1
|
Pilatova MB, Nosalova N, Ockajakova G, Kello M, Kotorova K, Takac P, Petik P, Bohus P, Stankova K, Martinkova M, Mezencev R. Homospisulosine induced apoptosis in cervical carcinoma cells is associated with phosphorylation of Bcl-2 and up-regulation of p27/Kip1. J Appl Biomed 2023; 21:218-227. [PMID: 38112461 DOI: 10.32725/jab.2023.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Spisulosine (1-deoxysphinganine) is a sphingoid amino alcohol isolated from the sea clams that showed potent antiproliferative activity against a broad spectrum of solid tumors but failed in clinical trials due to neurotoxicity. However, its structural similarity to other bioactive sphingoids, interesting mode of action, and appreciable potency against cancer cells make it a suitable lead for future anticancer drug development. The present study was conducted to elucidate mechanisms of the antiproliferative/cytotoxic effects of newly synthesized spisulosine analog homospisulosine (KP7). The evaluation was performed on cervical carcinoma cells, representing an in vitro model of one of the most common cancer types and a significant worldwide cause of women's cancer mortality. Treatment with homospisulosine (2.0 μM) for 24, 48, and 72 h significantly inhibited the growth of HeLa cells in vitro and induced apoptosis detectable by DNA fragmentation, externalization of phosphatidylserine, dissipation of mitochondrial membrane potential, activation of caspase-3 and cleavage of PARP. In addition, treating HeLa cells with spisulosine increased p27 and Bcl-2 on protein levels and phosphorylation of Bcl-2 on Ser70 residue. These results support the potential for spisulosine analogs represented here by homospisulosine for future therapeutic development.
Collapse
Affiliation(s)
- Martina Bago Pilatova
- Pavol Jozef Safarik University, Faculty of Medicine, Department of Pharmacology, Kosice, Slovak Republic
| | - Natalia Nosalova
- Pavol Jozef Safarik University, Faculty of Medicine, Department of Pharmacology, Kosice, Slovak Republic
| | - Gabriela Ockajakova
- Pavol Jozef Safarik University, Faculty of Medicine, Department of Pharmacology, Kosice, Slovak Republic
| | - Martin Kello
- Pavol Jozef Safarik University, Faculty of Medicine, Department of Pharmacology, Kosice, Slovak Republic
| | - Klaudia Kotorova
- Pavol Jozef Safarik University, Faculty of Medicine, Department of Pharmacology, Kosice, Slovak Republic
| | - Peter Takac
- University of Veterinary Medicine and Pharmacy, Department of Pharmacology and Toxicology, Kosice, Slovak Republic
| | - Peter Petik
- Pavol Jozef Safarik University, Faculty of Medicine, Department of Pathology, Kosice, Slovak Republic
| | - Peter Bohus
- Pavol Jozef Safarik University, Faculty of Medicine, Department of Pathology, Kosice, Slovak Republic
| | - Kvetoslava Stankova
- Pavol Jozef Safarik University, Faculty of Science, Department of Organic Chemistry, Institute of Chemical Sciences, Kosice, Slovak Republic
| | - Miroslava Martinkova
- Pavol Jozef Safarik University, Faculty of Science, Department of Organic Chemistry, Institute of Chemical Sciences, Kosice, Slovak Republic
| | - Roman Mezencev
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, USA
| |
Collapse
|
2
|
Fakhri S, Abdian S, Moradi SZ, Delgadillo BE, Fimognari C, Bishayee A. Marine Compounds, Mitochondria, and Malignancy: A Therapeutic Nexus. Mar Drugs 2022; 20:md20100625. [PMID: 36286449 PMCID: PMC9604966 DOI: 10.3390/md20100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
The marine environment is important yet generally underexplored. It contains new sources of functional constituents that can affect various pathways in food processing, storage, and fortification. Bioactive secondary metabolites produced by marine microorganisms may have significant potential applications for humans. Various components isolated from disparate marine microorganisms, including fungi, microalgae, bacteria, and myxomycetes, showed considerable biological effects, such as anticancer, antioxidant, antiviral, antibacterial, and neuroprotective activities. Growing studies are revealing that potential anticancer effects of marine agents could be achieved through the modulation of several organelles. Mitochondria are known organelles that influence growth, differentiation, and death of cells via influencing the biosynthetic, bioenergetic, and various signaling pathways related to oxidative stress and cellular metabolism. Consequently, mitochondria play an essential role in tumorigenesis and cancer treatments by adapting to alterations in environmental and cellular conditions. The growing interest in marine-derived anticancer agents, combined with the development and progression of novel technology in the extraction and cultures of marine life, led to revelations of new compounds with meaningful pharmacological applications. This is the first critical review on marine-derived anticancer agents that have the potential for targeting mitochondrial function during tumorigenesis. This study aims to provide promising strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Blake E. Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: or
| |
Collapse
|
3
|
Kaur P, Sihag S, Chauhan M, Dhingra N, Agnihotri N, Kaur R, Singh V. Synthesis and In Vitro Analysis of 1‐Deoxysphingolipid Ceramide Analogues via UGI Reaction as Potential Anti‐cancer Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Parleen Kaur
- Department of Applied Scienced Punjab Engineering College (Deemed to be University) Chandigarh 160 012 India
| | - Swati Sihag
- Department cum National Genomics studies and Research Panjab University Chandigarh 160 014 India
| | - Monika Chauhan
- University Institute Of Pharmaceutical Sciences (UIPS) Panjab University Chandigarh 160014 India
| | - Neelima Dhingra
- University Institute Of Pharmaceutical Sciences (UIPS) Panjab University Chandigarh 160014 India
| | - Navneet Agnihotri
- Department of biochemistry Panjab University Chandigarh 160025 India
| | - Ramandeep Kaur
- Department cum National Genomics studies and Research Panjab University Chandigarh 160 014 India
| | - Vasundhara Singh
- Department of Applied Scienced Punjab Engineering College (Deemed to be University) Chandigarh 160 012 India
| |
Collapse
|
4
|
Karsai G, Steiner R, Kaech A, Lone MA, von Eckardstein A, Hornemann T. Metabolism of HSAN1- and T2DM-associated 1-deoxy-sphingolipids inhibits the migration of fibroblasts. J Lipid Res 2021; 62:100122. [PMID: 34563520 PMCID: PMC8521209 DOI: 10.1016/j.jlr.2021.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/03/2022] Open
