1
|
Cai C, Yang D, Cao Y, Peng Z, Wang Y, Xi J, Yan C, Li X. Anticancer potential of active alkaloids and synthetic analogs derived from marine invertebrates. Eur J Med Chem 2024; 279:116850. [PMID: 39270448 DOI: 10.1016/j.ejmech.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In recent years, the number of cancers has soared, becoming one of the leading causes of human death. At the same time, marine anticancer substances have been the focus of marine drug research. Marine alkaloids derived from marine invertebrates like sponges are an important class of secondary metabolites, which have good bioactivities of blocking the cancer cell cycle, inducing autophagy and apoptosis of cancer cells, inhibiting cancer cell invasion and proliferation. They show potential as anticancer drug candidates. Therefore, in this review, we focus on the detailed introduction of bioactive alkaloids and their synthetic analogs from marine invertebrates, such as 4-chloro fascapysin and other 41 kinds of marine alkaloids or marine alkaloid synthetic analogs. They have significant anticancer activities on breast cancer, cervical cancer, colorectal cancer, prostate cancer, lung cancer, liver cancer, and so on. It provides new candidate compounds for anticancer drug research and provides a reference basis for marine drug resources research.
Collapse
Affiliation(s)
- Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Mirra S, Marfany G. From Beach to the Bedside: Harnessing Mitochondrial Function in Human Diseases Using New Marine-Derived Strategies. Int J Mol Sci 2024; 25:834. [PMID: 38255908 PMCID: PMC10815353 DOI: 10.3390/ijms25020834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles within eukaryotic cells that act as cellular power houses owing to their ability to efficiently generate the ATP required to sustain normal cell function. Also, they represent a "hub" for the regulation of a plethora of processes, including cellular homeostasis, metabolism, the defense against oxidative stress, and cell death. Mitochondrial dysfunctions are associated with a wide range of human diseases with complex pathologies, including metabolic diseases, neurodegenerative disorders, and cancer. Therefore, regulating dysfunctional mitochondria represents a pivotal therapeutic opportunity in biomedicine. Marine ecosystems are biologically very diversified and harbor a broad range of organisms, providing both novel bioactive substances and molecules with meaningful biomedical and pharmacological applications. Recently, many mitochondria-targeting marine-derived molecules have been described to regulate mitochondrial biology, thus exerting therapeutic effects by inhibiting mitochondrial abnormalities, both in vitro and in vivo, through different mechanisms of action. Here, we review different strategies that are derived from marine organisms which modulate specific mitochondrial processes or mitochondrial molecular pathways and ultimately aim to find key molecules to treat a wide range of human diseases characterized by impaired mitochondrial function.
Collapse
Affiliation(s)
- Serena Mirra
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale, 80121 Naples, Italy;
| | - Gemma Marfany
- Departament of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
3
|
García Maza LJ, Salgado AM, Kouznetsov VV, Meléndez CM. Pyrrolo[2,1- a]isoquinoline scaffolds for developing anti-cancer agents. RSC Adv 2024; 14:1710-1728. [PMID: 38187449 PMCID: PMC10768717 DOI: 10.1039/d3ra07047f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Fused pyrrolo[2,1-a]isoquinolines have emerged as compelling molecules with remarkably potent cytotoxic activity and topoisomerase inhibitors. This comprehensive review delves into the intricate world of this family of compounds, analyzing the natural marine lamellarins known for their diverse and complex chemical structures, exploring structure-activity relationships (SARs), and highlighting their remarkable versatility. The review emphasizes their fundamental role as topoisomerase inhibitors and cytotoxic agents, as well as some crucial aspects of the chemistry of pyrrolo[2,1-a]isoquinolines, exploring synthetic strategies in total synthesis and molecular diversification trends, highlighting their importance in the field of medicinal chemistry and beyond.
Collapse
Affiliation(s)
- Leidy J García Maza
- Facultad de Ciencias Básicas, Grupo de Investigación de Química Orgánica y Biomédica, Universidad del Atlántico Barranquilla Colombia
| | - Arturo Mendoza Salgado
- Facultad de Ciencias Básicas, Grupo de Investigación de Química Orgánica y Biomédica, Universidad del Atlántico Barranquilla Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander Piedecuesta 680002 Colombia
| | - Carlos M Meléndez
- Facultad de Ciencias Básicas, Grupo de Investigación de Química Orgánica y Biomédica, Universidad del Atlántico Barranquilla Colombia
| |
Collapse
|
4
|
Dzedulionytė K, Fuxreiter N, Schreiber-Brynzak E, Žukauskaitė A, Šačkus A, Pichler V, Arbačiauskienė E. Pyrazole-based lamellarin O analogues: synthesis, biological evaluation and structure-activity relationships. RSC Adv 2023; 13:7897-7912. [PMID: 36909769 PMCID: PMC9999251 DOI: 10.1039/d3ra00972f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
A library of pyrazole-based lamellarin O analogues was synthesized from easily accessible 3(5)-aryl-1H-pyrazole-5(3)-carboxylates which were subsequently modified by bromination, N-alkylation and Pd-catalysed Suzuki cross-coupling reactions. Synthesized ethyl and methyl 3,4-diaryl-1-(2-aryl-2-oxoethyl)-1H-pyrazole-5-carboxylates were evaluated for their physicochemical property profiles and in vitro cytotoxicity against three human colorectal cancer cell lines HCT116, HT29, and SW480. The most active compounds inhibited cell proliferation in a low micromolar range. Selected ethyl 3,4-diaryl-1-(2-aryl-2-oxoethyl)-1H-pyrazole-5-carboxylates were further investigated for their mode of action. Results of combined viability staining via Calcein AM/Hoechst/PI and fluorescence-activated cell sorting data indicated that cell death was triggered in a non-necrotic manner mediated by mainly G2/M-phase arrest.
