1
|
García-López D, Zaragoza-Ojeda M, Eguía-Aguilar P, Arenas-Huertero F. Endoplasmic Reticulum Stress in Gliomas: Exploiting a Dual-Effect Dysfunction through Chemical Pharmaceutical Compounds and Natural Derivatives for Therapeutical Uses. Int J Mol Sci 2024; 25:4078. [PMID: 38612890 PMCID: PMC11012637 DOI: 10.3390/ijms25074078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/14/2024] Open
Abstract
The endoplasmic reticulum maintains proteostasis, which can be disrupted by oxidative stress, nutrient deprivation, hypoxia, lack of ATP, and toxicity caused by xenobiotic compounds, all of which can result in the accumulation of misfolded proteins. These stressors activate the unfolded protein response (UPR), which aims to restore proteostasis and avoid cell death. However, endoplasmic response-associated degradation (ERAD) is sometimes triggered to degrade the misfolded and unassembled proteins instead. If stress persists, cells activate three sensors: PERK, IRE-1, and ATF6. Glioma cells can use these sensors to remain unresponsive to chemotherapeutic treatments. In such cases, the activation of ATF4 via PERK and some proteins via IRE-1 can promote several types of cell death. The search for new antitumor compounds that can successfully and directly induce an endoplasmic reticulum stress response ranges from ligands to oxygen-dependent metabolic pathways in the cell capable of activating cell death pathways. Herein, we discuss the importance of the ER stress mechanism in glioma and likely therapeutic targets within the UPR pathway, as well as chemicals, pharmaceutical compounds, and natural derivatives of potential use against gliomas.
Collapse
Affiliation(s)
- Daniel García-López
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
- Facultad de Ciencia y Tecnología, Universidad Simón Bolívar, Mexico City 03920, Mexico
| | - Montserrat Zaragoza-Ojeda
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
| | - Pilar Eguía-Aguilar
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
- Centro de Investigación en Biomedicina y Bioseguridad, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
2
|
Sobolewski C, Legrand N. Celecoxib Analogues for Cancer Treatment: An Update on OSU-03012 and 2,5-Dimethyl-Celecoxib. Biomolecules 2021; 11:biom11071049. [PMID: 34356673 PMCID: PMC8302000 DOI: 10.3390/biom11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is an important enzyme involved in prostaglandins biosynthesis from arachidonic acid. COX-2 is frequently overexpressed in human cancers and plays a major tumor promoting function. Accordingly, many efforts have been devoted to efficiently target the catalytic site of this enzyme in cancer cells, by using COX-2 specific inhibitors such as celecoxib. However, despite their potent anti-tumor properties, the myriad of detrimental effects associated to the chronic inhibition of COX-2 in healthy tissues, has considerably limited their use in clinic. In addition, increasing evidence indicate that these anti-cancerous properties are not strictly dependent on the inhibition of the catalytic site. These findings have led to the development of non-active COX-2 inhibitors analogues aiming at preserving the antitumor effects of COX-2 inhibitors without their side effects. Among them, two celecoxib derivatives, 2,5-Dimethyl-Celecoxib and OSU-03012, have been developed and suggested for the treatment of viral (e.g., recently SARS-CoV-2), inflammatory, metabolic diseases and cancers. These molecules display stronger anti-tumor properties than celecoxib and thus may represent promising anti-cancer molecules. In this review, we discuss the impact of these two analogues on cancerous processes but also their potential for cancer treatment alone or in combination with existing approaches.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-379-5421
| | - Noémie Legrand
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland;
| |
Collapse
|
3
|
Khafaga AF, Shamma RN, Abdeen A, Barakat AM, Noreldin AE, Elzoghby AO, Sallam MA. Celecoxib repurposing in cancer therapy: molecular mechanisms and nanomedicine-based delivery technologies. Nanomedicine (Lond) 2021; 16:1691-1712. [PMID: 34264123 DOI: 10.2217/nnm-2021-0086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While cancer remains a significant global health problem, advances in cancer biology, deep understanding of its underlaying mechanism and identification of specific molecular targets allowed the development of new therapeutic options. Drug repurposing poses several advantages as reduced cost and better safety compared with new compounds development. COX-2 inhibitors are one of the most promising drug classes for repurposing in cancer therapy. In this review, we provide an overview of the detailed mechanism and rationale of COX-2 inhibitors as anticancer agents and we highlight the most promising research efforts on nanotechnological approaches to enhance COX-2 inhibitors delivery with special focus on celecoxib as the most widely studied agent for chemoprevention or combined with chemotherapeutic and herbal drugs for combating various cancers.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | | | - Ahmed E Noreldin
- Department of Histology & Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22516, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
4
|