Abstract
Hereditary sensory neuropathy type 1 (HSAN1) is a rare axonopathy, characterized by a progressive loss of sensation (pain, temperature, and vibration), neuropathic pain, and wound healing defects. HSAN1 is caused by several missense mutations in the serine palmitoyltransferase long-chain base subunit 1 and serine palmitoyltransferase long-chain base subunit 2 of the enzyme serine palmitoyltransferase-the key enzyme for the synthesis of sphingolipids. The mutations change the substrate specificity of serine palmitoyltransferase, which then forms an atypical class of 1-deoxy-sphinglipids (1-deoxySLs). Similarly, patients with type 2 diabetes mellitus also present with elevated 1-deoxySLs and a comparable clinical phenotype. The effect of 1-deoxySLs on neuronal cells was investigated in detail, but their impact on other cell types remains elusive. Here, we investigated the consequences of externally added 1-deoxySLs on the migration of fibroblasts in a scratch assay as a simplified cellular wound-healing model. We showed that 1-deoxy-sphinganine (1-deoxySA) inhibits the migration of NIH-3T3 fibroblasts in a dose- and time-dependent manner. This was not seen for a non-native, L-threo stereoisomer. Supplemented 1-deoxySA was metabolized to 1-deoxy-(dihydro)ceramide and downstream to 1-deoxy-sphingosine. Inhibiting downstream metabolism by blocking N-acylation rescued the migration phenotype. In contrast, adding 1-deoxy-sphingosine had a lesser effect on cell migration but caused the massive formation of intracellular vacuoles. Further experiments showed that the effect on cell migration was primarily mediated by 1-deoxy-dihydroceramides rather than by the free base or 1-deoxyceramides. Based on these findings, we suggest that limiting the N-acylation of 1-deoxySA could be a therapeutic approach to improve cell migration and wound healing in patients with HSAN1 and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Gergely Karsai
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Regula Steiner
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zürich, Zürich, Switzerland
| | - Museer A Lone
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | | | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Muthusamy T, Cordes T, Handzlik MK, You L, Lim EW, Gengatharan J, Pinto AFM, Badur MG, Kolar MJ, Wallace M, Saghatelian A, Metallo CM. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature 2020; 586:790-795. [PMID: 32788725 PMCID: PMC7606299 DOI: 10.1038/s41586-020-2609-x] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
Serine, glycine, and other non-essential amino acids are critical for tumor progression, and strategies to limit their availability are emerging as potential cancer therapies1–3. However, the molecular mechanisms driving this response remain unclear, and the impact on lipid metabolism is relatively unexplored. Serine palmitoyltransferase (SPT) catalyzes the de novo biosynthesis of sphingolipids but also produces non-canonical 1-deoxysphingolipids (doxSLs) when using alanine as a substrate4,5. DoxSLs accumulate in the context of SPTLC1 or SPTLC2 mutations6,7 or low serine availability8,9 to drive neuropathy, and deoxysphinganine (doxSA) has been investigated as an anti-cancer agent10. Here we exploit amino acid metabolism and SPT promiscuity to modulate the endogenous synthesis of toxic doxSLs and slow tumor progression. Anchorage-independent growth reprograms a metabolic network involving serine, alanine, and pyruvate resulting in increased susceptibility to endogenous doxSL synthesis. Targeting the mitochondrial pyruvate carrier (MPC) promotes alanine oxidation to mitigate doxSL synthesis and improves spheroid growth, while direct inhibition of doxSL synthesis drives similar phenotypes. Restriction of dietary serine/glycine potently induces accumulation of doxSLs in xenografts while decreasing tumor growth. Pharmacological modulation of SPT rescues xenograft growth on serine/glycine-restricted diets, while reduction of circulating serine by inhibition of phosphoglycerate dehydrogenase (PHGDH) leads to doxSL accumulation and mitigates tumor growth. SPT promiscuity therefore links serine and mitochondrial alanine metabolism to membrane lipid diversity, which sensitizes tumors to metabolic stress.
Collapse
Affiliation(s)
| | - Thekla Cordes
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Michal K Handzlik
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Le You
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jivani Gengatharan
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Antonio F M Pinto
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mehmet G Badur
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Matthew J Kolar
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martina Wallace
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA. .,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Grkovic T, Akee RK, Thornburg CC, Trinh SK, Britt JR, Harris MJ, Evans JR, Kang U, Ensel S, Henrich CJ, Gustafson KR, Schneider JP, O’Keefe BR. National Cancer Institute (NCI) Program for Natural Products Discovery: Rapid Isolation and Identification of Biologically Active Natural Products from the NCI Prefractionated Library. ACS Chem Biol 2020; 15:1104-1114. [PMID: 32223208 PMCID: PMC7171602 DOI: 10.1021/acschembio.0c00139] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 01/21/2023]
Abstract
An automated, high-capacity, and high-throughput procedure for the rapid isolation and identification of biologically active natural products from a prefractionated library is presented. The semipreparative HPLC method uses 1 mg of the primary hit fraction and produces 22 subfractions in an assay-ready format. Following screening, all active fractions are analyzed by NMR, LCMS, and FTIR, and the active principle structural classes are elucidated. In the proof-of-concept study, we show the processes involved in generating the subfractions, the throughput of the structural elucidation work, as well as the ability to rapidly isolate and identify new and biologically active natural products. Overall, the rapid second-stage purification conserves extract mass, requires much less chemist time, and introduces knowledge of structure early in the isolation workflow.