Collapse
Affiliation(s)
- Karolina Dzedulionytė
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
| | - Nina Fuxreiter
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Ekaterina Schreiber-Brynzak
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University Šlechtitelů 27 CZ-78371 Olomouc Czech Republic
| | - Algirdas Šačkus
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
- Institute of Synthetic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology K. Baršausko g. 59 LT-51423 Kaunas Lithuania
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna Althanstraße 14 1090 Vienna Austria
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų pl. 19 LT-50254 Kaunas Lithuania
| |
Collapse
|
5
|
Fakhri S, Abdian S, Moradi SZ, Delgadillo BE, Fimognari C, Bishayee A. Marine Compounds, Mitochondria, and Malignancy: A Therapeutic Nexus. Mar Drugs 2022; 20:md20100625. [PMID: 36286449 PMCID: PMC9604966 DOI: 10.3390/md20100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
The marine environment is important yet generally underexplored. It contains new sources of functional constituents that can affect various pathways in food processing, storage, and fortification. Bioactive secondary metabolites produced by marine microorganisms may have significant potential applications for humans. Various components isolated from disparate marine microorganisms, including fungi, microalgae, bacteria, and myxomycetes, showed considerable biological effects, such as anticancer, antioxidant, antiviral, antibacterial, and neuroprotective activities. Growing studies are revealing that potential anticancer effects of marine agents could be achieved through the modulation of several organelles. Mitochondria are known organelles that influence growth, differentiation, and death of cells via influencing the biosynthetic, bioenergetic, and various signaling pathways related to oxidative stress and cellular metabolism. Consequently, mitochondria play an essential role in tumorigenesis and cancer treatments by adapting to alterations in environmental and cellular conditions. The growing interest in marine-derived anticancer agents, combined with the development and progression of novel technology in the extraction and cultures of marine life, led to revelations of new compounds with meaningful pharmacological applications. This is the first critical review on marine-derived anticancer agents that have the potential for targeting mitochondrial function during tumorigenesis. This study aims to provide promising strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Blake E. Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: or
| |
Collapse
|
6
|
Mohammod M, Guguloth V, Vasam CS, Thirukovela NS. Clean and efficient synthesis of 3-aminoindolizines in one-pot using recyclable CuCN/[bmim]PF 6 system. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2081811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Muqeed Mohammod
- Department of Chemistry, Chaitanya (Deemed to be University), Hanamkonda, India
| | | | | | | |
Collapse
|
7
|
Matulja D, Vranješević F, Kolympadi Markovic M, Pavelić SK, Marković D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022; 27:molecules27041449. [PMID: 35209235 PMCID: PMC8879422 DOI: 10.3390/molecules27041449] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Since the middle of the last century, marine organisms have been identified as producers of chemically and biologically diverse secondary metabolites which have exerted various biological activities including anticancer, anti-inflammatory, antioxidant, antimicrobial, antifouling and others. This review primarily focuses on the marine phenolic compounds and their derivatives with potent anticancer activity, isolated and/or modified in the last decade. Reports on the elucidation of their structures as well as biosynthetic studies and total synthesis are also covered. Presented phenolic compounds inhibited cancer cells proliferation or migration, at sub-micromolar or nanomolar concentrations (lamellarins D (37), M (38), K (39), aspergiolide B (41), fradimycin B (62), makulavamine J (66), mayamycin (69), N-acetyl-N-demethylmayamycin (70) or norhierridin B (75)). In addition, they exhibited anticancer properties by a diverse biological mechanism including induction of apoptosis or inhibition of cell migration and invasive potential. Finally, phlorotannins 1–7 and bromophenols 12–29 represent the most researched phenolic compounds, of which the former are recognized as protective agents against UVB or gamma radiation-induced skin damages. Finally, phenolic metabolites were assorted into six main classes: phlorotannins, bromophenols, flavonoids, coumarins, terpenophenolics, quinones and hydroquinones. The derivatives that could not be attributed to any of the above-mentioned classes were grouped in a separate class named miscellaneous compounds.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Filip Vranješević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Maria Kolympadi Markovic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| |
Collapse
|
8
|
Klumthong K, Chalermsub P, Sopha P, Ruchirawat S, Ploypradith P. An Expeditious Modular Hybrid Strategy for the Diversity-Oriented Synthesis of Lamellarins/Azalamellarins with Anticancer Cytotoxicity. J Org Chem 2021; 86:14883-14902. [PMID: 34436897 DOI: 10.1021/acs.joc.1c01639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A modular hybrid strategy has been developed for the diversity-oriented synthesis of lamellarins/azalamellarins. The common pentacyclic pyrrolodihydroisoquinoline lactone/lactam core was formed via the Michael addition/ring closure (Mi-RC) and the copper(I) thiophene-2-carboxylate (CuTC)-catalyzed C-O/C-N Ullmann coupling. Subsequent direct functionalization at C1, DDQ-mediated C5═C6 oxidation, and global deprotection of all benzyl-type O- and N-protecting groups furnished the desired lamellarins/azalamellarins. The late-stage functionalization at C1 provided a handle to accommodate a wider scope of functional groups as they need to tolerate only the DDQ oxidation and global deprotection. Moreover, with the C1-H pyrrole as the late-stage common intermediate, it was also possible to divergently exploit not only its nucleophilic nature to react with some electrophilic species but also some transition-metal-catalyzed cross-coupling reactions (via the intermediacy of the C1-iodopyrrole) to incorporate diversity at this position. Overall, this strategy simplifies the preparation of lamellarins/azalamellarins; including the Mi-RC, these C1-structurally diverse analogues could be prepared efficiently in 6-7 steps from the easily accessed 1-acetoxymethyldihydroisoquinoline and β-nitrocinnamate. Some selected azalamellarins were evaluated for their inhibitory effect against HeLa cervical cancer cells. An acute induction of intrinsic apoptosis was detected and may lead to growth suppression of or cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Kanawut Klumthong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Papornchanok Chalermsub
- Applied Biological Sciences, Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Pattarawut Sopha
- Applied Biological Sciences, Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| | - Poonsakdi Ploypradith
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Sopha P, Phutubtim N, Chantrathonkul B, Ploypradith P, Ruchirawat S, Chittchang M. Roles of autophagy in relation to mitochondrial stress responses of HeLa cells to lamellarin cytotoxicity. Toxicology 2021; 462:152963. [PMID: 34560126 DOI: 10.1016/j.tox.2021.152963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
As a promising class of bioactive marine pyrrole alkaloids, lamellarins reportedly act on multiple targets to suppress the vitality of various cancer cell lines. Nevertheless, an in-depth understanding of the molecular mechanisms governing their cytotoxicity is still in demand. Here we report that while activating intrinsic apoptosis, up to 5 μM of lamellarins and their lactam-containing analogs, azalamellarins, also induced mitochondrial stress responses and autophagy in HeLa cervical cancer cells. Detailed characterization of the mitochondria in the treated cells revealed shifted abundance of the two optic atrophy protein 1 (Opa1) isoforms, disturbed morphology, and dissipated membrane potential, leading to PTEN-induced kinase-1 (PINK1) and microtubule-associated protein 1 light chain 3-II (LC3-II) accumulation as a molecular signature of mitophagy. Furthermore, an acute treatment with lamellarins also modulated cellular autophagy flux as evidenced by elevated LC3-II levels, LC3 puncta formation, and p62 degradation. Surprisingly, clustered regularly interspaced short palindromic repeats (CRISPR)-based suppression of autophagy transiently affected the number of apoptotic cells induced by these compounds. Our findings illustrate the potential of these alkaloids for further development into prospective anti-cancer agents.
