1
|
Tang X, Hu X, Wen Y, Min L. Progressive insights into fibrosarcoma diagnosis and treatment: leveraging fusion genes for advancements. Front Cell Dev Biol 2023; 11:1284428. [PMID: 37920823 PMCID: PMC10618559 DOI: 10.3389/fcell.2023.1284428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Fibrosarcoma, originating from fibroblast cells, represents a malignant neoplasm that can manifest across all genders and age groups. Fusion genes are notably prevalent within the landscape of human cancers, particularly within the subtypes of fibrosarcoma, where they exert substantial driving forces in tumorigenesis. Many fusion genes underlie the pathogenic mechanisms triggering the onset of this disease. Moreover, a close association emerges between the spectrum of fusion gene types and the phenotypic expression of fibrosarcoma, endowing fusion genes not only as promising diagnostic indicators for fibrosarcoma but also as pivotal foundations for its subcategorization. Concurrently, an increasing number of chimeric proteins encoded by fusion genes have been substantiated as specific targets for treating fibrosarcoma, consequently significantly enhancing patient prognoses. This review comprehensively delineates the mechanisms behind fusion gene formation in fibrosarcoma, the lineage of fusion genes, methodologies employed in detecting fusion genes within fibrosarcoma, and the prospects of targeted therapeutic interventions driven by fusion genes within the fibrosarcoma domain.
Collapse
Affiliation(s)
- Xiaodi Tang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, China
| | - Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, China
| | - Yang Wen
- Department of Orthopedics, Zigong Fourth People’s Hospital, Zigong, China
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Panicker S, Chengizkhan G, Gor R, Ramachandran I, Ramalingam S. Exploring the Relationship between Fusion Genes and MicroRNAs in Cancer. Cells 2023; 12:2467. [PMID: 37887311 PMCID: PMC10605240 DOI: 10.3390/cells12202467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Fusion genes are key cancer driver genes that can be used as potential drug targets in precision therapies, and they can also serve as accurate diagnostic and prognostic biomarkers. The fusion genes can cause microRNA (miRNA/miR) aberrations in many types of cancer. Nevertheless, whether fusion genes incite miRNA aberrations as one of their many critical oncogenic functionalities for driving carcinogenesis needs further investigation. Recent discoveries of miRNA genes that are present within the regions of genomic rearrangements that initiate fusion gene-based intronic miRNA dysregulation have brought the fusion genes into the limelight and revealed their unexplored potential in the field of cancer biology. Fusion gene-based 'promoter-switch' event aberrantly activate the miRNA-related upstream regulatory signals, while fusion-based coding region alterations disrupt the original miRNA coding loci. Fusion genes can potentially regulate the miRNA aberrations regardless of the protein-coding capability of the resultant fusion transcript. Studies on out-of-frame fusion and nonrecurrent fusion genes that cause miRNA dysregulation have attracted the attention of researchers on fusion genes from an oncological perspective and therefore could have potential implications in cancer therapies. This review will provide insights into the role of fusion genes and miRNAs, and their possible interrelationships in cancer.
Collapse
Affiliation(s)
- Saurav Panicker
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India; (S.P.); (R.G.)
| | - Gautham Chengizkhan
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, Tamil Nadu, India;
| | - Ravi Gor
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India; (S.P.); (R.G.)
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, Tamil Nadu, India;
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India; (S.P.); (R.G.)
| |
Collapse
|
3
|
Capuz A, Osien S, Karnoub MA, Aboulouard S, Laurent E, Coyaud E, Raffo-Romero A, Duhamel M, Bonnefond A, Derhourhi M, Trerotola M, El Yazidi-Belkoura I, Devos D, Zilkova M, Kobeissy F, Vanden Abeele F, Fournier I, Cizkova D, Rodet F, Salzet M. Astrocytes express aberrant immunoglobulins as putative gatekeeper of astrocytes to neuronal progenitor conversion. Cell Death Dis 2023; 14:237. [PMID: 37015912 PMCID: PMC10073301 DOI: 10.1038/s41419-023-05737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Using multi-omics analyses including RNAseq, RT-PCR, RACE-PCR, and shotgun proteomic with enrichment strategies, we demonstrated that newborn rat astrocytes produce neural immunoglobulin constant and variable heavy chains as well as light chains. However, their edification is different from the ones found in B cells and they resemble aberrant immunoglobulins observed in several cancers. Moreover, the complete enzymatic V(D)J recombination complex has also been identified in astrocytes. In addition, the constant heavy chain is also present in adult rat astrocytes, whereas in primary astrocytes from human fetus we identified constant and variable kappa chains as well as the substitution lambda chains known to be involved in pre-B cells. To gather insights into the function of these neural IgGs, CRISPR-Cas9 of IgG2B constant heavy chain encoding gene (Igh6), IgG2B overexpression, proximal labeling of rat astrocytes IgG2B and targets identification through 2D gels were performed. In Igh6 KO astrocytes, overrepresentation of factors involved in hematopoietic cells, neural stem cells, and the regulation of neuritogenesis have been identified. Moreover, overexpression of IgG2B in astrocytes induces the CRTC1-CREB-BDNF signaling pathway known to be involved in gliogenesis, whereas Igh6 KO triggers the BMP/YAP1/TEAD3 pathway activated in astrocytes dedifferentiation into neural progenitors. Proximal labeling experiments revealed that IgG2B is N-glycosylated by the OST complex, addressed to vesicle membranes containing the ATPase complex, and behaves partially like CD98hc through its association with LAT1. These experiments also suggest that proximal IgG2B-LAT1 interaction occurs concomitantly with MACO-1 and C2CD2L, at the heart of a potentially novel cell signaling platform. Finally, we demonstrated that these chains are synthesized individually and associated to recognize specific targets. Indeed, intermediate filaments Eif4a2 and Pdia6 involved in astrocyte fate constitute targets for these neural IgGs. Taken together, we hypothese that neural aberrant IgG chains may act as gatekeepers of astrocytes' fate.
Collapse
Affiliation(s)
- Alice Capuz
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Sylvain Osien
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Mélodie Anne Karnoub
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Soulaimane Aboulouard
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Estelle Laurent
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Etienne Coyaud
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Antonella Raffo-Romero
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Marie Duhamel
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Mehdi Derhourhi
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University 'G. D'Annunzio', Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Ikram El Yazidi-Belkoura
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France
| | - David Devos
- Université de Lille, INSERM, U1172, CHU-Lille, Lille Neuroscience Cognition Research Centre, 1 place de Verdun, 59000, Lille, France
| | - Monika Zilkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510, Bratislava, Slovakia
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fabien Vanden Abeele
- Université de Lille, INSERM U1003, Laboratory of Cell Physiology, 59655, Villeneuve d'Ascq, France
| | - Isabelle Fournier
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
- Institut Universitaire de France, 75005, Paris, France
| | - Dasa Cizkova
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Franck Rodet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France.
| | - Michel Salzet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France.
- Institut Universitaire de France, 75005, Paris, France.
| |
Collapse
|
4
|
Molecular Targets in Salivary Gland Cancers: A Comprehensive Genomic Analysis of 118 Mucoepidermoid Carcinoma Tumors. Biomedicines 2023; 11:biomedicines11020519. [PMID: 36831055 PMCID: PMC9953533 DOI: 10.3390/biomedicines11020519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
INTRODUCTION Salivary gland carcinomas (SGC) are histologically diverse cancers and next-generation sequencing (NGS) to identify key molecular targets is an important aspect in the management of advanced cases. METHODS DNA was extracted from paraffin embedded tissues of advanced SGC and comprehensive genomic profiling (CGP) was carried out to evaluate for base substitutions, short insertions, deletions, copy number changes, gene fusions and rearrangements. Tumor mutation burden (TMB) was calculated on approximately 1.25 Mb. Some 324 genes in the FoundationOne CDX panel were analyzed. RESULTS Mucoepidermoid carcinoma (MECa) mutations were assessed. CDKN2A and CDKN2B GA were common in mucoepidermoid carcinoma (MECa) (52.5 and 30.5%). PIK3CA was also common in MECa (16.9%). ERBB2 amplification/short variants (amp/SV) were found in MECa (5.9/0%). HRAS GA was common in MECa (14.4%) as well. Other targets, including BAP1, PTEN, and KRAS, were noted but had a low incidence. In terms of immunotherapy (IO)-predictive markers, TMB > 10 was more common in MECa (16.9%). PDL1 high was also seen in MECa (4.20%). CONCLUSION SGC are rare tumors with no FDA-approved treatment options. This large dataset reveals many opportunities for IO and targeted therapy contributing to the continuously increased precision in the selection of treatment for these patients.