Collapse
Affiliation(s)
- Tanja Grkovic
- Natural
Products Support Group, Leidos Biomedical
Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Rhone K. Akee
- Natural
Products Support Group, Leidos Biomedical
Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Christopher C. Thornburg
- Natural
Products Support Group, Leidos Biomedical
Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Spencer K. Trinh
- Natural
Products Support Group, Leidos Biomedical
Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - John R. Britt
- Natural
Products Support Group, Leidos Biomedical
Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Matthew J. Harris
- Natural
Products Support Group, Leidos Biomedical
Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Jason R. Evans
- Natural
Products Branch, Developmental Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Unwoo Kang
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Susan Ensel
- Department
of Chemistry and Physics, Hood College, Frederick, Maryland 21701-8599, United States
| | - Curtis J. Henrich
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Kirk R. Gustafson
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Joel P. Schneider
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Barry R. O’Keefe
- Natural
Products Branch, Developmental Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
7
|
New Spisulosine Derivative promotes robust autophagic response to cancer cells. Eur J Med Chem 2020; 188:112011. [PMID: 31926468 DOI: 10.1016/j.ejmech.2019.112011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/02/2019] [Accepted: 12/24/2019] [Indexed: 11/24/2022]
Abstract
Therapy resistance by evasion of apoptosis is one of the hallmarks of human cancer. Therefore, restoration of cell death by non-apoptotic mechanisms is critical to successfully overcome therapy resistance in cancer. By rational drug design approach, here we try to provide evidence that subtle changes in the chemical structure of spisulosine completely switched its cytotoxic function from apoptosis to autophagy. Our most potent molecule (26b) in a series of 16 synthesized derivatives showed robust autophagic cell death in diverse cancer cells sparing normal counterpart. Compound 26b mediated lethal autophagy induction was confirmed by formation of characteristic autophagic vacuoles, LC3 puncta formation, upregulation of signature autophagy markers like Beclin and Atg family proteins. Altogether, we have detected novel autophagy inducer small molecule which can be tested further for drug discovery research.
Collapse
|
8
|
Schwartz NU, Mileva I, Gurevich M, Snider J, Hannun YA, Obeid LM. Quantifying 1-deoxydihydroceramides and 1-deoxyceramides in mouse nervous system tissue. Prostaglandins Other Lipid Mediat 2019; 141:40-48. [PMID: 30790665 PMCID: PMC6467697 DOI: 10.1016/j.prostaglandins.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
Accumulation of deoxysphingolipids (deoxySLs) has been implicated in many neural diseases, although mechanisms remain unclear. A major obstacle limiting understanding of deoxySLs has been the lack of a method easily defining measurement of deoxydihydroceramide (deoxydhCer) and deoxyceramide (deoxyCer) in neural tissues. Furthermore, it is poorly understood if deoxySLs accumulate in the nervous system with aging. To facilitate investigation of deoxydhCer and deoxyCer in nervous system tissue, we developed a method to evaluate levels of these lipids in mouse brain, spinal cord, and sciatic nerve. Many deoxydhCers and brain C24-deoxyCer were present at 1, 3, and 6 months of age. Furthermore, while ceramide levels decreased with age, deoxydhCers increased in sciatic nerve and spinal cord, suggesting they may accumulate in peripheral nerves. C22-deoxydhCer was the highest deoxydhCer species in all tissues, suggesting it may be important physiologically. The development of this method will facilitate straightforward profiling of deoxydhCers and deoxyCers and the study of their metabolism and function. These results also reveal that deoxydhCers accumulate in peripheral nerves with normal aging.
Collapse
Affiliation(s)
- Nicholas U Schwartz
- Health Science Center, L-4, 179, Stony Brook University Medical Center, Stony Brook, NY, 11794-8430, United States
| | - Izolda Mileva
- Health Science Center, L-4, 179, Stony Brook University Medical Center, Stony Brook, NY, 11794-8430, United States
| | - Mikhail Gurevich
- Health Science Center, L-4, 179, Stony Brook University Medical Center, Stony Brook, NY, 11794-8430, United States
| | - Justin Snider
- Health Science Center, L-4, 179, Stony Brook University Medical Center, Stony Brook, NY, 11794-8430, United States
| | - Yusuf A Hannun
- Health Science Center, L-4, 179, Stony Brook University Medical Center, Stony Brook, NY, 11794-8430, United States
| | - Lina M Obeid
- Health Science Center, L-4, 179, Stony Brook University Medical Center, Stony Brook, NY, 11794-8430, United States.
| |
Collapse
|
9
|
Lone MA, Santos T, Alecu I, Silva LC, Hornemann T. 1-Deoxysphingolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:512-521. [PMID: 30625374 DOI: 10.1016/j.bbalip.2018.12.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Sphingolipids (SLs) are fundamental components of eukaryotic cells. 1-Deoxysphingolipids differ structurally from canonical SLs as they lack the essential C1-OH group. Consequently, 1-deoxysphingolipids cannot be converted to complex sphingolipids and are not degraded over the canonical catabolic pathways. Pathologically elevated 1-deoxySLs are involved in several disease conditions. Within this review, we will provide an up-to-date overview on the metabolic, physiological and pathophysiological aspects of this enigmatic class of "headless" sphingolipids.