Collapse
Affiliation(s)
- Pattarawut Sopha
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand; The Center of Excellence on Environmental Health and Toxicology (EHT), Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Nadgrita Phutubtim
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand; Research Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Bunkuea Chantrathonkul
- Research Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Poonsakdi Ploypradith
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand; The Center of Excellence on Environmental Health and Toxicology (EHT), Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; Research Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand; The Center of Excellence on Environmental Health and Toxicology (EHT), Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; Research Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Montakarn Chittchang
- The Center of Excellence on Environmental Health and Toxicology (EHT), Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; Research Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand.
| |
Collapse
|
10
|
Guguloth V, Balaboina R, Paidakula S, Thirukovela NS, Vadde R. AgI
‐promoted one‐pot synthesis of aminoindolizines via sequential
Mannich‐Grignard
addition and intramolecular cyclization in water. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Ravinder Vadde
- Department of Chemistry Kakatiya University Warangal India
| |
Collapse
|
11
|
Zheng L, Gao T, Ge Z, Ma Z, Xu J, Ding W, Shen L. Design, Synthesis and Structure-Activity Relationship Studies of Glycosylated Derivatives of Marine Natural Product Lamellarin D. Eur J Med Chem 2021; 214:113226. [PMID: 33582387 DOI: 10.1016/j.ejmech.2021.113226] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
Lamellarin D, a marine natural product, acts as a potent inhibitor of DNA topoisomerase I (Topo I). To modify its physicochemical property and biological activity, a series of mono- and di-glycosylated derivatives were designed and synthesized through 22-26 multi-steps. Their inhibition of human Topo I was evaluated, and most of the glycosylated derivatives exhibited high potency in inhibiting Topo I activity as well as lamellarin D. All the 15 target compounds were evaluated for their cytotoxic activities against five human cancer cell lines. The typical lamellarin derivative ZL-3 exhibited the best activity with IC50 values of 3 nM, 10 nM, and 15 nM against human lung cancer A549 cells, human colon cancer HCT116 cells and human hepatocellular carcinoma HepG2 cells. Compound ZL-1 exhibited anti-cancer activity with IC50 of 14 nM and 24 nM against human colon cancer HCT116 cells and human hepatocellular carcinoma HepG2 cells, respectively. Cell cycle analysis in MDA-MB-231 suggested ZL-3 inhibited cell growth through arresting cells at the G2/M phase of the cell cycle. Further tests showed a significant improvement in aqueous solubility of ZL-1 and ZL-7. This study suggested that glycosylation could be utilized as a useful strategy to optimize lamellarin D derivatives as Topo I inhibitors and anticancer agents.
Collapse
Affiliation(s)
- Liuliu Zheng
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Tingting Gao
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongjun Ma
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Jinzhong Xu
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Wanjing Ding
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Li Shen
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
12
|
Pyrrolo[2,1- a]isoquinoline scaffold in drug discovery: advances in synthesis and medicinal chemistry. Future Med Chem 2019; 11:2735-2755. [PMID: 31556691 DOI: 10.4155/fmc-2019-0136] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pyrrolo[2,1-a]isoquinoline (PIq) is a nitrogen heterocyclic scaffold of diverse alkaloids endowed with several biological activities, including antiretroviral and antitumor activities. Several 5,6-dihydro-PIq (DHPIq) alkaloids, belonging to the lamellarins' family, have proved to be cytotoxic to tumor cells, as well as reversers of multidrug resistance. In this review, we provide an overview of the main achievements over the last decade in the synthetic approaches to access libraries of PIq compounds along with a survey, as comprehensive as possible, of bioactivity, mechanism of action, pharmacophore and structure-activity relationships of synthetic analogs of DHPIq-based alkaloids. The focus is mainly on the potential exploitation of the (DH)PIq scaffold in design and development of novel antitumor drugs.
Collapse
|
13
|
Kumar TU, Bobde Y, Pulya S, Rangan K, Ghosh B, Bhattacharya A. Fused Chromeno‐Thieno/Furo‐Pyridines as Potential Analogs of Lamellarin D and their Anticancer Activity Evaluation. ChemistrySelect 2019. [DOI: 10.1002/slct.201902946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- T. Uday Kumar
- Department of ChemistryBirla Institute of Technology and Science-Pilani (Hyderabad Campus) Hyderabad- 500078 India
| | - Yamini Bobde
- Department of PharmacyBirla Institute of Technology and Science-Pilani (Hyderabad Campus) Hyderabad- 500078 India
| | - Sravani Pulya
- Department of PharmacyBirla Institute of Technology and Science-Pilani (Hyderabad Campus) Hyderabad- 500078 India
| | - Krishnan Rangan
- Department of ChemistryBirla Institute of Technology and Science-Pilani (Hyderabad Campus) Hyderabad- 500078 India
| | - Balaram Ghosh
- Department of PharmacyBirla Institute of Technology and Science-Pilani (Hyderabad Campus) Hyderabad- 500078 India
| | - Anupam Bhattacharya
- Department of ChemistryBirla Institute of Technology and Science-Pilani (Hyderabad Campus) Hyderabad- 500078 India
| |
Collapse
|
14
|
Increased Oxidative Stress Induced by Rubus Bioactive Compounds Induce Apoptotic Cell Death in Human Breast Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6797921. [PMID: 31281587 PMCID: PMC6589211 DOI: 10.1155/2019/6797921] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/07/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022]
Abstract
Bioactive compounds from plants represent good candidate drugs for the prevention and treatment of various forms of cancer. Berries are rich sources of bioactive compounds, and there has been an increasing interest in the study of therapeutic action of wild berries. Oxidants are generated continuously in biological system as a result of physiological process. When there is an imbalance between oxidants and antioxidants, it leads to a condition called oxidative stress. Natural compounds as inducers of oxidative stress are able to modulate the physiological functions of cancer cells leading to cell death or survival. The aim of this study was to evaluate the induction of apoptosis by isolated bioactive compounds (1-(2-hydroxyphenyl)-4-methylpentan-1-one (C1) and 2-[(3-methylbutoxy) carbonyl] benzoic acid (C2)) from Rubus fairholmianus against MCF-7 breast cancer cells. The exposure of C1 and C2 reduced viability (IC50 of C1: 4.69; C2: 8.36 μg/mL) and proliferation. Cytochrome c release from mitochondria and changes in mitochondrial membrane potential of treated cells supported the intrinsic apoptotic cell death. Reactive oxygen species (ROS) production after treatment with C1 and C2 was found to be higher and induced nuclear damage. Expression of apoptotic proteins after the treatments was significantly upregulated as indicated using immunofluorescence (caspase 9, p53, and Bax), western blotting (p53, cleaved PARP, cytochrome c, and Bax), and ELISA (caspase 9) analysis. Overall, C1 was more cytotoxic, increased the ROS production in dichlorodihydrofluorescein diacetate assay, and induced apoptosis in breast cancer cells. These results illustrate that berry bioactive compounds have strong chemopreventive potential. In this article, we provide information on prooxidant and anticancer activities of Rubus bioactive compounds. Natural products have always demonstrated a significant contribution to the development of several cancer chemotherapeutic drugs. Most of these compounds are known to affect the redox state of the cell; and studies on these compounds have focused on their antioxidant property instead of prooxidant properties.