Collapse
|
5
|
Stadermann A, Gamer M, Fieder J, Lindner B, Fehrmann S, Schmidt M, Schulz P, Gorr IH. Structural analysis of random transgene integration in CHO manufacturing cell lines by targeted sequencing. Biotechnol Bioeng 2021; 119:868-880. [PMID: 34935125 PMCID: PMC10138747 DOI: 10.1002/bit.28012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Genetically modified CHO cell lines are traditionally used for the production of biopharmaceuticals. However, an in-depth molecular understanding of the mechanism and exact position of transgene integration into the genome of pharmaceutical manufacturing cell lines is still scarce. Next Generation Sequencing (NGS) holds great promise for strongly facilitating the understanding of CHO cell factories, as it has matured to a powerful and affordable technology for cellular genotype analysis. Targeted Locus Amplification (TLA) combined with NGS allows for robust detection of genomic positions of transgene integration and structural genomic changes occurring upon stable integration of expression vectors. TLA was applied to generate comparative genomic fingerprints of several CHO production cell lines expressing different monoclonal antibodies. Moreover, high producers resulting from an additional round of transfection of an existing cell line (supertransfection) were analyzed to investigate the integrity and the number of integration sites. Our analyses enabled detailed genetic characterization of the integration regions with respect to the number of integrates and structural changes of the host cell's genome. Single integration sites per clone with concatenated transgene copies could be detected and were in some cases found to be associated with genomic rearrangements, deletions or translocations. Supertransfection resulted in an increase in titer associated with an additional integration site per clone. Based on the TLA fingerprints, CHO cell lines originating from the same mother clone could clearly be distinguished. Interestingly, two CHO cell lines originating from the same mother clone were shown to differ genetically and phenotypically despite of their identical TLA fingerprints. Taken together, TLA provides an accurate genetic characterization with respect to transgene integration sites compared to conventional methods and represents a valuable tool for a comprehensive evaluation of CHO production clones early in cell line development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Stadermann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Martin Gamer
- R&D Project Management NBEs, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Jürgen Fieder
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Steffen Fehrmann
- Genedata AG, Selector BU, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Ingo H Gorr
- Analytical Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| |
Collapse
|
6
|
Atkin ND, Raimer HM, Wang Z, Zang C, Wang YH. Assessing acute myeloid leukemia susceptibility in rearrangement-driven patients by DNA breakage at topoisomerase II and CCCTC-binding factor/cohesin binding sites. Genes Chromosomes Cancer 2021; 60:808-821. [PMID: 34405474 PMCID: PMC8511143 DOI: 10.1002/gcc.22993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022] Open
Abstract
An initiating DNA double strand break (DSB) event precedes the formation of cancer-driven chromosomal abnormalities, such as gene rearrangements. Therefore, measuring DNA breaks at rearrangement-participating regions can provide a unique tool to identify and characterize susceptible individuals. Here, we developed a highly sensitive and low-input DNA break mapping method, the first of its kind for patient samples. We then measured genome-wide DNA breakage in normal cells of acute myeloid leukemia (AML) patients with KMT2A (previously MLL) rearrangements, compared to that of nonfusion AML individuals, as a means to evaluate individual susceptibility to gene rearrangements. DNA breakage at the KMT2A gene region was significantly greater in fusion-driven remission individuals, as compared to nonfusion individuals. Moreover, we identified select topoisomerase II (TOP2)-sensitive and CCCTC-binding factor (CTCF)/cohesin-binding sites with preferential DNA breakage in fusion-driven patients. Importantly, measuring DSBs at these sites, in addition to the KMT2A gene region, provided greater predictive power when assessing individual break susceptibility. We also demonstrated that low-dose etoposide exposure further elevated DNA breakage at these regions in fusion-driven AML patients, but not in nonfusion patients, indicating that these sites are preferentially sensitive to TOP2 activity in fusion-driven AML patients. These results support that mapping of DSBs in patients enables discovery of novel break-prone regions and monitoring of individuals susceptible to chromosomal abnormalities, and thus cancer. This will build the foundation for early detection of cancer-susceptible individuals, as well as those preferentially susceptible to therapy-related malignancies caused by treatment with TOP2 poisons.
Collapse
MESH Headings
- Binding Sites/genetics
- CCCTC-Binding Factor/blood
- CCCTC-Binding Factor/genetics
- Cell Cycle Proteins/blood
- Cell Cycle Proteins/genetics
- Chondroitin Sulfate Proteoglycans/blood
- Chondroitin Sulfate Proteoglycans/genetics
- Chromosomal Proteins, Non-Histone/blood
- Chromosomal Proteins, Non-Histone/genetics
- Chromosome Aberrations
- DNA Breaks, Double-Stranded/drug effects
- DNA Repair/genetics
- DNA Topoisomerases, Type II/blood
- DNA Topoisomerases, Type II/genetics
- DNA-Binding Proteins/blood
- DNA-Binding Proteins/genetics
- Etoposide/pharmacology
- Female
- Gene Rearrangement/genetics
- Genome, Human/genetics
- HeLa Cells
- Histone-Lysine N-Methyltransferase/blood
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Myeloid-Lymphoid Leukemia Protein/blood
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Poly-ADP-Ribose Binding Proteins/blood
- Poly-ADP-Ribose Binding Proteins/genetics
- Cohesins
Collapse
Affiliation(s)
- Naomi D. Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Heather M. Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0733, USA
| |
Collapse
|
7
|
Stodola TJ, Chi YI, De Assuncao TM, Leverence EN, Tripathi S, Dsouza NR, Mathison AJ, Volkman BF, Smith BC, Lomberk G, Zimmermann MT, Urrutia R. Computational modeling reveals key molecular properties and dynamic behavior of disruptor of telomeric silencing 1-like (DOT1L) and partnering complexes involved in leukemogenesis. Proteins 2021; 90:282-298. [PMID: 34414607 PMCID: PMC8671179 DOI: 10.1002/prot.26219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
Disruptor of telomeric silencing 1‐like (DOT1L) is the only non‐SET domain histone lysine methyltransferase (KMT) and writer of H3K79 methylation on nucleosomes marked by H2B ubiquitination. DOT1L has elicited significant attention because of its interaction or fusion with members of the AF protein family in blood cell biology and leukemogenic transformation. Here, our goal was to extend previous structural information by performing a robust molecular dynamic study of DOT1L and its leukemogenic partners combined with mutational analysis. We show that statically and dynamically, D161, G163, E186, and F223 make frequent time‐dependent interactions with SAM, while additional residues T139, K187, and N241 interact with SAM only under dynamics. Dynamics models reveal DOT1L, SAM, and H4 moving as one and show that more than twice the number of DOT1L residues interacts with these partners, relative to the static structure. Mutational analyses indicate that six of these residues are intolerant to substitution. We describe the dynamic behavior of DOT1L interacting with AF10 and AF9. Studies on the dynamics of a heterotrimeric complex of DOT1L1‐AF10 illuminated describe coordinated motions that impact the relative position of the DOT1L HMT domain to the nucleosome. The molecular motions of the DOT1L–AF9 complex are less extensive and highly dynamic, resembling a swivel‐like mechanics. Through molecular dynamics and mutational analysis, we extend the knowledge previous provided by static measurements. These results are important to consider when describing the biochemical properties of DOT1L, under normal and in disease conditions, as well as for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Timothy J Stodola
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Young-In Chi
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Thiago M De Assuncao
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Elise N Leverence
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Swarnendu Tripathi
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nikita R Dsouza
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gwen Lomberk
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael T Zimmermann
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Iyer J, Hariharan A, Cao UMN, Mai CTT, Wang A, Khayambashi P, Nguyen BH, Safi L, Tran SD. An Overview on the Histogenesis and Morphogenesis of Salivary Gland Neoplasms and Evolving Diagnostic Approaches. Cancers (Basel) 2021; 13:cancers13153910. [PMID: 34359811 PMCID: PMC8345412 DOI: 10.3390/cancers13153910] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Diagnosing salivary gland neoplasms (SGN) remain a challenge, given their underlying biological nature and overlapping features. Evolving techniques in molecular pathology have uncovered genetic mutations resulting in these tumors. This review delves into the molecular etiopatho-genesis of SGN, highlighting advanced diagnostic protocols that may facilitate the identification and therapy of a variety of SGN. Abstract Salivary gland neoplasms (SGN) remain a diagnostic dilemma due to their heterogenic complex behavior. Their diverse histomorphological appearance is attributed to the underlying cellular mechanisms and differentiation into various histopathological subtypes with overlapping fea-tures. Diagnostic tools such as fine needle aspiration biopsy, computerized tomography, magnetic resonance imaging, and positron emission tomography help evaluate the structure and assess the staging of SGN. Advances in molecular pathology have uncovered genetic patterns and oncogenes by immunohistochemistry, fluorescent in situ hybridization, and next–generation sequencing, that may potentially contribute to innovating diagnostic approaches in identifying various SGN. Surgical resection is the principal treatment for most SGN. Other modalities such as radiotherapy, chemotherapy, targeted therapy (agents like tyrosine kinase inhibitors, monoclonal antibodies, and proteasome inhibitors), and potential hormone therapy may be applied, depending on the clinical behaviors, histopathologic grading, tumor stage and location, and the extent of tissue invasion. This review delves into the molecular pathways of salivary gland tumorigenesis, highlighting recent diagnostic protocols that may facilitate the identification and management of SGN.
Collapse
Affiliation(s)
- Janaki Iyer
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (J.I.); (A.H.); (U.M.N.C.); (C.T.T.M.); (A.W.); (P.K.); (L.S.)
| | - Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (J.I.); (A.H.); (U.M.N.C.); (C.T.T.M.); (A.W.); (P.K.); (L.S.)
| | - Uyen Minh Nha Cao
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (J.I.); (A.H.); (U.M.N.C.); (C.T.T.M.); (A.W.); (P.K.); (L.S.)
