1
|
Nanoliposomal formulation encapsulating celecoxib and genistein inhibiting COX-2 pathway and Glut-1 receptors to prevent prostate cancer cell proliferation. Cancer Lett 2019; 448:1-10. [DOI: 10.1016/j.canlet.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
|
2
|
Gowda R, Dinavahi SS, Iyer S, Banerjee S, Neves RI, Pameijer CR, Robertson. GP. Nanoliposomal delivery of cytosolic phospholipase A 2 inhibitor arachidonyl trimethyl ketone for melanoma treatment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:863-873. [PMID: 29317343 PMCID: PMC5899023 DOI: 10.1016/j.nano.2017.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022]
Abstract
Drug resistance and toxicity are major limitations of cancer treatment and frequently occurs during melanoma therapy. Nanotechnology can decrease drug resistance by improving drug delivery, with limited toxicity. This study details the development of nanoparticles containing arachidonyl trifluoromethyl ketone (ATK), a cytosolic phospholipase A2 inhibitor, which can inhibit multiple key pathways responsible for the development of recurrent resistant disease. Free ATK is toxic, limiting its efficacy as a therapeutic agent. Hence, a novel nanoliposomal delivery system called NanoATK was developed, which loads 61.7% of the compound and was stable at 4oC for 12 weeks. The formulation decreased toxicity-enabling administration of higher doses, which was more effective at inhibiting melanoma cell growth compared to free-ATK. Mechanistically, NanoATK decreased cellular proliferation and triggered apoptosis to inhibit melanoma xenograft tumor growth without affecting animal weight. Functionally, it inhibited the cPLA2, AKT, and STAT3 pathways. Our results suggest the successful preclinical development of a unique nanoliposomal formulation containing ATK for the treatment of melanoma.
Collapse
Affiliation(s)
- Raghavendra Gowda
- Department of Pharmacology The Pennsylvania State University College of Medicine, Hershey, PA 17033,The Penn State Melanoma and Skin Cancer Center The Pennsylvania State University College of Medicine, Hershey, PA 17033,Penn State Melanoma Therapeutics Program The Pennsylvania State University College of Medicine, Hershey, PA 17033,Foreman Foundation for Melanoma Research The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Saketh S. Dinavahi
- Department of Pharmacology The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Soumya Iyer
- Department of Pharmacology The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shubhadeep Banerjee
- Department of Pharmacology The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Rogerio I. Neves
- Department of Pharmacology The Pennsylvania State University College of Medicine, Hershey, PA 17033,Department of Dermatology and The Pennsylvania State University College of Medicine, Hershey, PA 17033 The Pennsylvania State University College of Medicine, Hershey, PA 17033,Department of Surgery The Pennsylvania State University College of Medicine, Hershey, PA 17033,The Penn State Melanoma and Skin Cancer Center The Pennsylvania State University College of Medicine, Hershey, PA 17033,Penn State Melanoma Therapeutics Program The Pennsylvania State University College of Medicine, Hershey, PA 17033,Foreman Foundation for Melanoma Research The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Colette R. Pameijer
- Department of Surgery The Pennsylvania State University College of Medicine, Hershey, PA 17033,The Penn State Melanoma and Skin Cancer Center The Pennsylvania State University College of Medicine, Hershey, PA 17033,Penn State Melanoma Therapeutics Program The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Gavin P. Robertson.