Collapse
|
15
|
Gu CX, Chen WW, Xu B, Xu MH. Synthesis of indolo[2,3-c]coumarins and indolo[2,3-c]quinolinones via microwave-assisted base-free intramolecular cross dehydrogenative coupling. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Zafar A, Singh S, Satija YK, Saluja D, Naseem I. Deciphering the molecular mechanism underlying anticancer activity of coumestrol in triple-negative breast cancer cells. Toxicol In Vitro 2017; 46:19-28. [PMID: 28986287 DOI: 10.1016/j.tiv.2017.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/13/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023]
Abstract
Triple-negative breast cancer (TNBC) represents the highly aggressive subgroup of breast cancers with poor prognosis due to absence of estrogen receptor (ER). Therefore, alternative targeted therapies are required against ER-negative breast cancers. Coumestrol, a phytoestrogen inhibits cell growth of ER-negative breast cancer MDA-MB-231 cells; the exact mechanism has not yet been reported. Unlike normal cells, cancer cells contain elevated copper which play an integral role in angiogenesis. The current focus of the work was to identify any possible role of copper in coumestrol cytotoxic action against breast cancer MDA-MB-231 cells. Results demonstrated that coumestrol inhibited cell viability, induced ROS generation, DNA damage, G1/S cell cycle arrest, up-regulation of Bax and apoptosis induction via caspase-dependent mitochondrial mediated pathway in MDA-MB-231 cells. Further, addition of copper chelator, neocuproine and ROS scavenger, N-acetyl cysteine were ineffective in abrogating coumestrol-mediated apoptosis. This suggests non-involvement of copper and ROS in coumestrol-induced apoptosis. To account for coumestrol-mediated up-regulation of Bax and apoptosis induction, direct binding potential between coumestrol and Bax/Bcl-2 was studied using in silico molecular docking studies. We propose that coumestrol directly enters cells and combines with Bax/Bcl-2 to alter their structures, thereby causing Bax binding to the outer mitochondrial membrane and Bcl-2 release from the mitochondria to initiate apoptosis. Thus, non-copper targeted ROS independent DNA damage is the central mechanism of coumestrol in ER-negative MDA-MB-231 cells. These findings will be useful in better understanding of anticancer mechanisms of coumestrol and establishing it as a lead molecule for TNBC treatment.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Swarnendra Singh
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Yatendra Kumar Satija
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Daman Saluja
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
17
|
Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R. Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Med Res Rev 2017; 37:702-801. [PMID: 27925266 PMCID: PMC5484305 DOI: 10.1002/med.21423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as "chemotaxonomic markers" for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk-derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen-containing compounds. The "promise" of a mollusk-derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk-derived anticancer agents and solutions to their procurement in quantity.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital ErasmeUniversité Libre de Bruxelles (ULB)1070BrusselsBelgium
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Tania Betancourt
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Ramesh Dasari
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Alexander Kornienko
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie ExpérimentaleFaculté de Pharmacie, Université Libre de Bruxelles (ULB)1050BrusselsBelgium
| |
Collapse
|
18
|
Wu X, Li X, Yang C, Li B, Chen S. Copper-Catalyzed Multicomponent Amination/Alkynylative Cycloisomerization Cascade: Facile Access to Ferrocene-Containing Indolizine Derivatives. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xinxing Wu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis; Department of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot 010021 People's Republic of China
| | - Xiaojie Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis; Department of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot 010021 People's Republic of China
| | - Chunyan Yang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis; Department of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot 010021 People's Republic of China
| | - Baoguo Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis; Department of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot 010021 People's Republic of China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis; Department of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot 010021 People's Republic of China
| |
Collapse
|
19
|
André F, Trinh A, Balayssac S, Maboudou P, Dekiouk S, Malet-Martino M, Quesnel B, Idziorek T, Kluza J, Marchetti P. Metabolic rewiring in cancer cells overexpressing the glucocorticoid-induced leucine zipper protein (GILZ): Activation of mitochondrial oxidative phosphorylation and sensitization to oxidative cell death induced by mitochondrial targeted drugs. Int J Biochem Cell Biol 2017; 85:166-174. [PMID: 28259749 DOI: 10.1016/j.biocel.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022]
Abstract
Cancer cell metabolism is largely controlled by oncogenic signals and nutrient availability. Here, we highlighted that the glucocorticoid-induced leucine zipper (GILZ), an intracellular protein influencing many signaling pathways, reprograms cancer cell metabolism to promote proliferation. We provided evidence that GILZ overexpression induced a significant increase of mitochondrial oxidative phosphorylation as evidenced by the augmentation in basal respiration, ATP-linked respiration as well as respiratory capacity. Pharmacological inhibition of glucose, glutamine and fatty acid oxidation reduced the activation of GILZ-induced mitochondrial oxidative phosphorylation. At glycolysis level, GILZ-overexpressing cells enhanced the expression of glucose transporters in their plasmatic membrane and showed higher glycolytic reserve. 1H NMR metabolites quantification showed an up-regulation of amino acid biosynthesis. The GILZ-induced metabolic reprograming is present in various cancer cell lines regardless of their driver mutations status and is associated with higher proliferation rates persisting under metabolic stress conditions. Interestingly, high levels of OXPHOS made GILZ-overexpressing cells vulnerable to cell death induced by mitochondrial pro-oxidants. Altogether, these data indicate that GILZ reprograms cancer metabolism towards mitochondrial OXPHOS and sensitizes cancer cells to mitochondria-targeted drugs with pro-oxidant activities.
Collapse
Affiliation(s)
- Fanny André
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Anne Trinh
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Stéphane Balayssac
- Laboratoire SPCMIB, UMR CNRS 5068 Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Patrice Maboudou
- CHU Lille, Centre de Biologie-Pathologie, Biologie et Thérapie cellulaire & Banque de Tissus, F-59000, Lille, France
| | - Salim Dekiouk
- CHU Lille, Centre de Biologie-Pathologie, Biologie et Thérapie cellulaire & Banque de Tissus, F-59000, Lille, France
| | - Myriam Malet-Martino
- Laboratoire SPCMIB, UMR CNRS 5068 Université Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Bruno Quesnel
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Thierry Idziorek
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Jérome Kluza
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Philippe Marchetti
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France; CHU Lille, Centre de Biologie-Pathologie, Biologie et Thérapie cellulaire & Banque de Tissus, F-59000, Lille, France.
| |
Collapse
|
20
|
Jain CK, Majumder HK, Roychoudhury S. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases. Curr Genomics 2017; 18:75-92. [PMID: 28503091 PMCID: PMC5321768 DOI: 10.2174/1389202917666160808125213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022] Open
Abstract
DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs.
Collapse
Affiliation(s)
- Chetan Kumar Jain
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre & Research Institute, M G Road, Thakurpukur, Kolkata-700 063, India
| |
Collapse
|
21
|
André F, Corazao-Rozas P, Idziorek T, Quesnel B, Kluza J, Marchetti P. GILZ overexpression attenuates endoplasmic reticulum stress-mediated cell death via the activation of mitochondrial oxidative phosphorylation. Biochem Biophys Res Commun 2016; 478:513-20. [PMID: 27416758 DOI: 10.1016/j.bbrc.2016.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 07/09/2016] [Indexed: 12/14/2022]
Abstract
The Glucocorticoïd-induced leucine zipper (GILZ) protein has profound anti-inflammatory activities in haematopoietic cells. GILZ regulates numerous signal transduction pathways involved in proliferation and survival of normal and neoplastic cells. Here, we have demonstrated the potential of GILZ in alleviating apoptosis induced by ER stress inducers. Whereas the glucocorticoid, dexamethasone, protects from tunicamycin-induced cell death, silencing endogeneous GILZ in dexamethasone-treated cancer cells alter the capacity of glucocorticoids to protect from tunicamycin-mediated apoptosis. Under ER stress conditions, overexpression of GILZ significantly reduced activation of mitochondrial pathway of apoptosis by maintaining Bcl-xl level. GILZ protein affects the UPR signaling shifting the balance towards pro-survival signals as judged by down-regulation of CHOP, ATF4, XBP1s mRNA and increase in GRP78 protein level. Interestingly, GILZ sustains high mitochondrial OXPHOS during ER stress and cytoprotection mediated by GILZ is abolished in cells depleted of mitochondrial DNA, which are OXPHOS-deficient. These findings reveal a new role of GILZ, which acts as a cytoprotector against ER stress through a pathway involving mitochondrial OXPHOS.