- Department of Orthodontics, Faculty of Dentistry, Ho Chi Minh University of Medicine and Pharmacy, Ho Chi Minh City 700000, Vietnam
| | - Crystal To Tam Mai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (J.I.); (A.H.); (U.M.N.C.); (C.T.T.M.); (A.W.); (P.K.); (L.S.)
| | - Athena Wang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (J.I.); (A.H.); (U.M.N.C.); (C.T.T.M.); (A.W.); (P.K.); (L.S.)
| | - Parisa Khayambashi
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (J.I.); (A.H.); (U.M.N.C.); (C.T.T.M.); (A.W.); (P.K.); (L.S.)
| | | | - Lydia Safi
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (J.I.); (A.H.); (U.M.N.C.); (C.T.T.M.); (A.W.); (P.K.); (L.S.)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (J.I.); (A.H.); (U.M.N.C.); (C.T.T.M.); (A.W.); (P.K.); (L.S.)
- Correspondence:
| |
Collapse
|
9
|
Chen Z, Ni W, Li JL, Lin S, Zhou X, Sun Y, Li JW, Leon ME, Hurtado MD, Zolotukhin S, Liu C, Lu J, Griffin JD, Kaye FJ, Wu L. The CRTC1-MAML2 fusion is the major oncogenic driver in mucoepidermoid carcinoma. JCI Insight 2021; 6:139497. [PMID: 33830080 PMCID: PMC8119194 DOI: 10.1172/jci.insight.139497] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
No effective systemic treatment is available for patients with unresectable, recurrent, or metastatic mucoepidermoid carcinoma (MEC), the most common salivary gland malignancy. MEC is frequently associated with a t(11;19)(q14-21;p12-13) translocation that creates a CRTC1-MAML2 fusion gene. The CRTC1-MAML2 fusion exhibited transforming activity in vitro; however, whether it serves as an oncogenic driver for MEC establishment and maintenance in vivo remains unknown. Here, we show that doxycycline-induced CRTC1-MAML2 knockdown blocked the growth of established MEC xenografts, validating CRTC1-MAML2 as a therapeutic target. We further generated a conditional transgenic mouse model and observed that Cre-induced CRTC1-MAML2 expression caused 100% penetrant formation of salivary gland tumors resembling histological and molecular characteristics of human MEC. Molecular analysis of MEC tumors revealed altered p16-CDK4/6-RB pathway activity as a potential cooperating event in promoting CRTC1-MAML2–induced tumorigenesis. Cotargeting of aberrant p16-CDK4/6-RB signaling and CRTC1-MAML2 fusion–activated AREG/EGFR signaling with the respective CDK4/6 inhibitor Palbociclib and EGFR inhibitor Erlotinib produced enhanced antitumor responses in vitro and in vivo. Collectively, this study provides direct evidence for CRTC1-MAML2 as a key driver for MEC development and maintenance and identifies a potentially novel combination therapy with FDA-approved EGFR and CDK4/6 inhibitors as a potential viable strategy for patients with MEC.
Collapse
Affiliation(s)
- Zirong Chen
- Department of Molecular Genetics and Microbiology.,UF Health Cancer Center, and
| | - Wei Ni
- Department of Molecular Genetics and Microbiology.,UF Health Cancer Center, and.,Genetics & Genomics Graduate Program, UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Shuibin Lin
- Department of Molecular Genetics and Microbiology.,UF Health Cancer Center, and
| | - Xin Zhou
- Department of Molecular Genetics and Microbiology.,UF Health Cancer Center, and
| | - Yuping Sun
- Department of Pathology, Immunology and Laboratory Medicine
| | - Jennifer W Li
- Department of Biochemistry and Molecular Biology, and.,Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Marino E Leon
- Department of Pathology, Immunology and Laboratory Medicine
| | - Maria D Hurtado
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic Health System La Crosse, Wisconsin, USA, and.,Mayo Clinic, Rochester, Minnesota, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale New Haven Hospital, New Haven, Connecticut, USA
| | - Jianrong Lu
- UF Health Cancer Center, and.,Department of Biochemistry and Molecular Biology, and
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Frederic J Kaye
- UF Health Cancer Center, and.,Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology.,UF Health Cancer Center, and.,Genetics & Genomics Graduate Program, UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
10
|
Molecular Pathology of Salivary Gland Neoplasms: Diagnostic, Prognostic, and Predictive Perspective. Adv Anat Pathol 2021; 28:81-93. [PMID: 33405400 DOI: 10.1097/pap.0000000000000291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Salivary gland neoplasms are an uncommon and widely heterogeneous group of tumors. In recent years, there has been considerable progress in efforts to reveal the molecular landscape of these tumors, although it is still limited and appears to be only the tip of the iceberg. Genomic aberrations, especially specific chromosomal rearrangements including CRTC1-MAML2 and CRTC3-MAML2 in mucoepidermoid carcinoma, MYB-NFIB and MYBL1-NFIB fusions in adenoid cystic carcinoma, PLAG1 and HMGA2 alterations in pleomorphic adenoma and carcinoma ex pleomorphic adenoma, ETV6-NTRK3 and ETV6-RET in secretory carcinoma, EWSR1-ATF1 and EWSR1-CREM in clear cell carcinoma, provide new insights into the molecular pathogenesis of various salivary gland neoplasms and help to better classify them. These genetic aberrations primarily serve as diagnostic tools in salivary gland tumor diagnosis; however, some also have promise as prognostic or predictive biomarkers. This review summarizes the latest developments in molecular pathology of salivary gland tumors with a focus on distinctive molecular characteristics.
Collapse
|
11
|
Li Y, Tao T, Du L, Zhu X. Three-dimensional genome: developmental technologies and applications in precision medicine. J Hum Genet 2020; 65:497-511. [PMID: 32152365 DOI: 10.1038/s10038-020-0737-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022]
Abstract
In the 20th century, our familiar structure of DNA was the double helix. Due to technical limitations, we do not have a good way to understand the finer structure of the genome, let alone its transcriptional regulation. Until the advent of 3C technologies, we were no longer blind to this one. Three-dimensional (3D) genomics is a new subject, which mainly studies the 3D structure and transcriptional regulation of eukaryotic genomes. Now, this field mainly has Hi-C series and CHIA-PET series technologies. Through 3D genomics, we can understand the basic structure of DNA, understand the growth and development of organisms and the occurrence of diseases, so as to promote human medical and health undertakings. The review introduces the main research techniques of 3D genomics and their characteristics, the latest development of 3D genome structure, the relationship between diseases and 3D genome structure, the applications of 3D genome in precision medicine, and the development of the 4D nucleome project.
Collapse
Affiliation(s)
- Yingqi Li
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, 255000, China
| | - Likun Du
- First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| | - Xiao Zhu
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
12
|
Dong L, Wang X, Wang S, Du M, Niu C, Yang J, Li L, Zhang G, Fu B, Gao Y, Wang J. Interlaboratory assessment of droplet digital PCR for quantification of BRAF V600E mutation using a novel DNA reference material. Talanta 2019; 207:120293. [PMID: 31594564 DOI: 10.1016/j.talanta.2019.120293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Droplet digital PCR (ddPCR) has attracted much attention in the detection of genetic signatures of cancer present at low levels in circulating tumor DNA (ctDNA) in blood. A growing number of laboratory-developed liquid biopsy tests based on such technology have become commercially available for clinical settings. To obtain consistent and comparable results, an international standard is necessary for validation of the analytical performance. In this study, a novel and SI-traceable "ctDNA" reference material (RM) carrying BRAF V600E was prepared by gravimetrically mixing a 152 bp PCR amplicon and sonicated wild-type genomic DNA. The ddPCR performance was evaluated by analyzing serial "ctDNA" dilutions using a competitive MGB assay. The mutant frequency concordance (k) between ddPCR and the gravimetrical value was 1.03 in the range from 53.9% to 0.1%. The limit of blank (LoB), detection (LoD) and quantification (LoQ) of ddPCR assay were determined to be 0.01%, 0.02% and 0.1%, respectively. Results from the interlaboratory study, using challenging low levels of BRAF V600E ctDNA RMs, demonstrated that the participating laboratories had the appropriate technical competency to perform accurate ddPCR-based low level of ratio measurements. However, a systematic error caused by uncorrected droplet volume in Naica Crystal ddPCR platform was found by using the ctDNA RM. Between-laboratory consistency in copy number measurement was greatly improved when a correct droplet volume was applied for the ddPCR measurement by using the ctDNA RM. This confirms that the "ctDNA" RM is fit for the validation of ddPCR systems for ctDNA quantification. This would also support translation of tests for circulating tumor DNA by ddPCR into routine use.