- Department of Pharmacology The Pennsylvania State University College of Medicine, Hershey, PA 17033,Department of Pathology The Pennsylvania State University College of Medicine, Hershey, PA 17033,Department of Dermatology and The Pennsylvania State University College of Medicine, Hershey, PA 17033 The Pennsylvania State University College of Medicine, Hershey, PA 17033,Department of Surgery The Pennsylvania State University College of Medicine, Hershey, PA 17033,The Penn State Melanoma and Skin Cancer Center The Pennsylvania State University College of Medicine, Hershey, PA 17033,Penn State Melanoma Therapeutics Program The Pennsylvania State University College of Medicine, Hershey, PA 17033,Foreman Foundation for Melanoma Research The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
3
|
Walther U, Emmrich K, Ramer R, Mittag N, Hinz B. Lovastatin lactone elicits human lung cancer cell apoptosis via a COX-2/PPARγ-dependent pathway. Oncotarget 2016; 7:10345-62. [PMID: 26863638 PMCID: PMC4891124 DOI: 10.18632/oncotarget.7213] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/01/2016] [Indexed: 12/13/2022] Open
Abstract
Statins (3-hydroxy-3-methylglutaryl coenzyme A [HMG-CoA] reductase inhibitors) are well-established agents to treat hyperlipidemic states. Experimental and epidemiological evidence further implies an anticancer effect of these substances. This study investigates the mechanism underlying human lung cancer cell death by lovastatin and the role of the prostaglandin (PG)-synthesizing enzyme cyclooxygenase-2 (COX-2) in this process. In A549 and H358 lung carcinoma cells the lipophilic prodrug lovastatin lactone led to a concentration-dependent decrease of viability and induction of DNA fragmentation, whereas its HMG-CoA-inhibitory, ring-open acid form was inactive in this respect. Apoptotic cell death by lovastatin was accompanied by high intracellular levels of the lactone form, by upregulation of COX-2 mRNA and protein, as well as by increased formation of peroxisome proliferator-activated receptor γ (PPARγ)-activating PGD2 and 15-deoxy-Δ12,14-PGJ2. Cells were significantly less sensitive to lovastatin-induced apoptotic cell death, when the expression or activity of COX-2 was suppressed by siRNA or by the COX-2 inhibitor NS-398. Apoptosis by lovastatin was likewise reversed by the PPARγ antagonist GW9662. Fluorescence microscopy analyses revealed a lovastatin-induced cytosol-to-nucleus translocation of PPARγ that was inhibited by NS-398. Collectively, this study demonstrates COX-2 induction and subsequent COX-2-dependent activation of PPARγ as a hitherto unknown mechanism by which lovastatin lactone induces human lung cancer cell death.
Collapse
Affiliation(s)
- Udo Walther
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| | - Kristin Emmrich
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| | - Robert Ramer
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| | - Nadine Mittag
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Gowda R, Kardos G, Sharma A, Singh S, Robertson GP. Nanoparticle-Based Celecoxib and Plumbagin for the Synergistic Treatment of Melanoma. Mol Cancer Ther 2016; 16:440-452. [PMID: 28003325 DOI: 10.1158/1535-7163.mct-16-0285] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022]
Abstract
Using multiple drugs to kill cancer cells can decrease drug resistance development. However, this approach is frequently limited by the bioavailability and toxicity of the combined agents and delivery at ratios to specific locations that synergistically kill cancer cells. Loading the individual agents into a nanoparticle that releases the drugs at synergizing ratios at a single location is one approach to resolve this concern. Celecoxib and plumbagin are two drugs that were identified from a screen to synergistically kill melanoma cells compared with normal cells. Combined use of these agents by traditional approaches was not possible due to poor bioavailability and toxicologic concerns. This study details the development of a nanoliposomal-based agent containing celecoxib and plumbagin, called CelePlum-777, which is stable and releases these drugs at an optimal ratio for maximal synergistic killing efficacy. CelePlum-777 was more effective at killing melanoma than normal cells and inhibited xenograft melanoma tumor growth by up to 72% without apparent toxicity. Mechanistically, the drug combination in CelePlum-777 led to enhanced inhibition of melanoma cell proliferation mediated by decreasing levels of key cyclins important for cancer cell proliferation and survival, which was not observed with the individual agents. Thus, a novel nanoparticle-based drug has been developed containing celecoxib and plumbagin that lacks toxicity and delivers the agents at a synergistically killing drug ratio to kill cancer cells. Mol Cancer Ther; 16(3); 440-52. ©2016 AACR.