Collapse
Affiliation(s)
- Fanny André
- INSERM UMR-S 1172, Université de Lille, 1 Place Verdun F-59045 Cedex, France
| | - Paola Corazao-Rozas
- CHU Lille, Banque de Tissus & Biologie Cellulaire -Thérapie Cellulaire, F-59000 Lille France
| | - Thierry Idziorek
- INSERM UMR-S 1172, Université de Lille, 1 Place Verdun F-59045 Cedex, France
| | - Bruno Quesnel
- INSERM UMR-S 1172, Université de Lille, 1 Place Verdun F-59045 Cedex, France
| | - Jérome Kluza
- INSERM UMR-S 1172, Université de Lille, 1 Place Verdun F-59045 Cedex, France
| | - Philippe Marchetti
- INSERM UMR-S 1172, Université de Lille, 1 Place Verdun F-59045 Cedex, France; CHU Lille, Banque de Tissus & Biologie Cellulaire -Thérapie Cellulaire, F-59000 Lille France.
| |
Collapse
|
22
|
Kulabaş N, Tatar E, Bingöl Özakpınar Ö, Özsavcı D, Pannecouque C, De Clercq E, Küçükgüzel İ. Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. Eur J Med Chem 2016; 121:58-70. [PMID: 27214512 DOI: 10.1016/j.ejmech.2016.05.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 02/05/2023]
Abstract
In this study, a series of thiosemicarbazide derivatives 12-14, 1,2,4-triazol-3-thione derivatives 15-17 and compounds bearing 2-(4H-1,2,4-triazole-3-ylthio)acetamide structure 18-32 have been synthesized starting from phenolic compounds such as 2-naphthol, paracetamol and thymol. Structures and purity of the target compounds were confirmed by the use of their chromatographic and spectral data besides microanalysis. All of the synthesized new compounds 12-32 were evaluated for their anti-HIV activity. Among these compounds, three representatives 18, 19 and 25 were selected and evaluated by the National Cancer Institute (NCI) against the full panel of 60 human cancer cell lines derived from nine different cancer types. Antiproliferative effects of the selected compounds were demonstrated in human tumor cell lines K-562, A549 and PC-3. These compounds inhibited cell growth assessed by MTT assay. Compound 18, 19 and 25 exhibited anti-cancer activity with IC50 values of 5.96 μM (PC-3 cells), 7.90 μM (A549/ATCC cells) and 7.71 μM (K-562 cells), respectively. After the cell viability assay, caspase activation and Bcl-2 activity of the selected compounds were measured and the loss of mitochondrial membrane potential (MMP) was detected. Compounds 18, 19 and 25 showed a significant increase in caspase-3 activity in a dose-dependent manner. This was not observed for caspase-8 activity with compound 18 and 25, while compound 19 was significantly elevated only at the dose of 50 μM. In addition, all three compounds significantly decreased the mitochondrial membrane potential and expression of Bcl-2.
Collapse
Affiliation(s)
- Necla Kulabaş
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Haydarpaşa, 34668 İstanbul, Turkey
| | - Esra Tatar
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Haydarpaşa, 34668 İstanbul, Turkey
| | - Özlem Bingöl Özakpınar
- Marmara University, Faculty of Pharmacy, Department of Biochemistry, Haydarpaşa, 34668 İstanbul, Turkey
| | - Derya Özsavcı
- Marmara University, Faculty of Pharmacy, Department of Biochemistry, Haydarpaşa, 34668 İstanbul, Turkey
| | - Christophe Pannecouque
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Erik De Clercq
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - İlkay Küçükgüzel
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Haydarpaşa, 34668 İstanbul, Turkey.
| |
Collapse
|
23
|
Anticancer properties of lamellarins. Mar Drugs 2015; 13:1105-23. [PMID: 25706633 PMCID: PMC4377975 DOI: 10.3390/md13031105] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/24/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids.
Collapse
|
24
|
Iwao M, Fukuda T, Sato D. A Synthesis of Lamellarins via Regioselective Assembly of 1,2,3-Differentially Substituted 5,6-Dihydropyrrolo[2,1-a]Isoquinoline Core. HETEROCYCLES 2015. [DOI: 10.3987/com-15-13188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Imbri D, Tauber J, Opatz T. Synthetic approaches to the lamellarins--a comprehensive review. Mar Drugs 2014; 12:6142-77. [PMID: 25528958 PMCID: PMC4278223 DOI: 10.3390/md12126142] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 01/04/2023] Open
Abstract
The present review discusses the known synthetic routes to the lamellarin alkaloids published until 2014. It begins with syntheses of the structurally simpler type-II lamellarins and then focuses on the larger class of the 5,6-saturated and -unsaturated type-I lamellarins. The syntheses are grouped by the strategy employed for the assembly of the central pyrrole ring.
Collapse
Affiliation(s)
- Dennis Imbri
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Johannes Tauber
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
26
|
Yang C, Wong ILK, Jin WB, Jiang T, Chow LMC, Wan SB. Modification of marine natural product ningalin B and SAR study lead to potent P-glycoprotein inhibitors. Mar Drugs 2014; 12:5209-21. [PMID: 25329704 PMCID: PMC4210895 DOI: 10.3390/md12105209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 09/01/2014] [Accepted: 09/25/2014] [Indexed: 11/28/2022] Open
Abstract
In this study, new marine ningalin B analogues containing a piperazine or a benzoloxy group at ring C have been synthesized and evaluated on their P-gp modulating activity in human breast cancer and leukemia cell lines. Their structure-activity relationship was preliminarily studied. Compounds 19 and 20 are potent P-gp inhibitors. These two synthetic analogues of permethyl ningalin B may be potentially used as effective modulators of P-gp-mediated drug resistance in cancer cells.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Iris L K Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Wen Bin Jin
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Sheng Biao Wan
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
27
|
Sarma P, Ramaiah MJ, Kamal A, Bhadra U, Bhadra MP. A novel bisindole-PBD conjugate causes DNA damage induced apoptosis via inhibition of DNA repair pathway. Cancer Biol Ther 2014; 15:1320-32. [PMID: 25010292 DOI: 10.4161/cbt.29705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA damage response (DDR) that includes cell cycle check points, DNA repair, apoptosis, and senescence is intimately linked with cancer. It shields an organism against cancer development when genomic integrity fails. DNA repair pathways protect the cells from tumor progression caused as a result of DNA damage induced by irradiation or due to chemotherapeutic treatment. Many promising anticancer agents have been identified that target specific DNA repair pathways in response to DNA damage thereby leading to apoptosis. Here we identified a novel bisindole-PBD conjugate that possess potent anticancer activity in breast cancer cells. Further studies aimed at understanding the mechanism of action of the molecule showed its role in DNA damage induced apoptosis via inhibition of DNA repair pathway. Trypan blue and BrdU assay exhibited a dose-dependent effect. Single-stranded DNA damage was observed by COMET assay. In addition DNA damage induced ROS generation with simultaneous activation of ATM and ATR upon compound treatment was observed. Further downregulation of Bcl-XL and activation of Bax showed DNA damage induced apoptosis in MCF-7 and MDAMB-231 cells. In conclusion, it can be summarized that bisindole-PBD conjugate induces DNA damage in a dose dependent (2, 4, and 8 μM) manner by inhibiting the DNA repair genes.