Collapse
Affiliation(s)
- Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China.
| | - Xia Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Shangjun Wang
- Nanjing Institute of Measurement and Testing Technology, Nanjing, 210049, PR China
| | - Meihong Du
- Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing Center for Physical & Chemical Analysis, Beijing, 100093, PR China
| | - Chunyan Niu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Jiayi Yang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Ganlin Zhang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Boqiang Fu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Jing Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China.
| |
Collapse
|
13
|
Ding B, Yan L, Zhang Y, Wang Z, Zhang Y, Xia D, Ye Z, Xu H. Analysis of the role of mutations in the KMT2D histone lysine methyltransferase in bladder cancer. FEBS Open Bio 2019; 9:693-706. [PMID: 30984543 PMCID: PMC6443872 DOI: 10.1002/2211-5463.12600] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
Histone lysine methyltransferases (HMT) comprise a subclass of epigenetic regulators; dysregulation of these enzymes affects gene expression, which may lead to tumorigenesis. Here, we performed an integrated analysis of 50 HMTs in bladder cancer and found intrinsic links between copy number alterations, mutations, gene expression levels, and clinical outcomes. Through integrative analysis, we identified six HMT genes (PRDM9,ASH1L,SETD3,SETD5,WHSC1L1, and KMT2D) that may play a key role in the development and progression of bladder cancer. Of these six HMTs, histone lysine N‐methyltransferase 2D (KMT2D) exhibited the highest mutation rate in bladder cancer. Our comparison of the mRNA and miRNA expression profiles of mutated and wild‐type KMT2D suggested that two signaling pathways (FOX1–miR‐1224‐5p–DLK1 and HIF/GATA5–miR‐133a‐3p–DRD5) may mediate the tumor suppressive effect of the KMT2D mutation. In summary, our findings indicate that mutations in HMT genes, especially KMT2D mutation, may play a role in the development of bladder cancer.
Collapse
Affiliation(s)
- Beichen Ding
- Department of Urology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Urology of Hubei Province Wuhan China
| | - Libin Yan
- Department of Urology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Urology of Hubei Province Wuhan China
| | - Yucong Zhang
- Department of Urology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Urology of Hubei Province Wuhan China
| | - Zhize Wang
- Department of Urology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Urology of Hubei Province Wuhan China
| | - Yangjun Zhang
- Department of Urology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Urology of Hubei Province Wuhan China
| | - Ding Xia
- Department of Urology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Urology of Hubei Province Wuhan China
| | - Zhangqun Ye
- Department of Urology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Urology of Hubei Province Wuhan China
| | - Hua Xu
- Department of Urology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Urology of Hubei Province Wuhan China
| |
Collapse
|
14
|
Abdin D, Rump A, Tzschach A, Sarnow K, Schröck E, Hackmann K, Di Donato N. PUF60-SCRIB fusion transcript in a patient with 8q24.3 microdeletion and atypical Verheij syndrome. Eur J Med Genet 2018; 62:103587. [PMID: 30472487 DOI: 10.1016/j.ejmg.2018.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/04/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
Expression of the fusion genes is considered to be an important mechanism of tumorigenesis. However it is hardly ever discussed in relation to the neurodevelopmental disorders. Here we report on an 18-years-old female patient with 13.1 kb deletion of 8q24.3 fusing the 5'-portion of SCRIB with the 3'-portion of PUF60 and presenting with borderline intellectual disability, eye coloboma, short stature, scoliosis, heart defects and interestingly postnatal megalencephaly, in contrast to microcephaly, which is usually associated with 8q24.3 deletion (Verheij syndrome). Using next generation sequencing we mapped the breakpoints at nucleotide resolution and showed that the deletion preserved the reading frame. In contrast to the laborious techniques previously used for the precise mapping of deletion breakpoints, our approach identified an accurate interval very rapidly. We demonstrated the expression of the PUF60-SCRIB fusion gene in patient's cells and suggest that the fusion transcript might be a cause of the atypical clinical presentation.
Collapse
Affiliation(s)
- D Abdin
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany; Human Cytogenetics Department, National Research Centre, Cairo, Egypt.
| | - A Rump
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - A Tzschach
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - K Sarnow
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - E Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - K Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - N Di Donato
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany.
| |
Collapse
|
15
|
Advances in chromosomal translocations and fusion genes in sarcomas and potential therapeutic applications. Cancer Treat Rev 2017; 63:61-70. [PMID: 29247978 DOI: 10.1016/j.ctrv.2017.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Abstract
Chromosomal translocations and fusion genes are very common in human cancer especially in subtypes of sarcomas, such as rhabdomyosarcoma, Ewing's sarcoma, synovial sarcoma and liposarcoma. The discovery of novel chromosomal translocations and fusion genes in different tumors are due to the advancement of next-generation sequencing (NGS) technologies such as whole genome sequencing. Recently, many novel chromosomal translocations and gene fusions have been identified in different types of sarcoma through NGS approaches. In addition to previously known sarcoma fusion genes, these novel specific fusion genes and associated molecular events represent important targets for novel therapeutic approaches in the treatment of sarcomas. This review focuses on recent advances in chromosomal translocations and fusion genes in sarcomas and their potential therapeutic applications in the treatment of sarcomas.
Collapse
|
16
|
Novel chimeric transcript RRM2-c2orf48 promotes metastasis in nasopharyngeal carcinoma. Cell Death Dis 2017; 8:e3047. [PMID: 28906488 PMCID: PMC5636969 DOI: 10.1038/cddis.2017.402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022]
Abstract
Recently, chimeric transcripts have been found to be associated with the pathogenesis and poor prognosis of malignant tumors. Through our preliminary experiment, a novel chimeric transcript called chimeric transcript RRM2-c2orf48 was detected in C666-1, a classical cell line of human nasopharyngeal carcinoma (NPC). Therefore, the objective of this study was to demonstrate the existence and expression of novel chimeric transcript RRM2-c2orf48 and to explore the main functions and mechanisms of RRM2-c2orf48 in NPC. In this study, the expression of RRM2-c2orf48 was evaluated in NPC cells and specimens. Effects of RRM2-c2orf48 on migration and invasive capacities were detected invivo and vitro. Moreover, ways in which RRM2-c2orf48 increases the invasive capacities of NPC were explored. As a result, the presence of novel chimeric transcript RRM2-c2orf48 was confirmed in C666-1 by RT-PCR and sequencing, and it was a read-through between RRM2 and c2orf48 through the transcription of interchromosome. Higher expressions of novel RRM2-c2orf48 were detected in NPC cell lines and NPC tissue specimens relative to the controls and its expression was be statistically relevant to TNM staging. High level of RRM2-c2orf48 could increase the migration and invasive capacities of NPC cells, potentially as a result of NPC cell epithelial–mesenchymal transition. RRM2-c2orf48 could also enhance resistance of chemotherapy. In vivo, RRM2-c2orf48 could enhance lung and lymph node metastasis in nude mice. These results demonstrate that high levels of RRM2-c2orf48 expression may be a useful predictor of NPC patients of metastatic potency, presenting potential implications for NPC diagnosis and therapy.
Collapse
|
17
|
Harewood L, Kishore K, Eldridge MD, Wingett S, Pearson D, Schoenfelder S, Collins VP, Fraser P. Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours. Genome Biol 2017; 18:125. [PMID: 28655341 PMCID: PMC5488307 DOI: 10.1186/s13059-017-1253-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/08/2017] [Indexed: 12/02/2022] Open
Abstract
Chromosomal rearrangements occur constitutionally in the general population and somatically in the majority of cancers. Detection of balanced rearrangements, such as reciprocal translocations and inversions, is troublesome, which is particularly detrimental in oncology where rearrangements play diagnostic and prognostic roles. Here we describe the use of Hi-C as a tool for detection of both balanced and unbalanced chromosomal rearrangements in primary human tumour samples, with the potential to define chromosome breakpoints to bp resolution. In addition, we show copy number profiles can also be obtained from the same data, all at a significantly lower cost than standard sequencing approaches.
Collapse
Affiliation(s)
- Louise Harewood
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK. .,Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Cambridge, UK.
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Steven Wingett
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Danita Pearson
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | - V Peter Collins
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
18
|
Abstract
We report on three nonrelated patients with intellectual disability and CNVs that give rise to three new chimeric genes. All the genes forming these fusion transcripts may have an important role in central nervous system development and/or in gene expression regulation, and therefore not only their deletion or duplication but also the resulting chimeric gene may contribute to the phenotype of the patients. Deletions and duplications are usually pathogenic when affecting dose-sensitive genes. Alternatively, a chimeric gene may also be pathogenic by different gain-of-function mechanisms that are not restricted to dose-sensitive genes: the emergence of a new polypeptide that combines functional domains from two different genes, the deregulated expression of any coding sequence by the promoter region of a neighboring gene, and/or a putative dominant-negative effect due to the preservation of functional domains of partially truncated proteins. Fusion oncogenes are well known, but in other pathologies, the search for chimeric genes is disregarded. According to our findings, we hypothesize that the frequency of fusion transcripts may be much higher than suspected, and it should be taken into account in the array-CGH analyses of patients with intellectual disability.
Collapse
|
19
|
Hua K, Lin CH, Chen YL, Lin CH, Ping YH, Jou YS, Chen CF. Identification of novel cancer fusion genes using chromosome breakpoint screening. Oncol Rep 2017; 37:2101-2108. [DOI: 10.3892/or.2017.5492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/22/2016] [Indexed: 11/06/2022] Open
|
20
|
Willis RE. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment. Int J Mol Sci 2016; 17:ijms17091552. [PMID: 27649156 PMCID: PMC5037825 DOI: 10.3390/ijms17091552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis.
