven to be toxic (e.g., mercury, lead). Additionally there are organic metal compounds; some of them are extremely toxic (e.g., trimethyltin, methylmercury), but there is very little knowledge available how they are handled by organisms. Scientific evidence indicates that long-term exposure to (some) metallic compounds induces different forms of cancer, including breast cancer. On the other side, several metal compounds have clinical use in treating life-threatening diseases such as cancer. In this paper we discuss the recent literature that shows a correlation between metal exposure and breast cancer.
Collapse
|
21
|
Chen Z, Zhang Y, Yang J, Jin M, Wang XW, Shen ZQ, Qiu Z, Zhao G, Wang J, Li JW. Estrogen promotes benzo[a]pyrene-induced lung carcinogenesis through oxidative stress damage and cytochrome c-mediated caspase-3 activation pathways in female mice. Cancer Lett 2011; 308:14-22. [PMID: 21601985 DOI: 10.1016/j.canlet.2011.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/10/2011] [Accepted: 04/11/2011] [Indexed: 01/16/2023]
Abstract
Estrogen may contribute to the development of smoking-induced lung cancer in women. To test this hypothesis, an mouse model was used to investigate the effects of 17 beta-estradiol (E2) on benzo[a]pyrene (B[a]P)-induced lung carcinogenesis. We found that B[a]P could cause oxidative stress damage, upregulate mitochondrial cytochrome-c and caspase-3 expression, induce lung carcinogenesis in female mice, E2 promoted these effects of B[a]P while tamoxifen (TAM) inhibited this effects of E2. We conclude that E2 can promote the tumorigenic effects of B[a]P in female mice, and oxidative stress damage and activation of cytochrome-c-mediated caspase-3 pathway may be involved in this process.
Collapse
Affiliation(s)
- Zhaoli Chen
- Department of Health and Environment, Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ibáñez E, Plano D, Font M, Calvo A, Prior C, Palop JA, Sanmartín C. Synthesis and antiproliferative activity of novel symmetrical alkylthio- and alkylseleno-imidocarbamates. Eur J Med Chem 2010; 46:265-74. [PMID: 21115210 DOI: 10.1016/j.ejmech.2010.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/18/2010] [Accepted: 11/06/2010] [Indexed: 01/18/2023]
Abstract
The study described here concerns the synthesis of a series of thirty new symmetrically substituted imidothiocarbamate and imidoselenocarbamate derivatives and their evaluation for antitumoral activity in vitro against a panel of five human tumor cell lines: breast adenocarcinoma (MCF-7), colon carcinoma (HT-29), lymphocytic leukemia (K-562), hepatocarcinoma (Hep-G2), prostate cancer (PC-3) and one non-malignant mammary gland-derived cell line (MCF-10A). The GI(50) values for eighteen of the compounds were below 10 μM in at least one cell line. Two cancer cells (MCF-7 and HT-29) proved to be the most sensitive to five compounds (1b, 2b, 3b, 4b and 5b), with growth inhibition in the nanomolar range, and compounds 1b, 3b, 7b, 8b and 9b gave values of less than 1 μM. In addition, all of the aforementioned compounds exhibited lower GI(50) values than some of the standard chemotherapeutic drugs used as references. The results also reveal that the nature of the aliphatic chain (methyl is better than benzyl) at the selenium position and the nature of the heteroatom (Se better than S) have a marked influence on the antiproliferative activity of the compounds. These findings reinforce our earlier hypothesis concerning the determinant role of the selenomethyl group as a scaffold for the biological activity of this type of compound. Considering both the cytotoxic parameters and the selectivity index (which was compared in MCF-7 and MCF-10A cells), compounds 2b and 8b (with a selenomethyl moiety) displayed the best profiles, with GI(50) values ranging from 0.34 nM to 6.07 μM in the five cell lines tested. Therefore, compounds 2b and 8b were evaluated by flow cytometric analysis for their effects on cell cycle distribution and apoptosis in MCF-7 cells. 2b was the most active, with an apoptogenic effect similar to camptothecin, which was used as a positive control. Both of them provoked cell cycle arrest leading to the accumulation of cells in either G(2)/M and S phase. These two compounds can therefore be considered as the most promising candidates for the development of novel generations of antitumor agents.