Collapse
Affiliation(s)
- Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gregory Kardos
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Arati Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Sanjay Singh
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. .,The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
5
|
Kim J, Shim M. COX-2 inhibitor NS-398 suppresses doxorubicin-induced p53 accumulation through inhibition of ROS-mediated Jnk activation. Mol Carcinog 2016; 55:2156-2167. [PMID: 26756900 DOI: 10.1002/mc.22458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/13/2015] [Accepted: 12/28/2015] [Indexed: 12/26/2022]
Abstract
Cyclooxygenase-2 (COX-2) is one of the isoforms of cyclooxygenase, a rate-limiting enzyme in the arachidonic acid cascade. COX-2 protein expression is highly induced by numerous factors and it has been reportedly overexpressed in various human malignancies. Although anti-tumorigenic effects of COX-2 inhibitors have been shown, several lines of evidence suggest that COX-2 inhibitors antagonize the cytotoxicity of chemotherapeutic agents. In this study, we investigated the effect of NS-398, a COX-2 inhibitor, on modulation of doxorubicin (DOX)-induced p53 accumulation. Non-selective and selective COX-2 inhibitors attenuated DOX-induced accumulation of wild type (WT) but not mutant p53. Nutlin-3α or MG132 abolished the suppressive effect of a COX-2 inhibitor on DOX-induced p53 increase. Moreover, the DOX-induced increase in p53 protein levels was reduced in COX-2 knockout (KO) mouse embryonic fibroblasts (MEFs) compared to those in WT or COX-1 KO MEFs. DOX-induced accumulation of p53 was attenuated by a specific inhibitor or knockdown of Jun-N-terminal kinase (Jnk). In addition, DOX-induced Jnk activation was decreased in COX-2 KO MEFs or by COX-2 inhibition, suggesting that Jnk stabilizes p53 by a mechanism that involves COX-2. Pre-treatment with a reactive oxygen species (ROS) scavenger, N-acetylcysteine, attenuated DOX-induced Jnk activation and subsequent p53 accumulation. Furthermore, the absence or inhibition of COX-2 resulted in suppression of DOX-induced increase in ROS levels. These results suggest that COX-2 activates Jnk through modulation of ROS levels, leading to accumulation of p53. Our study identifies a putative novel cross-talk between COX-2 and p53. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joohwee Kim
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina.,Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Minsub Shim
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina.,Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
6
|
Simpson DR, Mell LK, Cohen EEW. Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck. Oral Oncol 2014; 51:291-8. [PMID: 25532816 DOI: 10.1016/j.oraloncology.2014.11.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/27/2014] [Accepted: 11/19/2014] [Indexed: 02/08/2023]
Abstract
Despite recent advances in novel therapies, the prognosis for patients with squamous cell carcinoma of the head and neck (SCCHN) remains poor. Progress in understanding the biology of cancer has led to the development of personalized therapy targeted at blocking defective signaling pathways of cancer cells. These drugs aim to act selectively to reduce the adverse effects associated with systemic therapy. Cetuximab (Erbitux®), an anti-epidermal growth factor receptor gene (EGFR)-targeted agent, is the only approved targeted therapy for patients with SCCHN. However, resistance to EGFR therapy remains a major obstacle to achieving a positive clinical outcome with cetuximab. Other therapies that offer better clinical outcomes in patients with advanced SCCHN are urgently needed. The phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin pathway, which is downstream of EGFR, has also been implicated in SCCHN development and progression, and therefore, targeting this pathway offers another rational treatment approach. This review discusses the potential role of PI3K pathway inhibitors in the treatment of patients with advanced SCCHN, both alone and in combination with other therapies.
Collapse
Affiliation(s)
- Daniel R Simpson
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Loren K Mell
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Ezra E W Cohen
- Department of Internal Medicine, Division of Hematology-Oncology, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
7
|
Cui J, Guo YH, Zhang HY, Jiang LL, Ma JQ, Wang WJ, Wang MC, Yang CC, Nan KJ, Song LP. Cyclooxygenase-2 inhibitor is a robust enhancer of anticancer agents against hepatocellular carcinoma multicellular spheroids. Onco Targets Ther 2014; 7:353-63. [PMID: 24591842 PMCID: PMC3938498 DOI: 10.2147/ott.s56115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Celecoxib, an inhibitor of cyclooxygenase-2 (COX2), was investigated for enhancement of chemotherapeutic efficacy in cancer clinical trials. This study aimed to determine whether celecoxib combined with 5-fluorouracil or sorafenib or gefitinib is beneficial in HepG2 multicellular spheroids (MCSs), as well as elucidate the underlying mechanisms. Methods The human hepatocellular carcinoma cell line HepG2 MCSs were used as in vitro models to investigate the effects of celecoxib combined with 5-fluorouracil or sorafenib or gefitinib treatment on cell growth, apoptosis, and signaling pathway. Results MCSs showed resistance to drugs compared with monolayer cells. Celecoxib combined with 5-fluorouracil or sorafenib exhibited a synergistic action. Exposure to celecoxib (21.8 μmol/L) plus 5-fluorouracil (8.1 × 10−3 g/L) or sorafenib (4.4 μmol/L) increased apoptosis but exerted no effect on COX2, phosphorylated epidermal growth-factor receptor (p-EGFR) and phosphorylated (p)-AKT expression. Gefitinib (5 μmol/L), which exhibits no growth-inhibition activity as a single agent, increased the inhibitory effect of celecoxib. Gefitinib (5 μmol/L) plus celecoxib (21.8 μmol/L) increased apoptosis. COX2, p-EGFR, and p-AKT were inhibited. Conclusion Celecoxib combined with 5-fluorouracil or sorafenib or gefitinib may be superior to single-agent therapy in HepG2 MCSs. Our results provided molecular evidence to support celecoxib combination-treatment strategies for patients with human hepatocellular carcinoma. MCSs provided a good model to evaluate the interaction of anticancer drugs.