Collapse
Affiliation(s)
- Rudolph E Willis
- OncoStem Biotherapeutics LLC, 423 W 127th St., New York, NY 10027, USA.
| |
Collapse
|
21
|
RNA Sequencing and Genetic Disease. CURRENT GENETIC MEDICINE REPORTS 2016. [DOI: 10.1007/s40142-016-0098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Ishikawa R, Amano Y, Kawakami M, Sunohara M, Watanabe K, Kage H, Ohishi N, Yatomi Y, Nakajima J, Fukayama M, Nagase T, Takai D. The chimeric transcript RUNX1-GLRX5: a biomarker for good postoperative prognosis in Stage IA non-small-cell lung cancer. Jpn J Clin Oncol 2015; 46:185-9. [PMID: 26685324 PMCID: PMC4731000 DOI: 10.1093/jjco/hyv187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/15/2015] [Indexed: 11/14/2022] Open
Abstract
Stage IA non-small-cell lung cancer cases have been recognized as having a low risk of relapse; however, occasionally, relapse may occur. To predict clinical outcome in Stage IA non-small-cell lung cancer patients, we searched for chimeric transcripts that can be used as biomarkers and identified a novel chimeric transcript, RUNX1–GLRX5, comprising RUNX1, a transcription factor, and GLRX5. This chimera was detected in approximately half of the investigated Stage IA non-small-cell lung cancer patients (44/104 cases, 42.3%). Although there was no significant difference in the overall survival rate between RUNX1–GLRX5-positive and -negative cases (P = 0.088), a significantly lower relapse rate was observed in the RUNX1–GLRX5-positive cases (P = 0.039), indicating that this chimera can be used as a biomarker for good prognosis in Stage IA patients. Detection of the RUNX1–GLRX5 chimeric transcript may therefore be useful for the determination of a postoperative treatment plan for Stage IA non-small-cell lung cancer patients.
Collapse
Affiliation(s)
- Rie Ishikawa
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Yosuke Amano
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Masanori Kawakami
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Mitsuhiro Sunohara
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Kousuke Watanabe
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Hidenori Kage
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Nobuya Ohishi
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo
| | - Jun Nakajima
- Department of Cardiothoracic Surgery, The University of Tokyo Hospital, Tokyo
| | - Masashi Fukayama
- Department of Pathology, The University of Tokyo Hospital, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo
| | - Daiya Takai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo
| |
Collapse
|
23
|
Liu S, Tsai WH, Ding Y, Chen R, Fang Z, Huo Z, Kim S, Ma T, Chang TY, Priedigkeit NM, Lee AV, Luo J, Wang HW, Chung IF, Tseng GC. Comprehensive evaluation of fusion transcript detection algorithms and a meta-caller to combine top performing methods in paired-end RNA-seq data. Nucleic Acids Res 2015; 44:e47. [PMID: 26582927 PMCID: PMC4797269 DOI: 10.1093/nar/gkv1234] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/24/2015] [Indexed: 12/31/2022] Open
Abstract
Background: Fusion transcripts are formed by either fusion genes (DNA level) or trans-splicing events (RNA level). They have been recognized as a promising tool for diagnosing, subtyping and treating cancers. RNA-seq has become a precise and efficient standard for genome-wide screening of such aberration events. Many fusion transcript detection algorithms have been developed for paired-end RNA-seq data but their performance has not been comprehensively evaluated to guide practitioners. In this paper, we evaluated 15 popular algorithms by their precision and recall trade-off, accuracy of supporting reads and computational cost. We further combine top-performing methods for improved ensemble detection. Results: Fifteen fusion transcript detection tools were compared using three synthetic data sets under different coverage, read length, insert size and background noise, and three real data sets with selected experimental validations. No single method dominantly performed the best but SOAPfuse generally performed well, followed by FusionCatcher and JAFFA. We further demonstrated the potential of a meta-caller algorithm by combining top performing methods to re-prioritize candidate fusion transcripts with high confidence that can be followed by experimental validation. Conclusion: Our result provides insightful recommendations when applying individual tool or combining top performers to identify fusion transcript candidates.
Collapse
Affiliation(s)
- Silvia Liu
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Wei-Hsiang Tsai
- Institute of Biomedical Informatics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| | - Ying Ding
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Rui Chen
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA
| | - Zhou Fang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA
| | - Zhiguang Huo
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA
| | - SungHwan Kim
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA
| | - Tianzhou Ma
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA
| | - Ting-Yu Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| | - Nolan Michael Priedigkeit
- Molecular Pharmacology, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Adrian V Lee
- Magee-Women's Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Jianhua Luo
- Department of Pathology, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Hsei-Wei Wang
- Institute of Biomedical Informatics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan Institute of Microbiology and Immunology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan Center for Systems and Synthetic Biology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| | - I-Fang Chung
- Institute of Biomedical Informatics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan Center for Systems and Synthetic Biology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
| | - George C Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Daga A, Ansari A, Rawal R, Umrania V. Characterization of chromosomal translocation breakpoint sequences in solid tumours: "an in silico analysis". Open Med Inform J 2015; 9:1-8. [PMID: 25972994 PMCID: PMC4421838 DOI: 10.2174/1874431101509010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 01/07/2023] Open
Abstract
Chromosomal translocations that results in formation and activation of fusion oncogenes are observed in numerous solid malignancies since years back. Expression of fusion kinases in these cancers drives the initiation & progression that ultimately leads to tumour development and thus comes out to be clinically imperative in terms of diagnosis and treatment of cancer. Nonetheless, molecular mechanisms beneath these translocations remained unexplored consequently limiting our knowledge of carcinogenesis and hence is the current field where further research is required. The issue of prime focus is the precision with which the chromosomes breaks and reunites within genome. Characterization of Genomic sequences located at Breakpoint region may direct us towards the thorough understanding of mechanism leading to chromosomal rearrangement. A unique computational multi-parametric analysis was performed for characterization of genomic sequence within and around breakpoint region. This study turns out to be novel as it reveals the occurrence of Segmental Duplications flanking the breakpoints of all translocation. Breakpoint Islands were also investigated for the presence of other intricate genomic architecture and various physico-chemical parameters. Our study particularly highlights the probable role of SDs and specific genomic features in precise chromosomal breakage. Additionally, it pinpoints the potential features that may be significant for double-strand breaks leading to chromosomal rearrangements.
Collapse
Affiliation(s)
- Aditi Daga
- Department of Microbiology, MVM Science College, Saurashtra University, Rajkot, Gujarat, India
| | - Afzal Ansari
- BIT Virtual Institute of Bioinformatics (GCRI Node), GSBTM, Gandhinagar, Gujarat, India
| | - Rakesh Rawal
- Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Valentina Umrania
- Department of Microbiology, MVM Science College, Saurashtra University, Rajkot, Gujarat, India
| |
Collapse
|
25
|
Tucker JD. Reflections on the development and application of FISH whole chromosome painting. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:2-14. [DOI: 10.1016/j.mrrev.2014.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
|
26
|
Khunger M, Kumar U, Roy HK, Tiwari AK. Dysplasia and cancer screening in 21st century. APMIS 2014; 122:674-82. [DOI: 10.1111/apm.12283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/24/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Monica Khunger
- Department of Internal Medicine; All India Institute of Medical Sciences; New Delhi India
| | - Ujjwal Kumar
- Department of Internal Medicine; Michigan State University; East Lansing MI USA
| | - Hemant K. Roy
- Division of Gastroenterology, Department of Internal Medicine; Boston Medical Center; Boston MA USA
| | - Ashish K. Tiwari
- Department of Internal Medicine; Michigan State University; East Lansing MI USA
| |
Collapse
|
27
|
Zhang H, Lin W, Kannan K, Luo L, Li J, Chao PW, Wang Y, Chen YP, Gu J, Yen L. Aberrant chimeric RNA GOLM1-MAK10 encoding a secreted fusion protein as a molecular signature for human esophageal squamous cell carcinoma. Oncotarget 2013; 4:2135-43. [PMID: 24243830 PMCID: PMC3875775 DOI: 10.18632/oncotarget.1465] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is increasingly recognized that chimeric RNAs may exert a novel layer of cellular complexity that contributes to oncogenesis and cancer progression, and could be utilized as molecular biomarkers and therapeutic targets. To date yet no fusion chimeric RNAs have been identified in esophageal cancer, the 6th most frequent cause of cancer death in the world. While analyzing the expression of 32 recurrent cancer chimeric RNAs in esophageal squamous cell carcinoma (ESCC) from patients and cancer cell lines, we identified GOLM1-MAK10, as a highly cancer-enriched chimeric RNA in ESCC. In situ hybridization revealed that the expression of the chimera is largely restricted to cancer cells in patient tumors, and nearly undetectable in non-neoplastic esophageal tissue from normal subjects. The aberrant chimera closely correlated with histologic differentiation and lymph node metastasis. Furthermore, we demonstrate that chimera GOLM1-MAK10 encodes a secreted fusion protein. Mechanistic studies reveal that GOLM1-MAK10 is likely derived from transcription read-through/splicing rather than being generated from a fusion gene. Collectively, these findings provide novel insights into the molecular mechanism involved in ESCC and provide a novel potential target for future therapies. The secreted fusion protein translated from GOLM1-MAK10 could also serve as a unique protein signature detectable by standard non-invasive assays. These observations are critical as there is no clinically useful molecular signature available for detecting this deadly disease or monitoring the treatment response.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Integrative Oncology, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
- Tumor Tissue Bank, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Kalpana Kannan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liming Luo
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jing Li
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Pei-Wen Chao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yan Wang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yu-Ping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiang Gu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Laising Yen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
28
|
Abstract
The discovery of chromosomal rearrangements involving the anaplastic lymphoma kinase (ALK) gene in non-small cell lung cancer (NSCLC) has stimulated renewed interest in oncogenic fusions as potential therapeutic targets. Recently, genetic alterations in ROS1 and RET were identified in patients with NSCLC. Like ALK, genetic alterations in ROS1 and RET involve chromosomal rearrangements that result in the formation of chimeric fusion kinases capable of oncogenic transformation. Notably, ROS1 and RET rearrangements are rarely found with other genetic alterations, such as EGFR, KRAS, or ALK. This finding suggests that both ROS1 and RET are independent oncogenic drivers that may be viable therapeutic targets. In initial screening studies, ROS1 and RET rearrangements were identified at similar frequencies (approximately 1%-2%), using a variety of genotyping techniques. Importantly, patients with either ROS1 or RET rearrangements appear to have unique clinical and pathologic features that may facilitate identification and enrichment strategies. These features may in turn expedite enrollment in clinical trials evaluating genotype-directed therapies in these rare patient populations. In this review, we summarize the molecular biology, clinical features, detection, and targeting of ROS1 and RET rearrangements in NSCLC.