Collapse
Affiliation(s)
- M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - T Santos
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland; iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - I Alecu
- Neural Regeneration Laboratory, India Taylor Lipidomic Research Platform, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Ottawa Brain and Mind Research Institute, University of Ottawa, Canada
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland.
| |
Collapse
|
10
|
Abstract
Cancer patients' quality of life is greatly dependent on the efficacy of treatments and their associated side effects, which can significantly reduce the overall quality of life. Although the effectiveness of cancer treatments has improved over time, adverse effects persist with each treatment. Some side effects, such as paclitaxel-induced peripheral neuropathy, can be dose limiting, thus further reducing the potential of paclitaxel chemotherapy treatment. Premature ovarian failure in young female patients due to radiation and chemotherapy therapy can have devastating infertility consequences. In recent years, a class of lipids known as sphingolipids has been identified as playing a role in the side effects of cancer therapies. Advanced analytical technologies, such as mass spectrometry, have provided great aid in detecting and distinguishing individual sphingolipids at low concentrations. Sphingolipids play an important role in cell proliferation and apoptosis and, importantly, sphingolipid metabolism has been shown to be dysregulated in cancer. The goal of this review is to summarize the latest findings of the role of sphingolipids in the injurious side effects in various cancer treatments. A better understanding of the molecular mechanisms driving these sphingolipid-induced side effects can help develop new drugs and treatments for cancer that have fewer side effects, thus improving treatment efficacy and quality of life.
Collapse
Affiliation(s)
- Falak Patel
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Stefka D Spassieva
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
11
|
Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R. Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Med Res Rev 2017; 37:702-801. [PMID: 27925266 PMCID: PMC5484305 DOI: 10.1002/med.21423] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as "chemotaxonomic markers" for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk-derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen-containing compounds. The "promise" of a mollusk-derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk-derived anticancer agents and solutions to their procurement in quantity.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital ErasmeUniversité Libre de Bruxelles (ULB)1070BrusselsBelgium
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Tania Betancourt
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Ramesh Dasari
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Alexander Kornienko
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie ExpérimentaleFaculté de Pharmacie, Université Libre de Bruxelles (ULB)1050BrusselsBelgium
| |
Collapse
|
12
|
Jain VK, Ramapanicker R. Diastereoselective synthesis of D-threo-sphinganine, L-erythro-sphinganine and (−)-spisulosine through asymmetric α-hydroxylation of a higher homologue of Garner's aldehyde. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Alecu I, Tedeschi A, Behler N, Wunderling K, Lamberz C, Lauterbach MAR, Gaebler A, Ernst D, Van Veldhoven PP, Al-Amoudi A, Latz E, Othman A, Kuerschner L, Hornemann T, Bradke F, Thiele C, Penno A. Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. J Lipid Res 2016; 58:42-59. [PMID: 27881717 DOI: 10.1194/jlr.m068676] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
1-Deoxysphingolipids (deoxySLs) are atypical sphingolipids that are elevated in the plasma of patients with type 2 diabetes and hereditary sensory and autonomic neuropathy type 1 (HSAN1). Clinically, diabetic neuropathy and HSAN1 are very similar, suggesting the involvement of deoxySLs in the pathology of both diseases. However, very little is known about the biology of these lipids and the underlying pathomechanism. We synthesized an alkyne analog of 1-deoxysphinganine (doxSA), the metabolic precursor of all deoxySLs, to trace the metabolism and localization of deoxySLs. Our results indicate that the metabolism of these lipids is restricted to only some lipid species and that they are not converted to canonical sphingolipids or fatty acids. Furthermore, exogenously added alkyne-doxSA [(2S,3R)-2-aminooctadec-17-yn-3-ol] localized to mitochondria, causing mitochondrial fragmentation and dysfunction. The induced mitochondrial toxicity was also shown for natural doxSA, but not for sphinganine, and was rescued by inhibition of ceramide synthase activity. Our findings therefore indicate that mitochondrial enrichment of an N-acylated doxSA metabolite may contribute to the neurotoxicity seen in diabetic neuropathy and HSAN1. Hence, we provide a potential explanation for the characteristic vulnerability of peripheral nerves to elevated levels of deoxySLs.
Collapse
Affiliation(s)
- Irina Alecu
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Andrea Tedeschi
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Natascha Behler
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Klaus Wunderling
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christian Lamberz
- Cyro-Electron Microscopy and Tomography, German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Anne Gaebler
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Daniela Ernst
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland
| | - Paul P Van Veldhoven
- Laboratory for Lipid Biochemistry and Protein Interactions, Campus Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ashraf Al-Amoudi
- Cyro-Electron Microscopy and Tomography, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Alaa Othman
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Lars Kuerschner
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Frank Bradke
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Anke Penno
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Alecu I, Othman A, Penno A, Saied EM, Arenz C, von Eckardstein A, Hornemann T. Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway. J Lipid Res 2016; 58:60-71. [PMID: 27872144 DOI: 10.1194/jlr.m072421] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/11/2016] [Indexed: 12/14/2022] Open
Abstract
The 1-deoxysphingolipids (1-deoxySLs) are atypical sphingolipids (SLs) that are formed when serine palmitoyltransferase condenses palmitoyl-CoA with alanine instead of serine during SL synthesis. The 1-deoxySLs are toxic to neurons and pancreatic β-cells. Pathologically elevated 1-deoxySLs cause the inherited neuropathy, hereditary sensory autonomic neuropathy type 1 (HSAN1), and are also found in T2D. Diabetic sensory polyneuropathy (DSN) and HSAN1 are clinically very similar, suggesting that 1-deoxySLs may be implicated in both pathologies. The 1-deoxySLs are considered to be dead-end metabolites, as they lack the C1-hydroxyl group, which is essential for the canonical degradation of SLs. Here, we report a previously unknown metabolic pathway, which is capable of degrading 1-deoxySLs. Using a variety of metabolic labeling approaches and high-resolution high-accuracy MS, we identified eight 1-deoxySL downstream metabolites, which appear to be formed by cytochrome P450 (CYP)4F enzymes. Comprehensive inhibition and induction of CYP4F enzymes blocked and stimulated, respectively, the formation of the downstream metabolites. Consequently, CYP4F enzymes might be novel therapeutic targets for the treatment of HSAN1 and DSN, as well as for the prevention of T2D.