Collapse
Affiliation(s)
- Pranjal Sarma
- 1 Centre for Chemical Biology; CSIR-Indian Institute of Chemical Technology; Tarnaka, Hyderabad, India; Functional Genomics and Gene Silencing Group; Centre for Cellular and Molecular Biology; Hyderabad, India
| | - M Janaki Ramaiah
- 1 Centre for Chemical Biology; CSIR-Indian Institute of Chemical Technology; Tarnaka, Hyderabad, India
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology; CSIR-Indian Institute of Chemical Technology; Tarnaka, Hyderabad, India
| | - Utpal Bhadra
- Functional Genomics and Gene Silencing Group; Centre for Cellular and Molecular Biology; Hyderabad, India
| | - Manika Pal Bhadra
- 1 Centre for Chemical Biology; CSIR-Indian Institute of Chemical Technology; Tarnaka, Hyderabad, India
| |
Collapse
|
28
|
Khiati S, Seol Y, Agama K, Dalla Rosa I, Agrawal S, Fesen K, Zhang H, Neuman KC, Pommier Y. Poisoning of mitochondrial topoisomerase I by lamellarin D. Mol Pharmacol 2014; 86:193-9. [PMID: 24890608 DOI: 10.1124/mol.114.092833] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lamellarin D (Lam-D) is a hexacyclic pyrole alkaloid isolated from marine invertebrates, whose biologic properties have been attributed to mitochondrial targeting. Mitochondria contain their own DNA (mtDNA), and the only specific mitochondrial topoisomerase in vertebrates is mitochondrial topoisomerase I (Top1mt). Here, we show that Top1mt is a direct mitochondrial target of Lam-D. In vitro Lam-D traps Top1mt and induces Top1mt cleavage complexes (Top1mtcc). Using single-molecule analyses, we also show that Lam-D slows down supercoil relaxation of Top1mt and strongly inhibits Top1mt religation in contrast to the inefficacy of camptothecin on Top1mt. In living cells, we show that Lam-D accumulates rapidly inside mitochondria, induces cellular Top1mtcc, and leads to mtDNA damage. This study provides evidence that Top1mt is a direct mitochondrial target of Lam-D and suggests that developing Top1mt inhibitors represents a novel strategy for targeting mitochondrial DNA.
Collapse
Affiliation(s)
- Salim Khiati
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Yeonee Seol
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Ilaria Dalla Rosa
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Surbhi Agrawal
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Katherine Fesen
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Hongliang Zhang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Keir C Neuman
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (S.K., K.A., I.D.R., S.A., K.F., H.Z., Y.P.) and Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute (Y.S., K.C.N.), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Murali Krishna Kumar M, Devilal Naik J, Satyavathi K, Ramana H, Raghuveer Varma P, Purna Nagasree K, Smitha D, Venkata Rao D. Denigrins A–C: new antitubercular 3,4-diarylpyrrole alkaloids fromDendrilla nigra. Nat Prod Res 2014; 28:888-94. [DOI: 10.1080/14786419.2014.891112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Another facet to the anticancer response to lamellarin D: induction of cellular senescence through inhibition of topoisomerase I and intracellular Ros production. Mar Drugs 2014; 12:779-98. [PMID: 24473175 PMCID: PMC3944515 DOI: 10.3390/md12020779] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/13/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
Lamellarin D (LamD) is a marine alkaloid with broad spectrum antitumor activities. Multiple intracellular targets of LamD, which affect cancer cell growth and induce apoptosis, have been identified. These include nuclear topoisomerase I, relevant kinases (such as cyclin-dependent kinase 2) and the mitochondrial electron transport chain. While we have previously demonstrated that LamD at micromolar range deploys strong cytotoxicity by inducing mitochondrial apoptosis, mechanisms of its cytostatic effect have not yet been characterized. Here, we demonstrated that induction of cellular senescence (depicted by cell cycle arrest in G2 associated with β-galactosidase activity) is a common response to subtoxic concentrations of LamD. Cellular senescence is observed in a large panel of cancer cells following in vitro or in vivo exposure to LamD. The onset of cellular senescence is dependent on the presence of intact topoisomerase I since topoisomerase I-mutated cells are resistant to senescence induced by LamD. LamD-induced senescence occurs without important loss of telomere integrity. Instead, incubation with LamD results in the production of intracellular reactive oxygen species (ROS), which are critical for senescence as demonstrated by the inhibitory effect of antioxidants. In addition, cancer cells lacking mitochondrial DNA also exhibit cellular senescence upon LamD exposure indicating that LamD can trigger senescence, unlike apoptosis, in the absence of functional mitochondria. Overall, our results identify senescence-associated growth arrest as a powerful effect of LamD and add compelling evidence for the pharmacological interest of lamellarins as potential anticancer agents.
Collapse
|
31
|
Iwao M, Fukuda T, Itoyama R, Minagawa T. Rotational Energy Barrier around the C1–C11 Single Bond in Lamellarins: A Study by Variable-Temperature NMR. HETEROCYCLES 2014. [DOI: 10.3987/com-13-s(s)69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Marine invertebrate natural products for anti-inflammatory and chronic diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:572859. [PMID: 24489586 PMCID: PMC3893779 DOI: 10.1155/2013/572859] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/10/2013] [Indexed: 12/17/2022]
Abstract
The marine environment represents a relatively available source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine invertebrates based compounds have biological activities and also interfere with the pathogenesis of diseases. Isolated compounds from marine invertebrates have been shown to pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS), osteoporosis, and so forth. Extensive research within the last decade has revealed that most chronic illnesses such as cancer, neurological diseases, diabetes, and autoimmune diseases exhibit dysregulation of multiple cell signaling pathways that have been linked to inflammation. On the basis of their bioactive properties, this review focuses on the potential use of marine invertebrate derived compounds on anti-inflammatory and some chronic diseases such as cardiovascular disease, osteoporosis, diabetes, HIV, and cancer.
Collapse
|
33
|
Indumathy S, Dass CR. Finding chemo: the search for marine-based pharmaceutical drugs active against cancer. ACTA ACUST UNITED AC 2013; 65:1280-301. [PMID: 23927467 DOI: 10.1111/jphp.12097] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/29/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Cancer affects the health of many people globally. The most common treatment that is used for cancer is chemotherapy, which has shown promising results but not without side effects. Some of these side effects jeopardise further treatment, and this eventually leads to advanced stages of malignancy and mortality. As a result, there is a need for better and safer anticancer compounds such as those found naturally. One of the most abundant natural environments to find such compounds is the sea, and this vast resource has been biomined since the 1950s. KEY FINDINGS There are currently three marine anticancer agents marketed (Yondelis, Cytosar-U and Halaven), with several others undergoing clinical trials. This review discusses marine-derived products in clinical use and in clinical trials, and discusses available literature on the growth suppression or pro-apoptotic properties of these compounds, and the molecular mechanisms underpinning these cell biological phenomena. SUMMARY The marine environment may hold promising anticancer compounds within its depths, warranting further research to be performed in this area, albeit with respect for the natural ecosystems that are being explored for drug discover and subsequently used for drug development.