Collapse
Affiliation(s)
- Justin F Gainor
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
29
|
Recurrent reciprocal RNA chimera involving YPEL5 and PPP1CB in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2013; 110:3035-40. [PMID: 23382248 DOI: 10.1073/pnas.1214326110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults in the Western hemisphere. Tumor-specific chromosomal translocations, characteristic findings in several human malignancies that directly lead to malignant transformation, have not been identified in CLL. Using paired-end transcriptome sequencing, we identified recurrent and reciprocal RNA chimeras involving yippee like 5 (YPEL5) and serine/threonine-protein phosphatase PP1-beta-catalytic subunit (PPP1CB) in CLL. Two of seven index cases (28%) harbored the reciprocal RNA chimeras in our initial screening. Using quantitative real-time PCR (q real-time PCR), YPEL5/PPP1CB and PPP1CB/YPEL5 fusion transcripts were detected in 97 of 103 CLL samples (95%) but not in paired normal samples, benign lymphocytes, or various unrelated cancers. Whole-genome sequencing and Southern blotting demonstrated no evidence for a genomic fusion between YPEL5 and PPP1CB. YPEL5/PPP1CB chimera, when introduced into mammalian cells, expressed a truncated PPP1CB protein that demonstrated diminished phosphatase activity. PPP1CB silencing resulted in enhanced proliferation and colony formation of MEC1 and JVM3 cells, implying a role in the pathogenesis of mature B-cell leukemia. These studies uncover a potential role for recurrent RNA chimeras involving phosphatases in the pathogenesis of a common form of leukemia.
Collapse
|
30
|
Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, Luo X, Wang L, Li H, Zhang Y, Li F, Lu Y, Lu Q, Xu J, Garfield D, Shen L, Ji H, Pao W, Sun Y, Chen H. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 2012; 30:4352-9. [PMID: 23150706 DOI: 10.1200/jco.2012.44.1477] [Citation(s) in RCA: 415] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The RET fusion gene has been recently described in a subset of non-small-cell lung cancers (NSCLCs). Because we have limited knowledge about these tumors, this study was aimed at determining the clinicopathologic characteristics of patients with NSCLC harboring the RET fusion gene. PATIENTS AND METHODS We examined the RET fusion gene in 936 patients with surgically resected NSCLC using a reverse transcriptase polymerase chain reaction (PCR) plus quantitative real-time PCR strategy, with validation using immunohistochemical and fluorescent in situ hybridization assays. A subset of 633 lung adenocarcinomas was also studied for EGFR, KRAS, HER2, and BRAF mutations, as well as ALK rearrangements. Patient characteristics, including age, sex, smoking history, stage, grade, International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification of subtypes of lung adenocarcinoma, and relapse-free survival, were collected. RESULTS Of 936 patients with NSCLC, the RET fusion gene was exclusively detected in 13 patients (11 of 633 patients with adenocarcinomas and two of 24 patients with adenosquamous cell carcinomas). Of the 13 patients, nine patients had KIF5B-RET, three patients had CCDC6-RET, and one patient had a novel NCOA4-RET fusion. Patients with lung adenocarcinomas with RET fusion gene had more poorly differentiated tumors (63.6%; P = .029 for RET v ALK, P = .007 for RET v EGFR), with a tendency to be younger (≤ 60 years; 72.7%) and never-smokers (81.8%) and to have solid subtype (63.6%) and a smaller tumor (≤ 3 cm) with N2 disease (54.4%). The median relapse-free survival was 20.9 months. CONCLUSION RET fusion occurs in 1.4% of NSCLCs and 1.7% of lung adenocarcinomas and has identifiable clinicopathologic characteristics, warranting further clinical consideration and targeted therapy investigation.
Collapse
Affiliation(s)
- Rui Wang
- Fudan University Shanghai Cancer Center, Shanghai, China 200032
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Garnier D, Magnus N, D'Asti E, Hashemi M, Meehan B, Milsom C, Rak J. Genetic pathways linking hemostasis and cancer. Thromb Res 2012; 129 Suppl 1:S22-9. [PMID: 22682129 DOI: 10.1016/s0049-3848(12)70012-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oncogenic events impact interactions of cancer cells with their surroundings. Amongst the most consequential, in this regard, is the influence on angiogenesis, inflammation and hemostasis. Indeed, mutant oncogenes (EGFR, HER2, RAS, MET, PML-RARα) are known to alter the expression of angiogenic and pro-inflammatory factors, as well as change the cancer cell coagulome, including the levels of tissue factor (TF) and other mediators (PAI-1, COX2). Accompanying losses of tumour suppressor genes (PTEN, p53), and changes in microRNA (miR-19b, miR-520) facilitate these effects. Transforming genes may also trigger ectopic production of coagulation factors (e.g. FVII) by cancer cells and their release and properties of procoagulant microparticles (MPs). By deregulating protease activated receptors (PAR1/2) oncogenes may also change tumour cell responses to coagulation factor signalling. These changes act in concert with microenvironmental factors (hypoxia), stress responses (therapy) and differentiation programs, including epithelial-to-mesechymal transitions (EMT) and through tumour initiating cell (TIC) compartment. In so doing, the coagulation system influences early (initiation, angiogenesis), intermediate (growth, invasion) and late stages (metastasis, relapse) of cancer progression. In fact, TF may act as a molecular switch that controls the transition between dormant, latent and progressive/metastatic disease. TIC-like cells may play a role in these effects, as they express TF and PAR-1/2, and respond to stimulation with their agonists. As major human malignancies (e.g. glioblastoma) are increasingly recognized to consist of a spectrum of molecularly distinct disease subtypes driven by specific genetic pathways, so too may their patterns of interaction differ with the coagulation system. A better understanding of these linkages may be a source of new diagnostic, prognostic and therapeutic opportunities.
Collapse
|
32
|
Lou H, Li H, Yeager M, Im K, Gold B, Schneider TD, Fraumeni JF, Chanock SJ, Anderson SK, Dean M. Promoter variants in the MSMB gene associated with prostate cancer regulate MSMB/NCOA4 fusion transcripts. Hum Genet 2012; 131:1453-1466. [PMID: 22661295 PMCID: PMC3956317 DOI: 10.1007/s00439-012-1182-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/11/2012] [Indexed: 12/22/2022]
Abstract
Beta-microseminoprotein (MSP)/MSMB is an immunoglobulin superfamily protein synthesized by prostate epithelial cells and secreted into seminal plasma. Variants in the promoter of the MSMB gene have been associated with the risk of prostate cancer (PCa) in several independent genome-wide association studies. Both MSMB and an adjacent gene, NCOA4, are subjected to transcriptional control via androgen response elements. The gene product of NCOA4 interacts directly with the androgen receptor as a co-activator to enhance AR transcriptional activity. Here, we provide evidence for the expression of full-length MSMB-NCOA4 fusion transcripts regulated by the MSMB promoter. The predominant MSMB-NCOA4 transcript arises by fusion of the 5'UTR and exons 1-2 of the MSMB pre-mRNA, with exons 2-10 of the NCOA4 pre-mRNA, producing a stable fusion protein, comprising the essential domains of NCOA4. Analysis of the splice sites of this transcript shows an unusually strong splice acceptor at NCOA4 exon 2 and the presence of Alu repeats flanking the exons potentially involved in the splicing event. Transfection experiments using deletion clones of the promoter coupled with luciferase reporter assays define a core MSMB promoter element located between -27 and -236 of the gene, and a negative regulatory element immediately upstream of the start codon. Computational network analysis reveals that the MSMB gene is functionally connected to NCOA4 and the androgen receptor signaling pathway. The data provide an example of how GWAS-associated variants may have multiple genetic and epigenetic effects.