Collapse
Affiliation(s)
- Irina Alecu
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich 8091, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich 8057, Switzerland
| | - Alaa Othman
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck D-23562, Germany
| | - Anke Penno
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn 53115, Germany
| | - Essa M Saied
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin D-12489, Germany.,Chemistry Department, Suez Canal University, Ismailia 41522, Egypt
| | - Christoph Arenz
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin D-12489, Germany
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich 8091, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich 8057, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich 8091, Switzerland .,Center for Integrative Human Physiology, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
15
|
Increased Plasma Levels of Select Deoxy-ceramide and Ceramide Species are Associated with Increased Odds of Diabetic Neuropathy in Type 1 Diabetes: A Pilot Study. Neuromolecular Med 2016; 19:46-56. [PMID: 27388466 DOI: 10.1007/s12017-016-8423-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/30/2016] [Indexed: 12/14/2022]
Abstract
Plasma deoxy-sphingoid bases are elevated in type 2 diabetes patients and correlate with the stage of diabetic distal sensorimotor polyneuropathy; however, associations between deoxy-sphingolipids (DSL) and neuropathy in type 1 diabetes have not been examined. The primary aim of this exploratory pilot study was to assess the associations between multiple sphingolipid species including DSL and free amino acids and the presence of symptomatic neuropathy in a DCCT/EDIC type 1 diabetes subcohort. Using mass spectroscopy, plasma levels of DSL and free amino acids in DCCT/EDIC type 1 diabetes participants (n = 80), with and without symptoms of neuropathy, were investigated. Patient-determined neuropathy was based on 15-item self-administered questionnaire (Michigan Neuropathy Screening Instrument) developed to assess distal symmetrical peripheral neuropathy in diabetes. Patients who scored ≥4, or reported inability to sense their feet during walking or to distinguish hot from cold water while bathing were considered neuropathic. Plasma levels of ceramide, sphingomyelin, hexosyl- and lactosylceramide species, and amino acids were measured and analyzed relative to neuropathy status in the patient. Deoxy-C24-ceramide, C24- and C26-ceramide were higher in patients with neuropathy than those without neuropathy. Cysteine was higher in patients with neuropathy. No differences in other sphingolipids or amino acids were detected. The covariate-adjusted Odds Ratios of positive patient-reported neuropathy was associated with increased levels of deoxy-C24-, and deoxy-C24:1-ceramide; C22-, C24-, and C26-ceramide; and cysteine. Plasma deoxy-ceramide and ceramide species may have potential diagnostic and prognostic significance in diabetic neuropathy.
Collapse
|
16
|
Biophysical properties of novel 1-deoxy-(dihydro)ceramides occurring in mammalian cells. Biophys J 2016; 107:2850-2859. [PMID: 25517151 DOI: 10.1016/j.bpj.2014.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/05/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022] Open
Abstract
Ceramides and dihydroceramides are N-acyl derivatives of sphingosine and sphinganine, respectively, which are the major sphingoid-base backbones of mammals. Recent studies have found that mammals, like certain other organisms, also produce 1-deoxy-(dihydro)ceramides (1-deoxyDHCers) that contain sphingoid bases lacking the 1-hydroxyl- or 1-hydroxymethyl- groups. The amounts of these compounds can be substantial-indeed, we have found comparable levels of 1-deoxyDHCers and ceramides in RAW 264.7 cells maintained in culture. The biophysical properties of 1-deoxyDHCers have not yet been reported, although these lipids might play important roles in normal cell regulation and in the pathology of diseases in which they are elevated, such as hereditary sensory autonomic neuropathies or diabetes. This study uses several approaches, including surface-pressure measurements, differential scanning calorimetry, and confocal microscopy, to study the behavior of 1-deoxyDHCers of different N-acyl-chain lengths and their interaction with sphingomyelin (SM). The thermotropic behaviors of 1-deoxyDHCers alone and in mixtures with SM are described, together with their interactions in monolayers and giant unilamellar vesicles. The gel-fluid transition temperatures of the pure compounds increase in the order 1-deoxyceramide < ceramide ≈ 1-deoxyDHCer < 1-(deoxymethyl)DHCer. In general, canonical ceramides are more miscible with SM in bilayers than are 1-deoxyceramides, and 1-(deoxymethyl)DHCers are the most hydrophobic among them, not even capable of forming monolayers at the air-water interface. Thus, these properties suggest that 1-deoxyDHCer can influence the properties of cellular membranes in ways that might affect biological function/malfunction.
Collapse
|
17
|
Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency. Proc Natl Acad Sci U S A 2016; 113:5928-33. [PMID: 27162368 DOI: 10.1073/pnas.1522071113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sphingolipids exhibit extreme functional and chemical diversity that is in part determined by their hydrophobic moiety, ceramide. In mammals, the fatty acyl chain length variation of ceramides is determined by six (dihydro)ceramide synthase (CerS) isoforms. Previously, we and others showed that mutations in the major neuron-specific CerS1, which synthesizes 18-carbon fatty acyl (C18) ceramide, cause elevation of long-chain base (LCB) substrates and decrease in C18 ceramide and derivatives in the brain, leading to neurodegeneration in mice and myoclonus epilepsy with dementia in humans. Whether LCB elevation or C18 ceramide reduction leads to neurodegeneration is unclear. Here, we ectopically expressed CerS2, a nonneuronal CerS producing C22-C24 ceramides, in neurons of Cers1-deficient mice. Surprisingly, the Cers1 mutant pathology was almost completely suppressed. Because CerS2 cannot replenish C18 ceramide, the rescue is likely a result of LCB reduction. Consistent with this hypothesis, we found that only LCBs, the substrates common for all of the CerS isoforms, but not ceramides and complex sphingolipids, were restored to the wild-type levels in the Cers2-rescued Cers1 mutant mouse brains. Furthermore, LCBs induced neurite fragmentation in cultured neurons at concentrations corresponding to the elevated levels in the CerS1-deficient brain. The strong association of LCB levels with neuronal survival both in vivo and in vitro suggests high-level accumulation of LCBs is a possible underlying cause of the CerS1 deficiency-induced neuronal death.