Collapse
Affiliation(s)
- Sivanjah Indumathy
- College of Biomedicine and Health, Victoria University, St Albans, Vic, Australia
| | | |
Collapse
|
34
|
Juneja M, Vanam U, Paranthaman S, Bharathan A, Keerthi VS, Reena JK, Rajaram R, Rajasekharan KN, Karunagaran D. 4-Amino-2-arylamino-5-indoloyl/cinnamoythiazoles, analogs of topsentin-class of marine alkaloids, induce apoptosis in HeLa cells. Eur J Med Chem 2013; 63:474-83. [DOI: 10.1016/j.ejmech.2013.02.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 11/26/2022]
|
35
|
Looi CY, Arya A, Cheah FK, Muharram B, Leong KH, Mohamad K, Wong WF, Rai N, Mustafa MR. Induction of apoptosis in human breast cancer cells via caspase pathway by vernodalin isolated from Centratherum anthelminticum (L.) seeds. PLoS One 2013; 8:e56643. [PMID: 23437193 PMCID: PMC3577860 DOI: 10.1371/journal.pone.0056643] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 01/15/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Centratherum anthelminticum (L.) seeds (CA) is a well known medicinal herb in Indian sub-continent. We recently reported anti-oxidant property of chloroform fraction of Centratherum anthelminticum (L.) seeds (CACF) by inhibiting tumor necrosis factor-α (TNF-α)-induced growth of human breast cancer cells. However, the active compounds in CACF have not been investigated previously. METHODOLOGY/PRINCIPAL FINDINGS In this study, we showed that CACF inhibited growth of MCF-7 human breast cancer cells. CACF induced apoptosis in MCF-7 cells as marked by cell size shrinkage, deformed cytoskeletal structure and DNA fragmentation. To identify the cytotoxic compound, CACF was subjected to bioassay-guided fractionation which yielded 6 fractions. CACF fraction A and B (CACF-A, -B) demonstrated highest activity among all the fractions. Further HPLC isolation, NMR and LC-MS analysis of CACF-A led to identification of vernodalin as the cytotoxic agent in CACF-A, and -B. 12,13-dihydroxyoleic acid, another major compound in CACF-C fraction was isolated for the first time from Centratherum anthelminticum (L.) seeds but showed no cytotoxic effect against MCF-7 cells. Vernodalin inhibited cell growth of human breast cancer cells MCF-7 and MDA-MB-231 by induction of cell cycle arrest and apoptosis. Increased of reactive oxygen species (ROS) production, coupled with downregulation of anti-apoptotic molecules (Bcl-2, Bcl-xL) led to reduction of mitochondrial membrane potential (MMP) and release of cytochrome c in both human breast cancer cells treated with vernodalin. Release of cytochrome c from mitochondria to cytosol triggered activation of caspase cascade, PARP cleavage, DNA damage and eventually cell death. CONCLUSIONS/SIGNIFICANCE To the best of our knowledge, this is the first comprehensive study on cytotoxic and apoptotic mechanism of vernodalin isolated from the Centratherum anthelminticum (L.) seeds in human breast cancer cells. Overall, our data suggest a potential therapeutic value of vernodalin to be further developed as new anti-cancer drug.
Collapse
Affiliation(s)
- Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cell survival and apoptosis signaling as therapeutic target for cancer: marine bioactive compounds. Int J Mol Sci 2013; 14:2334-54. [PMID: 23348928 PMCID: PMC3587990 DOI: 10.3390/ijms14022334] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 02/06/2023] Open
Abstract
Inhibition of apoptosis leads to activation of cell survival factors (e.g., AKT) causes continuous cell proliferation in cancer. Apoptosis, the major form of cellular suicide, is central to various physiological processes and the maintenance of homeostasis in multicellular organisms. A number of discoveries have clarified the molecular mechanism of apoptosis, thus clarifying the link between apoptosis and cell survival factors, which has a therapeutic outcome. Induction of apoptosis and inhibition of cell survival by anticancer agents has been shown to correlate with tumor response. Cellular damage induces growth arrest and tumor suppression by inducing apoptosis, necrosis and senescence; the mechanism of cell death depends on the magnitude of DNA damage following exposure to various anticancer agents. Apoptosis is mainly regulated by cell survival and proliferating signaling molecules. As a new therapeutic strategy, alternative types of cell death might be exploited to control and eradicate cancer cells. This review discusses the signaling of apoptosis and cell survival, as well as the potential contribution of marine bioactive compounds, suggesting that new therapeutic strategies might follow.
Collapse
|
37
|
Mishra S, Naskar B, Ghosh R. CuCl catalyzed green and efficient one-pot synthesis of aminoindolizine frameworks via three-component reactions of aldehydes, secondary amines, and terminal alkynes in PEG. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.07.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Mitocans, Mitochondria-Targeting Anticancer Drugs. ACTA ACUST UNITED AC 2012. [DOI: 10.1201/b12308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Neagoie C, Vedrenne E, Buron F, Mérour JY, Rosca S, Bourg S, Lozach O, Meijer L, Baldeyrou B, Lansiaux A, Routier S. Synthesis of chromeno[3,4-b]indoles as Lamellarin D analogues: a novel DYRK1A inhibitor class. Eur J Med Chem 2012; 49:379-96. [PMID: 22305342 DOI: 10.1016/j.ejmech.2012.01.040] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 11/17/2022]
Abstract
A library of substituted chromeno[3,4-b]indoles was developed as Lamellarin isosters. Synthesis was achieved from indoles after a four-step pathway sequence involving C-3 iodination, a Suzuki cross-coupling reaction, and a one pot deprotection/lactonisation step. Twenty final compounds were tested in order to determine their activity against topoisomerase I and kinases, the two major biological activities of Lamellarins. One newly synthesized derivative exhibited a strong topoisomerase activity comparable to reference compounds such as campthotecin and Lamellarin with only a weak kinase inhibition. Two other lead compounds were identified as new nanomolar DYRK1A inhibitors and several other drugs affected the kinases in the sub-micromolar range. These results will enable us to use the chromeno[3,4-b]indole as a pharmacophore to develop potent treatments for neurological or oncological disorders in which DYRK1A is fully involved.
Collapse
Affiliation(s)
- Cleopatra Neagoie
- Institut de Chimie Organique et Analytique, Université d'Orléans, Orléans, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chernyak D, Gevorgyan V. ORGANOCOPPER-MEDIATED TWO-COMPONENT SN2'-SUBSTITUTION CASCADE TOWARDS N-FUSED HETEROCYCLES. Chem Heterocycl Compd (N Y) 2012; 47:1516-1526. [PMID: 24501430 DOI: 10.1007/s10593-012-0942-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Organocuprates efficiently undergo reaction with heterocyclic propargyl mesylates at low temperature to produce N-fused heterocycles. The copper reagent plays a "double duty" in this cascade transformation, which proceeds through an SN2'-substitution followed by a consequent cycloisomerization step.