Collapse
Affiliation(s)
- Elena Ibáñez
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Plano D, Moreno E, Font M, Encío I, Palop JA, Sanmartín C. Synthesis and in vitro Anticancer Activities of some Selenadiazole Derivatives. Arch Pharm (Weinheim) 2010; 343:680-91. [PMID: 21110339 DOI: 10.1002/ardp.201000014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel Plano
- Departamento de Química Orgánica y Farmacéutica, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Muenstedt K, El-Safadi S. Nutritive Supplements - Help or Harm for Breast Cancer Patients? ACTA ACUST UNITED AC 2010; 5:383-387. [PMID: 21494403 DOI: 10.1159/000322651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY: Considerable numbers of patients and physicians believe that micronutrients may be useful with respect to prevention and treatment of breast cancer. However, the analysis of the literature shows that basic information on nutritional demands in cancer patients is lacking. It is unknown whether there is an increased demand of micro-nutrients in cancer patients in general and if there is an even more increased demand during the various types of treatment. As a result, there are only limited positive findings. Higher calcium intake in premenopausal women and higher intake of vitamin D seem to be able to lower breast cancer incidence. Vitamin E (800 IU per day) was found to have a modest effect on hot flashes during tamoxifen treatment. However, there are potential side effects especially when micronutrients are administered in high or very high doses. There is increasing evidence that dose-effect relationships are not linear but U-shaped. It seems that two thresholds exist for adverse effect, one at low doses for undersupply, and another at high doses for toxicity. Thus, arbitrary high-dose administration of micronutrients should be avoided. Supplementation of normal doses seems to be safe and acceptable from the medical point of view.
Collapse
Affiliation(s)
- Karsten Muenstedt
- Department for Gynecology and Obstetrics, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | | |
Collapse
|
25
|
Zhao R, Xiang N, Domann FE, Zhong W. Effects of selenite and genistein on G2/M cell cycle arrest and apoptosis in human prostate cancer cells. Nutr Cancer 2009; 61:397-407. [PMID: 19373614 DOI: 10.1080/01635580802582751] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Combination of chemopreventive agents with distinct molecular mechanisms is considered to offer a potential for enhancing cancer prevention efficacy while minimizing toxicity. Here we report two chemopreventive agents, selenite and genistein, that have synergistic effects on apoptosis, cell cycle arrest, and associated signaling pathways in p53-expressing LNCaP and p53-null PC3 prostate cancer cells. We show that selenite induced apoptosis only, whereas genistein induced both apoptosis and G2/M cell cycle arrest. Combination of these two agents exhibited enhanced effects, which were slightly greater in LNCaP than PC3 cells. Selenite or genistein alone upregulated protein levels of p53 in LNCaP cells only and p21(waf1) and Bax in both cell lines. Additionally, genistein inhibited AKT phosphorylation. Downregulation of AKT by siRNA caused apoptosis and G2/M cell cycle arrest and masked the effects of genistein. Treatment with insulin-like growth factor I (IGF-I) elevated levels of total and phosphorylated AKT and suppressed the effects of genistein. Neither downregulation of AKT nor IGF-I treatment altered the cellular effects of selenite. Our study demonstrates that selenium and genistein act via different molecular mechanisms and exhibit enhanced anticancer effects, suggesting that a combination of selenium and genistein may offer better efficacy and reduction of toxicity in prostate cancer prevention.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
26
|
Li Z, Carrier L, Belame A, Thiyagarajah A, Salvo VA, Burow ME, Rowan BG. Combination of methylselenocysteine with tamoxifen inhibits MCF-7 breast cancer xenografts in nude mice through elevated apoptosis and reduced angiogenesis. Breast Cancer Res Treat 2008; 118:33-43. [PMID: 18855134 DOI: 10.1007/s10549-008-0216-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 09/29/2008] [Indexed: 11/30/2022]
Abstract
To investigate the therapeutic effect of methylselenocysteine (MSC) combined with tamoxifen in MCF-7 breast cancer xenograft and the underlying mechanisms. MCF-7 breast cancer xenograft was established in ovariectomized female athymic nude mice and treated with tamoxifen and/or MSC. Tumor size was measured twice a week. Immunohistochemistry and TUNEL assays were used to measure ERalpha expression, ERalpha target genes (progesterone receptor (PR) and cyclin D1 expression), Ki-67 index, apoptosis and microvessel density. Combined treatment with tamoxifen and MSC synergistically inhibited tumor growth compared to MSC alone and tamoxifen alone. MSC alone or MSC + tamoxifen significantly reduced ERalpha, PR and cyclin D1, Ki67 index and microvessel density while increasing apoptosis in tumor tissues. These findings demonstrate synergistic growth inhibition of ERalpha positive breast cancer xenografts by combination of tamoxifen with organic selenium compounds. Organic selenium may provide added benefit when combined with tamoxifen in adjuvant therapy or prevention.
Collapse
Affiliation(s)
- Zengshan Li
- Department of Structural & Cellular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | | | | | | | | | | | | |
Collapse
|