Collapse
Affiliation(s)
- Hong Lou
- Human Genetics Section, Basic Research Program, SAIC-Frederick Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Hongchuan Li
- Molecular Immunology Section, Basic Research Program, SAIC-Frederick Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Meredith Yeager
- Core Genotyping Facility, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Kate Im
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Bert Gold
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Thomas D Schneider
- Gene Regulation and Chromosome Biology Laboratory, Molecular Information Theory Group, Frederick, MD 21702, USA
| | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stephen K Anderson
- Molecular Immunology Section, Basic Research Program, SAIC-Frederick Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Michael Dean
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
33
|
Woelfel C, Liehr T, Weise A, Langrehr J, Kotb WA, Pacyna-Gengelbach M, Katenkamp D, Petersen I. Molecular cytogenetic characterization of epithelioid hemangioendothelioma. Cancer Genet 2012; 204:671-6. [PMID: 22285019 DOI: 10.1016/j.cancergen.2011.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/20/2011] [Accepted: 11/28/2011] [Indexed: 12/14/2022]
Abstract
Epithelioid hemangioendothelioma (EHE) is a rare vascular tumor whose pathological diagnosis can be difficult. In the literature two cases of EHE were found to harbor a balanced t(1;3)(p36.3;q25) translocation, suggesting a characteristic chromosomal rearrangement as cause for the development of EHE. In this study, 14 cases of EHE were investigated by interphase fluorescence in situ hybridization (FISH) directed against the translocation breakpoint 1p36.3. A subset of cases was also analyzed by comparative genomic hybridization (CGH) and image cytometry. Five out of eight cases that could be successfully analyzed by FISH harbored a chromosomal break in the 1p36.3 region. The break-apart signals were present in diploid nuclei, and less frequently also in tetraploid nuclei. In the latter, the chromosomal break was present twice, suggesting that polyploidy occurred after the chromosomal alteration. DNA cytometry confirmed that tetraploid cells were present in most examined cases with one case indicating almost equal amounts of diploid and tetraploid tumor cells. CGH revealed single chromosomal imbalances of unclear significance. We could confirm that EHE may harbor a recurrent mutation involving the 1p36.3 chromosomal region thus supporting the notion that the t(1;3)(p36.3;q25) translocation is a relevant genetic finding in this tumor entity.
Collapse
|
34
|
Kekeeva TV, Zavalishina LE, Frank GA, Zaletaev DV. Fusion genes and transcripts in neoplasia. Mol Biol 2011. [DOI: 10.1134/s0026893311050086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Rogers RL, Hartl DL. Chimeric genes as a source of rapid evolution in Drosophila melanogaster. Mol Biol Evol 2011; 29:517-29. [PMID: 21771717 DOI: 10.1093/molbev/msr184] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chimeric genes form through the combination of portions of existing coding sequences to create a new open reading frame. These new genes can create novel protein structures that are likely to serve as a strong source of novelty upon which selection can act. We have identified 14 chimeric genes that formed through DNA-level mutations in Drosophila melanogaster, and we investigate expression profiles, domain structures, and population genetics for each of these genes to examine their potential to effect adaptive evolution. We find that chimeric gene formation commonly produces mid-domain breaks and unites portions of wholly unrelated peptides, creating novel protein structures that are entirely distinct from other constructs in the genome. These new genes are often involved in selective sweeps. We further find a disparity between chimeric genes that have recently formed and swept to fixation versus chimeric genes that have been preserved over long periods of time, suggesting that preservation and adaptation are distinct processes. Finally, we demonstrate that chimeric gene formation can produce qualitative expression changes that are difficult to mimic through duplicate gene formation, and that extremely young chimeric genes (d(S) < 0.03) are more likely to be associated with selective sweeps than duplicate genes of the same age. Hence, chimeric genes can serve as an exceptional source of genetic novelty that can have a profound influence on adaptive evolution in D. melanogaster.
Collapse
Affiliation(s)
- Rebekah L Rogers
- Department of Organismic and Evolutionary Biology, Harvard University, USA.
| | | |
Collapse
|
36
|
Abstract
There is an urgent need for blood-based, noninvasive molecular tests to assist in the detection and diagnosis of cancers in a cost-effective manner at an early stage, when curative interventions are still possible. Additionally, blood-based diagnostics can classify tumors into distinct molecular subtypes and monitor disease relapse and response to treatment. Increasingly, biomarker strategies are becoming critical to identify a specific patient subpopulation that is likely to respond to a new therapeutic agent. The improved understanding of the underlying molecular features of common cancers and the availability of a multitude of recently developed technologies to interrogate the genome, transcriptome, proteome and metabolome of tumors and biological fluids have made it possible to develop clinically applicable and cost-effective tests for many common cancers. Overall, the paradigm shift towards personalized and individualized medicine relies heavily on the increased use of diagnostic biomarkers and classifiers to improve diagnosis, management and treatment. International collaborations, involving both the private and public sector will be required to facilitate the development of clinical applications of biomarkers, using rigorous standardized assays. Here, we review the recent technological and scientific advances in this field.
Collapse
|
37
|
Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing. Proc Natl Acad Sci U S A 2011; 108:9172-7. [PMID: 21571633 DOI: 10.1073/pnas.1100489108] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription-induced chimeric RNAs, possessing sequences from different genes, are expected to increase the proteomic diversity through chimeric proteins or altered regulation. Despite their importance, few studies have focused on chimeric RNAs especially regarding their presence/roles in human cancers. By deep sequencing the transcriptome of 20 human prostate cancer and 10 matched benign prostate tissues, we obtained 1.3 billion sequence reads, which led to the identification of 2,369 chimeric RNA candidates. Chimeric RNAs occurred in significantly higher frequency in cancer than in matched benign samples. Experimental investigation of a selected 46 set led to the confirmation of 32 chimeric RNAs, of which 27 were highly recurrent and previously undescribed in prostate cancer. Importantly, a subset of these chimeras was present in prostate cancer cell lines, but not detectable in primary human prostate epithelium cells, implying their associations with cancer. These chimeras contain discernable 5' and 3' splice sites at the RNA junction, indicating that their formation is mediated by splicing. Their presence is also largely independent of the expression of parental genes, suggesting that other factors are involved in their production and regulation. One chimera, TMEM79-SMG5, is highly differentially expressed in human cancer samples and therefore a potential biomarker. The prevalence of chimeric RNAs may allow the limited number of human genes to encode a substantially larger number of RNAs and proteins, forming an additional layer of cellular complexity. Together, our results suggest that chimeric RNAs are widespread, and increased chimeric RNA events could represent a unique class of molecular alteration in cancer.
Collapse
|
38
|
Wistuba II, Gelovani JG, Jacoby JJ, Davis SE, Herbst RS. Methodological and practical challenges for personalized cancer therapies. Nat Rev Clin Oncol 2011; 8:135-41. [DOI: 10.1038/nrclinonc.2011.2] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Wong DWS, Leung ELH, Wong SKM, Tin VPC, Sihoe ADL, Cheng LC, Au JSK, Chung LP, Wong MP. A novel KIF5B-ALK variant in nonsmall cell lung cancer. Cancer 2011; 117:2709-18. [PMID: 21656749 DOI: 10.1002/cncr.25843] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/01/2010] [Accepted: 11/12/2010] [Indexed: 11/07/2022]
Abstract
BACKGROUND The anaplastic lymphoma kinase (ALK) gene is involved frequently in chromosomal translocations, resulting in fusion genes with different partners found in various lymphoproliferative conditions. It was recently reported in nonsmall cell lung cancer (NSCLC) that the fusion protein encoded by echinoderm microtubule-associated protein-like 4-ALK (EML4-ALK) fusion gene conferred oncogenic properties. The objective of the current study was to identify other possible ALK fusion genes in NSCLC. METHODS Immunohistochemical analysis was used to screen for aberrant ALK expression in primary NSCLC. The authors used 5' rapid amplification of complementary DNA ends to screen for potential, novel 5' fusion partners of ALK other than EML4-ALK. Reverse transcriptase-polymerase chain reaction and fluorescence in situ hybridization analyses were used to confirm the identity of 5' fusion partners. The genomic breakpoint was verified using genomic sequencing. Overexpression of the novel ALK fusion gene and variants 3a and 3b of EML4-ALK was performed to assess downstream signaling and functional effects. RESULTS The authors identified a novel gene resulting from the fusion of kinesin family member 5B (KIF5B) exon 15 to ALK exon 20 in a primary lung adenocarcinoma. Western blot analysis of clinical tumor tissues revealed the expression of a protein whose size correlated with that of the predicted KIF5B-ALK. Overexpression of KIF5B-ALK in mammalian cells led to the activation of signal transducer and activator of transcription 3 and protein kinase B and to enhanced cell proliferation, migration, and invasion. CONCLUSIONS The discovery of the novel KIF5B-ALK variant further consolidated the role of aberrant ALK signaling in lung carcinogenesis.
Collapse
Affiliation(s)
- Daisy Wing-Sze Wong
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Prakash T, Sharma VK, Adati N, Ozawa R, Kumar N, Nishida Y, Fujikake T, Takeda T, Taylor TD. Expression of conjoined genes: another mechanism for gene regulation in eukaryotes. PLoS One 2010; 5:e13284. [PMID: 20967262 PMCID: PMC2953495 DOI: 10.1371/journal.pone.0013284] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/14/2010] [Indexed: 11/19/2022] Open
Abstract
From the ENCODE project, it is realized that almost every base of the entire human genome is transcribed. One class of transcripts resulting from this arises from the conjoined gene, which is formed by combining the exons of two or more distinct (parent) genes lying on the same strand of a chromosome. Only a very limited number of such genes are known, and the definition and terminologies used for them are highly variable in the public databases. In this work, we have computationally identified and manually curated 751 conjoined genes (CGs) in the human genome that are supported by at least one mRNA or EST sequence available in the NCBI database. 353 representative CGs, of which 291 (82%) could be confirmed, were subjected to experimental validation using RT-PCR and sequencing methods. We speculate that these genes are arising out of novel functional requirements and are not merely artifacts of transcription, since more than 70% of them are conserved in other vertebrate genomes. The unique splicing patterns exhibited by CGs reveal their possible roles in protein evolution or gene regulation. Novel CGs, for which no transcript is available, could be identified in 80% of randomly selected potential CG forming regions, indicating that their formation is a routine process. Formation of CGs is not only limited to human, as we have also identified 270 CGs in mouse and 227 in drosophila using our approach. Additionally, we propose a novel mechanism for the formation of CGs. Finally, we developed a database, ConjoinG, which contains detailed information about all the CGs (800 in total) identified in the human genome. In summary, our findings reveal new insights about the functionality of CGs in terms of another possible mechanism for gene regulation and genomic evolution and the mechanism leading to their formation.