Collapse
Affiliation(s)
- D Chernyak
- University of Illinois at Chicago, 845 West Taylor St., Chicago 60607, Illinois, USA
| | - V Gevorgyan
- University of Illinois at Chicago, 845 West Taylor St., Chicago 60607, Illinois, USA
| |
Collapse
|
41
|
Rohlena J, Dong LF, Ralph SJ, Neuzil J. Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid Redox Signal 2011; 15:2951-74. [PMID: 21777145 DOI: 10.1089/ars.2011.3990] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Mitochondria are emerging as highly intriguing organelles showing promise but that are yet to be fully exploited as targets for anticancer drugs. RECENT ADVANCES A group of compounds that induce mitochondrial destabilization, thereby affecting the physiology of cancer cells, has been defined and termed 'mitocans.' Based on their mode of action of targeting in and around mitochondria, we have placed these agents into several groups including hexokinase inhibitors, compounds targeting Bcl-2 family proteins, thiol redox inhibitors, VDAC/ANT targeting drugs, electron transport chain-targeting drugs, lipophilic cations targeting the inner membrane, agents affecting the tricarboxylic acid cycle, drugs targeting mtDNA, and agents targeting other presently unknown sites. CRITICAL ISSUES Mitocans have a potential to prove highly efficient in suppressing various malignant diseases in a selective manner. They include compounds that are currently in clinical trial and offer substantial promise to become clinically applied drugs. Here we update and redefine the individual classes of mitocans, providing examples of the various members of these groups with a particular focus on agents targeting the electron transport chain, and indicate their potential application in clinical practice. FUTURE DIRECTIONS Even though reactive oxygen species induction is important for the anticancer activity of many mitocans, the precise sequence of events preceding and following this pivotal event are not yet fully clarified, and warrant further investigation. This is imperative for effective deployment of these compounds in the clinic.
Collapse
Affiliation(s)
- Jakub Rohlena
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
42
|
Synthesis, structure–activity relationships, and mechanism of action of anti-HIV-1 lamellarin α 20-sulfate analogues. Bioorg Med Chem 2011; 19:7541-50. [DOI: 10.1016/j.bmc.2011.10.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 10/11/2011] [Indexed: 11/22/2022]
|
43
|
Ballot C, Jendoubi M, Kluza J, Jonneaux A, Laine W, Formstecher P, Bailly C, Marchetti P. Regulation by survivin of cancer cell death induced by F14512, a polyamine-containing inhibitor of DNA topoisomerase II. Apoptosis 2011; 17:364-76. [DOI: 10.1007/s10495-011-0681-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Cananzi S, Merlini L, Artali R, Beretta GL, Zaffaroni N, Dallavalle S. Synthesis and topoisomerase I inhibitory activity of a novel diazaindeno[2,1-b]phenanthrene analogue of Lamellarin D. Bioorg Med Chem 2011; 19:4971-84. [PMID: 21783369 DOI: 10.1016/j.bmc.2011.06.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 12/14/2022]
Abstract
A novel 5-oxa-6a,8-diazaindeno[2,1-b]phenanthren-7-one scaffold was designed and synthesized as an active analogue of the cytotoxic marine alkaloid Lamellarin D. The design was based on molecular modeling of the site of interaction of Lamellarin D with DNA-topoisomerase I cleavable complex, whereas the synthesis capitalized on a simple Friedel-Crafts cyclization of indole to a β-carbolinone nucleus. The product exhibited topoisomerase I poisoning activity and submicromolar cytotoxicity on human non-small cell lung cancer H460 cell line.
Collapse
Affiliation(s)
- Salvatore Cananzi
- Department of Molecular and Agrifood Sciences, Università di Milano, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The latest developments towards the synthesis of lamellarins, their structure–activity relationship and advances in the mechanism of action are described.
Collapse
Affiliation(s)
- Daniel Pla
- CIBER-BBN
- Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- Barcelona Science Park
- Barcelona
| | - Fernando Albericio
- CIBER-BBN
- Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- Barcelona Science Park
- Barcelona
| | - Mercedes Álvarez
- CIBER-BBN
- Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- Barcelona Science Park
- Barcelona
| |
Collapse
|
46
|
Iwao M, Fukuda T, Ishibashi F. Synthesis and Biological Activity of Lamellarin Alkaloids: An Overview. HETEROCYCLES 2011. [DOI: 10.3987/rev-10-686] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Chernyak D, Gevorgyan V. Palladium-catalyzed intramolecular carbopalladation/cyclization cascade: access to polycyclic N-fused heterocycles. Org Lett 2010; 12:5558-60. [PMID: 21058673 DOI: 10.1021/ol102447s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient palladium-catalyzed intramolecular carbopalladation/cyclization cascade toward tetra- and pentacyclic N-fused heterocycles has been developed. This transformation proceeds via the palladium-catalyzed coupling of aryl halides with internal propargylic esters or ethers followed by the 5-endo-dig cyclization leading to polycyclic pyrroloheterocycles in moderate to excellent yields.
Collapse
Affiliation(s)
- Dmitri Chernyak
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, USA
| | | |
Collapse
|
48
|
Boonya-udtayan S, Yotapan N, Woo C, Bruns CJ, Ruchirawat S, Thasana N. Synthesis and Biological Activities of Azalamellarins. Chem Asian J 2010; 5:2113-23. [DOI: 10.1002/asia.201000237] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Biochemical disorders induced by cytotoxic marine natural products in breast cancer cells as revealed by proton NMR spectroscopy-based metabolomics. Biochem Pharmacol 2010; 80:1170-9. [PMID: 20637732 DOI: 10.1016/j.bcp.2010.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 12/16/2022]
Abstract
Marine plants and animals are sources of a huge number of pharmacologically active compounds, some of which exhibit antineoplastic activity of clinical relevance. However the mechanism of action of marine natural products (MNPs) is poorly understood. In this study, proton NMR spectroscopy-based metabolomics was applied to unravel biochemical disorders induced in human MCF7 breast cancer cells by 3 lead candidate anticancer MNPs: ascididemin (Asc), lamellarin-D (Lam-D), and kahalalide F (KF). Asc, Lam-D, and KF provoked a severe decrease in DNA content in MCF7 cells after 24-h treatment. Asc and Lam-D provoked apoptosis, whereas KF induced non-apoptotic cell death. Metabolite profiling revealed major biochemical disorders following treatment. The response of MCF7 tumor cells to Asc involved the accumulation of citrate (x17 the control level, P<0.001), testifying enzyme blockade in citrate metabolism, and the accumulation of gluconate (x9.8, P<0.005), a metabolite never reported at such concentration in tumor cells, probably testifying glycolysis shutdown. The response to Lam-D involved the accumulation of aspartate (x7.2, P<0.05), glutamate (x14.7, P<0.05), and lactate (x2.3, P<0.05), probably in relation with the targeting of the malate-aspartate shuttle, as discussed. The response to KF involved increased lipid accumulation (polyunsaturated fatty acids x9.8, P<0.05), and phospholipid and acetate derivative alterations. Altogether, this study demonstrates the potential of proton NMR spectroscopy-based metabolomics to help uncover metabolic targets and elucidate the mechanism of cytotoxicity of candidate antineoplastic MNPs.
Collapse
|