Collapse
|
18
|
Mi JN, Wang JR, Jiang ZH. Quantitative profiling of sphingolipids in wild Cordyceps and its mycelia by using UHPLC-MS. Sci Rep 2016; 6:20870. [PMID: 26868933 PMCID: PMC4751452 DOI: 10.1038/srep20870] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/08/2016] [Indexed: 11/26/2022] Open
Abstract
In the present study, 101 sphingolipids in wild Cordyceps and its five mycelia were quantitatively profiled by using a fully validated UHPLC-MS method. The results revealed that a general rank order for the abundance of different classes of sphingolipids in wild Cordyceps and its mycelia is sphingoid bases/ceramides > phosphosphingolipids > glycosphingolipids. However, remarkable sphingolipid differences between wild Cordyceps and its mycelia were observed. One is that sphingoid base is the dominant sphingolipid in wild Cordyceps, whereas ceramide is the major sphingolipid in mycelia. Another difference is that the abundance of sphingomyelins in wild Cordyceps is almost 10-folds higher than those in most mycelia. The third one is that mycelia contain more inositol phosphorylceramides and glycosphingolipids than wild Cordyceps. Multivariate analysis was further employed to visualize the difference among wild Cordyceps and different mycelia, leading to the identification of respective sphingolipids as potential chemical markers for the differentiation of wild Cordyceps and its related mycelia. This study represents the first report on the quantitative profiling of sphingolipids in wild Cordyceps and its related mycelia, which provided comprehensive chemical evidence for the quality control and rational utilization of wild Cordyceps and its mycelia.
Collapse
Affiliation(s)
- Jia-Ning Mi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Bode H, Bourquin F, Suriyanarayanan S, Wei Y, Alecu I, Othman A, Von Eckardstein A, Hornemann T. HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship. Hum Mol Genet 2015; 25:853-65. [PMID: 26681808 DOI: 10.1093/hmg/ddv611] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/12/2015] [Indexed: 12/13/2022] Open
Abstract
Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is a rare autosomal dominant inherited peripheral neuropathy caused by mutations in the SPTLC1 and SPTLC2 subunits of serine palmitoyltransferase (SPT). The mutations induce a permanent shift in the substrate preference from L-serine to L-alanine, which results in the pathological formation of atypical and neurotoxic 1-deoxy-sphingolipids (1-deoxySL). Here we compared the enzymatic properties of 11 SPTLC1 and six SPTLC2 mutants using a uniform isotope labelling approach. In total, eight SPT mutants (STPLC1p.C133W, p.C133Y, p.S331F, p.S331Y and SPTLC2p.A182P, p.G382V, p.S384F, p.I504F) were associated with increased 1-deoxySL synthesis. Despite earlier reports, canonical activity with l-serine was not reduced in any of the investigated SPT mutants. Three variants (SPTLC1p.S331F/Y and SPTLC2p.I505Y) showed an increased canonical activity and increased formation of C20 sphingoid bases. These three mutations are associated with an exceptionally severe HSAN1 phenotype, and increased C20 sphingosine levels were also confirmed in plasma of patients. A principal component analysis of the analysed sphingoid bases clustered the mutations into three separate entities. Each cluster was related to a distinct clinical outcome (no, mild and severe HSAN1 phenotype). A homology model based on the protein structure of the prokaryotic SPT recapitulated the same grouping on a structural level. Mutations associated with the mild form clustered around the active site, whereas mutations associated with the severe form were located on the surface of the protein. In conclusion, we showed that HSAN1 mutations in SPT have distinct biochemical properties, which allowed for the prediction of the clinical symptoms on the basis of the plasma sphingoid base profile.