Collapse
Affiliation(s)
- Tulika Prakash
- MetaSystems Research Team, Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute (ASI), Yokohama, Japan
| | - Vineet K. Sharma
- MetaSystems Research Team, Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute (ASI), Yokohama, Japan
| | - Naoki Adati
- MetaSystems Research Team, Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute (ASI), Yokohama, Japan
| | - Ritsuko Ozawa
- MetaSystems Research Team, Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute (ASI), Yokohama, Japan
| | - Naveen Kumar
- MetaSystems Research Team, Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute (ASI), Yokohama, Japan
| | - Yuichiro Nishida
- MetaSystems Research Team, Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute (ASI), Yokohama, Japan
| | - Takayoshi Fujikake
- MetaSystems Research Team, Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute (ASI), Yokohama, Japan
| | - Tadayuki Takeda
- MetaSystems Research Team, Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute (ASI), Yokohama, Japan
| | - Todd D. Taylor
- MetaSystems Research Team, Computational Systems Biology Research Group, Advanced Computational Sciences Department, RIKEN Advanced Science Institute (ASI), Yokohama, Japan
- * E-mail:
| |
Collapse
|
41
|
Tucker JD. Chromosome translocations and assessing human exposure to adverse environmental agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:815-824. [PMID: 20213842 DOI: 10.1002/em.20561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article discusses the use of chromosome translocations for assessing adverse environmental exposure in humans. Translocations are a persistent biomarker of exposure and a biomarker of effect, making them the endpoint of choice for certain human exposure studies because they indicate a potential relationship between exposure and adverse health outcomes, particularly cancer and birth defects. Presented here are the different types of translocations, their origins and persistence, the strengths and limitations of using translocations for exposure assessments, the current state of the art for quantifying exposure including the importance of confounding effects, and the use of model organisms. This article concludes with an assessment of the future of translocation analyses.
Collapse
Affiliation(s)
- James D Tucker
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202-3917, USA.
| |
Collapse
|
42
|
Jaskoll T, Htet K, Abichaker G, Kaye FJ, Melnick M. CRTC1 expression during normal and abnormal salivary gland development supports a precursor cell origin for mucoepidermoid cancer. Gene Expr Patterns 2010; 11:57-63. [PMID: 20837164 DOI: 10.1016/j.gep.2010.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/25/2010] [Accepted: 09/06/2010] [Indexed: 01/16/2023]
Abstract
Dysregulation of the transcription factor CRTC1 by a t(11;19) chromosomal rearrangement mediates the formation of mucoepidermoid salivary gland carcinoma (MEC). Although the CRTC1 promoter is consistently active in fusion-positive MEC and low levels of CRTC1 transcripts have been reported in normal adult salivary glands, the distribution of CRTC1 protein in the normal salivary gland is not known. The aim of this study was to determine if CRTC1, like many known oncogenes, is expressed during early submandibular salivary gland (SMG) development and re-expressed in an experimental tumor model. Our results indicate that CRTC1 protein is expressed in SMG epithelia during early stages of morphogenesis, disappears with differentiation, and reappears in initial tumor-like pathology. This stage-dependent expression pattern suggests that CRTC1 may play a role during embryonic SMG branching morphogenesis but not for pro-acinar/acinar differentiation, supporting a precursor cell origin for MEC tumorigenesis. Moreover, the coincident expression of CRTC1 protein and cell proliferation markers in tumor-like histopathology suggests that CRTC1-mediated cell proliferation may contribute, in part, to initial tumor formation.
Collapse
Affiliation(s)
- Tina Jaskoll
- Laboratory for Developmental Genetics, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | | | | | | | | |
Collapse
|
43
|
To KKW, Robey RW, Knutsen T, Zhan Z, Ried T, Bates SE. Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2. Mol Cancer Ther 2010; 8:2959-68. [PMID: 19825807 DOI: 10.1158/1535-7163.mct-09-0292] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Overexpression of ABCG2 has been reported in cell lines selected for drug resistance and it is widely believed to be important in the clinical pharmacology of anticancer drugs. We and others have previously identified and validated two microRNAs (miRNA; hsa-miR-519c and hsa-miR-520h) targeting ABCG2. In this study, the shortening of the ABCG2 3' untranslated region (3'UTR) was found to be a common phenomenon in several ABCG2-overexpressing resistant cell lines, which as a result removes the hsa-miR-519c binding site and its repressive effects on mRNA stability and translation blockade, thereby contributing to drug resistance. On the other hand, reduced expression of hsa-miR-520h, previously thought to have allowed ABCG2 overexpression, was found to be caused by the sequestering of the miRNA by the highly expressed ABCG2. In drug-sensitive cells, inhibitors against hsa-miR-519c and hsa-miR-520h could augment the cytotoxic effect of mitoxantrone, suggesting a substantial role for both miRNAs in controlling ABCG2 level and thereby anticancer drug response. However, in drug-resistant cells, altering the levels of the two miRNAs did not have any effect on sensitivity to mitoxantrone. Taken together, these studies suggest that in ABCG2-overexpressing drug-resistant cells, hsa-miR-519c is unable to affect ABCG2 expression because the mRNA lacks its binding site, whereas hsa-miR-520h is sequestered and unable to limit ABCG2 expression. Given the recent observation that a truncated 3'UTR is also observed in ABCG2-overexpressing human embryonic stem cells, our results in drug-resistant cell lines suggest that 3'UTR truncation is a relatively common mechanism of ABCG2 regulation.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Cell Line, Tumor
- Chromosomes, Human/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Rearrangement/drug effects
- Gene Silencing/drug effects
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mitoxantrone/pharmacology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- RNA Stability/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | | | | | | | | | | |
Collapse
|
44
|
Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbings LA, Leroy C, Edkins S, Mudie LJ, Greenman CD, Jia M, Latimer C, Teague JW, Lau KW, Burton J, Quail MA, Swerdlow H, Churcher C, Natrajan R, Sieuwerts AM, Martens JWM, Silver DP, Langerød A, Russnes HEG, Foekens JA, Reis-Filho JS, van 't Veer L, Richardson AL, Børresen-Dale AL, Campbell PJ, Futreal PA, Stratton MR. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 2009; 462:1005-10. [PMID: 20033038 PMCID: PMC3398135 DOI: 10.1038/nature08645] [Citation(s) in RCA: 649] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/05/2009] [Indexed: 12/17/2022]
Abstract
Multiple somatic rearrangements are often found in cancer genomes; however, the underlying processes of rearrangement and their contribution to cancer development are poorly characterized. Here we use a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than previously appreciated. Rearrangements are more frequent over gene footprints and most are intrachromosomal. Multiple rearrangement architectures are present, but tandem duplications are particularly common in some cancers, perhaps reflecting a specific defect in DNA maintenance. Short overlapping sequences at most rearrangement junctions indicate that these have been mediated by non-homologous end-joining DNA repair, although varying sequence patterns indicate that multiple processes of this type are operative. Several expressed in-frame fusion genes were identified but none was recurrent. The study provides a new perspective on cancer genomes, highlighting the diversity of somatic rearrangements and their potential contribution to cancer development.
Collapse
|
45
|
Komiya T, Coxon A, Park Y, Chen WD, Zajac-Kaye M, Meltzer P, Karpova T, Kaye FJ. Enhanced activity of the CREB co-activator Crtc1 in LKB1 null lung cancer. Oncogene 2009; 29:1672-80. [PMID: 20010869 PMCID: PMC7227613 DOI: 10.1038/onc.2009.453] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Activation of Crtc1 (also known as Mect1/Torc1) by a t(11;19) chromosomal rearrangement underlies the etiology of malignant salivary gland tumors. As LKB1 is a target for mutational inactivation in lung cancer and was recently shown to regulate hepatic Crtc2/CREB transcriptional activity in mice, we now present evidence suggesting disruption of an LKB1/Crtc pathway in cancer. Although Crtc1 is preferentially expressed in adult brain tissues, we observed elevated levels of steady-state Crtc1 in thoracic tumors. In addition, we show that somatic loss of LKB1 is associated with underphosphorylation of endogenous Crtc1, enhanced Crtc1 nuclear localization and enhanced expression of the Crtc prototypic target gene, NR4A2/Nurr1. Inhibition of NR4A2 was associated with growth suppression of LKB1 null tumors, but showed little effect on LKB1-wildtype cells. These data strengthen the role of dysregulated Crtc as a bona fide cancer gene, present a new element to the complex LKB1 tumorigenic axis, and suggest that Crtc genes may be aberrantly activated in a wider range of common adult malignancies.
Collapse
Affiliation(s)
- T Komiya
- Genetics Branch, National Cancer Institute and National Naval Medical Center, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|