Collapse
Affiliation(s)
- Jie Cui
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, People's Republic of China ; Department of Oncology, Yan'an University Affiliated Hospital, Yan'an, People's Republic of China
| | - Ya-Huan Guo
- Department of Oncology, Shaanxi Province Cancer Hospital, Xi'an, People's Republic of China
| | - Hong-Yi Zhang
- Department of Urology, Yan'an University Affiliated Hospital, Yan'an, People's Republic of China
| | - Li-Li Jiang
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jie-Qun Ma
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wen-Juan Wang
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Min-Cong Wang
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Cheng-Cheng Yang
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ke-Jun Nan
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Li-Ping Song
- Department of Radiotherapy, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
8
|
Ramer R, Walther U, Borchert P, Laufer S, Linnebacher M, Hinz B. Induction but not inhibition of COX-2 confers human lung cancer cell apoptosis by celecoxib. J Lipid Res 2013; 54:3116-29. [PMID: 23943857 DOI: 10.1194/jlr.m042283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Among different structurally related COX-2 inhibitors, only celecoxib was found to cause apoptosis and cell death of human lung cancer cells (IC₅₀ values of 19.96 µM [A549], 12.48 µM [H460], and 41.39 µM [H358]) that was paralleled by a time- and concentration-dependent upregulation of COX-2 and peroxisome proliferator-activated receptor γ (PPARγ) at mRNA and protein levels. Apoptotic death of celecoxib-treated cancer cells was suppressed by the PPARγ antagonist GW9662 and by siRNA targeting PPARγ and, surprisingly, also by the selective COX-2 inhibitor NS-398 and siRNA targeting COX-2. NS-398 (1 µM) was shown to suppress celecoxib-induced COX-2 activity. Among the COX-2-dependent prostaglandins (PG) induced upon celecoxib treatment, PGD₂ and 15-deoxy-Δ¹²,¹⁴-PGJ₂ were found to induce a cytosol-to-nucleus translocation of PPARγ as well as a PPARγ-dependent apoptosis. Celecoxib-elicited PPARγ translocation was inhibited by NS-398. Finally, a COX-2- and PPARγ-dependent cytotoxic action of celecoxib was proven for primary human lung tumor cells. Together, our data demonstrate a proapoptotic mechanism of celecoxib involving initial upregulation of COX-2 and PPARγ and a subsequent nuclear translocation of PPARγ by COX-2-dependent PGs.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Toxicology and Pharmacology, University of Rostock, Schillingallee 70, D-18057 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Ramer R, Heinemann K, Merkord J, Rohde H, Salamon A, Linnebacher M, Hinz B. COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells. Mol Cancer Ther 2012; 12:69-82. [PMID: 23220503 DOI: 10.1158/1535-7163.mct-12-0335] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The antitumorigenic mechanism of cannabidiol is still controversial. This study investigates the role of COX-2 and PPAR-γ in cannabidiol's proapoptotic and tumor-regressive action. In lung cancer cell lines (A549, H460) and primary cells from a patient with lung cancer, cannabidiol elicited decreased viability associated with apoptosis. Apoptotic cell death by cannabidiol was suppressed by NS-398 (COX-2 inhibitor), GW9662 (PPAR-γ antagonist), and siRNA targeting COX-2 and PPAR-γ. Cannabidiol-induced apoptosis was paralleled by upregulation of COX-2 and PPAR-γ mRNA and protein expression with a maximum induction of COX-2 mRNA after 8 hours and continuous increases of PPAR-γ mRNA when compared with vehicle. In response to cannabidiol, tumor cell lines exhibited increased levels of COX-2-dependent prostaglandins (PG) among which PGD(2) and 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) caused a translocation of PPAR-γ to the nucleus and induced a PPAR-γ-dependent apoptotic cell death. Moreover, in A549-xenografted nude mice, cannabidiol caused upregulation of COX-2 and PPAR-γ in tumor tissue and tumor regression that was reversible by GW9662. Together, our data show a novel proapoptotic mechanism of cannabidiol involving initial upregulation of COX-2 and PPAR-γ and a subsequent nuclear translocation of PPAR-γ by COX-2-dependent PGs.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Toxicology and Pharmacology, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Yang CS, Lopez CG, Rana TM. Discovery of nonsteroidal anti-inflammatory drug and anticancer drug enhancing reprogramming and induced pluripotent stem cell generation. Stem Cells 2012; 29:1528-36. [PMID: 21898684 DOI: 10.1002/stem.717] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem-like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c-Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF-specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti-inflammatory drug Nabumetone and the anticancer drug 4-hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c-Myc or Sox2 without compromising self-renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis-driven approach provides an alternative to shot-gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction.