Collapse
Affiliation(s)
- Heiko Bode
- Institute for Clinical Chemistry, University Hospital Zurich, Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Florence Bourquin
- Institute of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Saranya Suriyanarayanan
- Institute for Clinical Chemistry, University Hospital Zurich, Competence Center for Personalized Medicine (CC-PM), Molecular Translation and Biomedicine (MTB), and
| | - Yu Wei
- Institute for Clinical Chemistry, University Hospital Zurich
| | - Irina Alecu
- Institute for Clinical Chemistry, University Hospital Zurich, Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, Competence Center for Personalized Medicine (CC-PM), Molecular Translation and Biomedicine (MTB), and
| | - Arnold Von Eckardstein
- Institute for Clinical Chemistry, University Hospital Zurich, Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland, Competence Center for Personalized Medicine (CC-PM), Molecular Translation and Biomedicine (MTB), and
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland, Competence Center for Personalized Medicine (CC-PM), Molecular Translation and Biomedicine (MTB), and
| |
Collapse
|
20
|
Kramer R, Bielawski J, Kistner-Griffin E, Othman A, Alecu I, Ernst D, Kornhauser D, Hornemann T, Spassieva S. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB J 2015. [PMID: 26198449 DOI: 10.1096/fj.15-272567] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P < 0.05). We also tested whether there is an association between peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P < 0.05), with the strongest association being with motor neuropathy (P < 0.001). Our data from cells and from patients with breast cancer suggest that 1-deoxysphingolipids, the very-long-chain in particular, play a role as molecular intermediates of paclitaxel-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Rita Kramer
- *Department of Medicine, Department of Biochemistry and Molecular Biology, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA; and Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Jacek Bielawski
- *Department of Medicine, Department of Biochemistry and Molecular Biology, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA; and Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Emily Kistner-Griffin
- *Department of Medicine, Department of Biochemistry and Molecular Biology, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA; and Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Alaa Othman
- *Department of Medicine, Department of Biochemistry and Molecular Biology, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA; and Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Irina Alecu
- *Department of Medicine, Department of Biochemistry and Molecular Biology, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA; and Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Daniela Ernst
- *Department of Medicine, Department of Biochemistry and Molecular Biology, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA; and Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Drew Kornhauser
- *Department of Medicine, Department of Biochemistry and Molecular Biology, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA; and Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Thorsten Hornemann
- *Department of Medicine, Department of Biochemistry and Molecular Biology, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA; and Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Stefka Spassieva
- *Department of Medicine, Department of Biochemistry and Molecular Biology, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA; and Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Esaki K, Sayano T, Sonoda C, Akagi T, Suzuki T, Ogawa T, Okamoto M, Yoshikawa T, Hirabayashi Y, Furuya S. L-Serine Deficiency Elicits Intracellular Accumulation of Cytotoxic Deoxysphingolipids and Lipid Body Formation. J Biol Chem 2015; 290:14595-609. [PMID: 25903138 DOI: 10.1074/jbc.m114.603860] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Indexed: 12/18/2022] Open
Abstract
L-serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize L-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external L-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking D-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of L-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in L-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external L-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with L-serine but was potentiated by increasing the ratio of L-alanine to L-serine in the medium. Unlike with L-serine, depriving cells of external L-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, L-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of L-alanine to L-serine in cells and tissues lacking Phgdh, and de novo synthesis of L-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited.
Collapse
Affiliation(s)
- Kayoko Esaki
- From the Laboratories of Functional Genomics and Metabolism and the Laboratories for Molecular Psychiatry and Molecular Membrane Neuroscience
| | - Tomoko Sayano
- From the Laboratories of Functional Genomics and Metabolism and Molecular Membrane Neuroscience
| | - Chiaki Sonoda
- From the Laboratories of Functional Genomics and Metabolism and
| | - Takumi Akagi
- Support Unit for Neuromorphological Analysis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, and
| | - Takeshi Suzuki
- Synthetic Biology, Division of Systems Bioengineering, Graduate School of Bioresource and Bioenvironmental Sciences, and
| | - Takuya Ogawa
- the Department of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi 324-8501, Japan
| | - Masahiro Okamoto
- Synthetic Biology, Division of Systems Bioengineering, Graduate School of Bioresource and Bioenvironmental Sciences, and Bio-Architecture Center, Kyushu University, Fukuoka 812-8581
| | | | | | - Shigeki Furuya
- From the Laboratories of Functional Genomics and Metabolism and Bio-Architecture Center, Kyushu University, Fukuoka 812-8581,
| |
Collapse
|
22
|
Dasyam N, Munkacsi AB, Fadzilah NH, Senanayake DS, O'Toole RF, Keyzers RA. Identification and bioactivity of 3-epi-xestoaminol C isolated from the New Zealand brown alga Xiphophora chondrophylla. JOURNAL OF NATURAL PRODUCTS 2014; 77:1519-23. [PMID: 24856903 DOI: 10.1021/np500171z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report here the bioassay-guided isolation of a new 1-deoxysphingoid, 3-epi-xestoaminol C (1), isolated from the New Zealand brown alga Xiphophora chondrophylla. This is the first report of a 1-deoxysphingoid from a brown alga. We describe the isolation and full structure elucidation of this compound, including its absolute configuration, along with its bioactivity against mycobacteria and mammalian cell lines and preliminary mechanism of action studies using yeast chemical genomics.
Collapse
Affiliation(s)
- Nathaniel Dasyam
- Center for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , PO Box 600, Kelburn, Wellington 6140, New Zealand
| | | | | | | | | | | |
Collapse
|
23
|
Abad JL, Nieves I, Rayo P, Casas J, Fabriàs G, Delgado A. Straightforward access to spisulosine and 4,5-dehydrospisulosine stereoisomers: probes for profiling ceramide synthase activities in intact cells. J Org Chem 2013; 78:5858-66. [PMID: 23679346 DOI: 10.1021/jo400440z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stereoselective synthesis of spisulosine (ES285) and 4,5-dehydrospisulosine stereoisomers is described. Hydrozirconation of 1-pentadecyne with Schwartz reagent, followed by diastereocontrolled addition to L- or D-alaninal afforded the required 2-amino-1,3-diol framework. The resulting sphingoid bases revealed as excellent probes for the profiling of ceramide synthase activity in intact cells. Among the sphingoid bases described in this work, spisulosine (ES285), RBM1-77, and RBM1-73 were the most suitable ones because of their highest acylation rates. These molecules should prove useful to study the role of the different ceramide synthases and the resulting N-acyl (dihydro)ceramides in cell fate.
Collapse
Affiliation(s)
- José Luis Abad
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
24
|
Delgado A, Fabriàs G, Casas J, Abad JL. Natural products as platforms for the design of sphingolipid-related anticancer agents. Adv Cancer Res 2013; 117:237-81. [PMID: 23290782 DOI: 10.1016/b978-0-12-394274-6.00008-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Modulation of sphingolipid metabolism is a promising strategy for cancer therapy that has already opened innovative approaches for the development of pharmacological tools and rationally designed new drugs. On the other hand, natural products represent a classical and well-established source of chemical diversity that has guided medicinal chemists on the development of new chemical entities with potential therapeutic use. Based on these premises, the aim of this chapter is to provide the reader with a general overview of some of the most representative families of sphingolipid-related natural products that have been described in the recent literature as lead compounds for the design of new modulators of sphingolipid metabolism. Special emphasis is placed on the structural aspects of natural sphingoids and synthetic analogs that have found application as anticancer agents. In addition, their cellular targets and/or their mode of action are also considered.
Collapse
Affiliation(s)
- Antonio Delgado
- Spanish National Research Council, Consejo Superior de Investigaciones Científicas, Research Unit on Bioactive Molecules, Jordi Girona 18-26, Barcelona, Spain.
| | | | | | | |
Collapse
|
25
|
Massard C, Salazar R, Armand JP, Majem M, Deutsch E, García M, Oaknin A, Fernández-García EM, Soto A, Soria JC. Phase I dose-escalating study of ES-285 given as a three-hour intravenous infusion every three weeks in patients with advanced malignant solid tumors. Invest New Drugs 2012; 30:2318-26. [DOI: 10.1007/s10637-011-9772-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/22/2011] [Indexed: 11/28/2022]
|
26
|
Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011; 111:6387-422. [PMID: 21942574 PMCID: PMC3191729 DOI: 10.1021/cr2002917] [Citation(s) in RCA: 554] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Alfred H Merrill
- School of Biology, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|
27
|
Malik G, Estéoule A, Retailleau P, Dauban P. Aziridines from intramolecular alkene aziridination of sulfamates: reactivity toward carbon nucleophiles. application to the synthesis of spisulosine and its fluoro analogue. J Org Chem 2011; 76:7438-48. [PMID: 21812488 DOI: 10.1021/jo201209x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Catalytic intramolecular alkene aziridination of sulfamate is an emerging methodology for the asymmetric synthesis of chiral functionalized amines involving the formation of bicyclic aziridines. This study demonstrates the ability of the latter to undergo ring-opening with various carbon nucleophiles: Grignard reagents, lithium salts of terminal alkynes, dithiane, malonate. These S(N)2-type reactions occur with high levels of regio- and chemoselectivity to generally afford seven-membered cyclic sulfamidates in good yields. Carbon nucleophiles have also been found to react with these sulfamidates provided that the sulfamate ester has been previously activated by introduction of a tosyl substituent on the NH group. The versatility of this strategy has been illustrated with the syntheses of spisulosine and its fluoro analogue.
Collapse
Affiliation(s)
- Guillaume Malik
- Centre de Recherche de Gif-sur-Yvette, Institut de Chimie des Substances Naturelles, UPR 2301 CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
28
|
Spisulosine (ES-285) given as a weekly three-hour intravenous infusion: results of a phase I dose-escalating study in patients with advanced solid malignancies. Cancer Chemother Pharmacol 2011; 68:1397-403. [DOI: 10.1007/s00280-011-1612-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/04/2011] [Indexed: 01/09/2023]
|
29
|
Symolon H, Bushnev A, Peng Q, Ramaraju H, Mays SG, Allegood JC, Pruett ST, Sullards MC, Dillehay DL, Liotta DC, Merrill AH. Enigmol: a novel sphingolipid analogue with anticancer activity against cancer cell lines and in vivo models for intestinal and prostate cancer. Mol Cancer Ther 2011; 10:648-57. [PMID: 21398423 DOI: 10.1158/1535-7163.mct-10-0754] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sphingoid bases are cytotoxic for many cancer cell lines and are thought to contribute to suppression of intestinal tumorigenesis in vivo by ingested sphingolipids. This study explored the behavior of a sphingoid base analogue, (2S,3S,5S)-2-amino-3,5-dihydroxyoctadecane (Enigmol), that cannot be phosphorylated by sphingosine kinases and is slowly N-acylated and therefore is more persistent than natural sphingoid bases. Enigmol had potential anticancer activity in a National Cancer Institute (NCI-60) cell line screen and was confirmed to be more cytotoxic and persistent than naturally occurring sphingoid bases using HT29 cells, a colon cancer cell line. Although the molecular targets of sphingoid bases are not well delineated, Enigmol shared one of the mechanisms that has been found for naturally occurring sphingoid bases: normalization of the aberrant accumulation of β-catenin in the nucleus and cytoplasm of colon cancer cells due to defect(s) in the adenomatous polyposis coli (APC)/β-catenin regulatory system. Enigmol also had antitumor efficacy when administered orally to Min mice, a mouse model with a truncated APC gene product (C57Bl/6J(Min/+) mice), decreasing the number of intestinal tumors by half at 0.025% of the diet (w/w), with no evidence of host toxicity until higher dosages. Enigmol was also tested against the prostate cancer cell lines DU145 and PC-3 in nude mouse xenografts and suppressed tumor growth in both. Thus, Enigmol represents a novel category of sphingoid base analogue that is orally bioavailable and has the potential to be effective against multiple types of cancer.
Collapse
Affiliation(s)
- Holly Symolon
- School of Biology, 310 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rives A, Baudoin-Dehoux C, Saffon N, Andrieu-Abadie N, Génisson Y. Asymmetric synthesis and cytotoxic activity of isomeric phytosphingosine derivatives. Org Biomol Chem 2011; 9:8163-70. [DOI: 10.1039/c1ob06195j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Vilar E, Grünwald V, Schöffski P, Singer H, Salazar R, Iglesias JL, Casado E, Cullell-Young M, Baselga J, Tabernero J. A phase I dose-escalating study of ES-285, a marine sphingolipid-derived compound, with repeat dose administration in patients with advanced solid tumors. Invest New Drugs 2010; 30:299-305. [DOI: 10.1007/s10637-010-9529-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
|
32
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2009. [DOI: 10.1002/pds.1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
|