Collapse
Affiliation(s)
- Chao-Shun Yang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
11
|
Zienolddiny S, Skaug V. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer. LUNG CANCER (AUCKLAND, N.Z.) 2011; 3:1-14. [PMID: 28210120 PMCID: PMC5312489 DOI: 10.2147/lctt.s13256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung), lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC), 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes), detoxification (glutathione S-transferases), adduct removal (DNA repair genes), cell growth/apoptosis (TP53/MDM2), the immune system (cytokines/chemokines), and membrane receptors (nicotinic acetylcholine and dopaminergic receptors). Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most important single nucleotide polymorphisms in the metabolic pathways that may modulate susceptibility, prognosis, and therapy in NSCLC.
Collapse
Affiliation(s)
- Shanbeh Zienolddiny
- Section for Toxicology and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Vidar Skaug
- Section for Toxicology and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
12
|
Cerella C, Sobolewski C, Chateauvieux S, Henry E, Schnekenburger M, Ghelfi J, Dicato M, Diederich M. COX-2 inhibitors block chemotherapeutic agent-induced apoptosis prior to commitment in hematopoietic cancer cells. Biochem Pharmacol 2011; 82:1277-90. [PMID: 21745461 DOI: 10.1016/j.bcp.2011.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 01/07/2023]
Abstract
Enzymatic inhibitors of pro-inflammatory cyclooxygenase-2 (COX-2) possess multiple anti-cancer effects, including chemosensitization. These effects are not always linked to the inhibition of the COX-2 enzyme. Here we analyze the effects of three COX-2 enzyme inhibitors (nimesulide, NS-398 and celecoxib) on apoptosis in different hematopoietic cancer models. Surprisingly, COX-2 inhibitors strongly prevent apoptosis induced by a panel of chemotherapeutic agents. We selected U937 cells as a model of sensitive cells for further studies. Here, we provide evidence that the protective effect is COX-independent. No suppression of the low basal prostaglandin (PG)E(2) production may be observed upon treatment by COX-2 inhibitors. Besides, the non-active celecoxib analog 2,5-dimethyl-celecoxib is able to protect from apoptosis as well. We demonstrate early prevention of the stress-induced apoptotic signaling, prior to Bax/Bak activation. This preventive effect fits with an impairment of the ability of chemotherapeutic agents to trigger apoptogenic stress. Accordingly, etoposide-induced DNA damage is strongly attenuated in the presence of COX-2 inhibitors. In contrast, COX-2 inhibitors do not exert any anti-apoptotic activity when cells are challenged with physiological stimuli (anti-Fas, TNFα or Trail) or with hydrogen peroxide, which do not require internalization and/or are not targeted by chemoresistance proteins. Altogether, our findings show a differential off-target anti-apoptotic effect of COX-2 inhibitors on intrinsic vs. extrinsic apoptosis at the very early steps of intracellular signaling, prior to commitment. The results imply that an exacerbation of the chemoresistance phenomena may be implicated.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
13
|
COX-2 Inhibition and Inhibition of Cytosolic Phospholipase A2 Increase CD36 Expression and Foam Cell Formation in THP-1 Cells. Lipids 2010; 46:131-42. [DOI: 10.1007/s11745-010-3502-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|
14
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:111-20. [DOI: 10.1097/spc.0b013e32833a1dfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|