Liu K, Tsung K, Attenello FJ. Characterizing Cell Stress and GRP78 in Glioma to Enhance Tumor Treatment. Front Oncol 2020; 10:608911. [PMID: 33363039 PMCID: PMC7759649 DOI: 10.3389/fonc.2020.608911] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor, carrying a very poor prognosis, with median overall survival at about 12 to 15 months despite surgical resection, chemotherapy with temozolomide (TMZ), and radiation therapy. GBM recurs in the vast majority of patients, with recurrent tumors commonly displaying increase in resistance to standard of care chemotherapy, TMZ, as well as radiotherapy. One of the most commonly cited mechanisms of chemotherapeutic and radio-resistance occurs via the glucose-regulated protein 78 (GRP78), a well-studied mediator of the unfolded protein response (UPR), that has also demonstrated potential as a biomarker in GBM. Overexpression of GRP78 has been directly correlated with malignant tumor characteristics, including higher tumor grade, cellular proliferation, migration, invasion, poorer responses to TMZ and radiation therapy, and poorer patient outcomes. GRP78 expression is also higher in GBM tumor cells upon recurrence. Meanwhile, knockdown or suppression of GRP78 has been shown to sensitize cells to TMZ and radiation therapy. In light of these findings, various novel developing therapies are targeting GRP78 as monotherapies, combination therapies that enhance the effects of TMZ and radiation therapy, and as treatment delivery modalities. In this review, we delineate the mechanisms by which GRP78 has been noted to specifically modulate glioblastoma behavior and discuss current developing therapies involving GRP78 in GBM. While further research is necessary to translate these developing therapies into clinical settings, GRP78-based therapies hold promise in improving current standard-of-care GBM therapy and may ultimately lead to improved patient outcomes.
Collapse
Affiliation(s)
- Kristie Liu
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Kathleen Tsung
- Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Frank J Attenello
- Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Harguindey S, Polo Orozco J, Alfarouk KO, Devesa J. Hydrogen Ion Dynamics of Cancer and a New Molecular, Biochemical and Metabolic Approach to the Etiopathogenesis and Treatment of Brain Malignancies. Int J Mol Sci 2019; 20:ijms20174278. [PMID: 31480530 PMCID: PMC6747469 DOI: 10.3390/ijms20174278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
The treatment of cancer has been slowly but steadily progressing during the last fifty years. Some tumors with a high mortality in the past are curable nowadays. However, there is one striking exception: glioblastoma multiforme. No real breakthrough has been hitherto achieved with this tumor with ominous prognosis and very short survival. Glioblastomas, being highly glycolytic malignancies are strongly pH-dependent and driven by the sodium hydrogen exchanger 1 (NHE1) and other proton (H+) transporters. Therefore, this is one of those pathologies where the lessons recently learnt from the new pH-centered anticancer paradigm may soon bring a promising change to treatment. This contribution will discuss how the pH-centric molecular, biochemical and metabolic perspective may introduce some urgently needed and integral novel treatments. Such a prospective therapeutic approach for malignant brain tumors is developed here, either to be used alone or in combination with more standard therapies.
Collapse
Affiliation(s)
| | | | - Khalid O Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia
- Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain
| |
Collapse
|
6
|
Wu Q, Lian T, Fan X, Song C, Gaur U, Mao X, Yang D, Piper MDW, Yang M. 2,5-Dimethyl-Celecoxib Extends Drosophila Life Span via a Mechanism That Requires Insulin and Target of Rapamycin Signaling. J Gerontol A Biol Sci Med Sci 2017; 72:1334-1341. [PMID: 28025308 DOI: 10.1093/gerona/glw244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022] Open
Abstract
The search for antiaging drugs is a key component of gerontology research. A few drugs with positive effects on life span in model organisms have been found. Here, we report that 2,5-dimethyl-celecoxib, a derivative of the anti-inflammatory drug celecoxib, can extend Drosophila life span and delay aging by a mechanism involving insulin signaling and target of rapamycin signaling. Importantly, its positive effects were apparent when the treatment window was restricted to the beginning of life or the later half. 2,5-Dimethyl-celecoxib-induced longevity was also associated with improvements in physical activity, intestinal integrity, and increased autophagy. In addition, 2,5-dimethyl-celecoxib exhibited protective effects against several kinds of stress such as starvation and heat. The generally positive effects of 2,5-dimethyl-celecoxib on both health and life span, combined with its mode of action via evolutionarily conserved signaling pathways, indicate that it has the potential to become an effective antiaging drug.
Collapse
Affiliation(s)
- Qi Wu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Ting Lian
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xiaolan Fan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Chaochun Song
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Uma Gaur
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xueping Mao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Deying Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Mingyao Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
7
|
Obacz J, Avril T, Le Reste PJ, Urra H, Quillien V, Hetz C, Chevet E. Endoplasmic reticulum proteostasis in glioblastoma—From molecular mechanisms to therapeutic perspectives. Sci Signal 2017; 10:10/470/eaal2323. [DOI: 10.1126/scisignal.aal2323] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Atari-Hajipirloo S, Nikanfar S, Heydari A, Kheradmand F. Imatinib and its combination with 2,5-dimethyl-celecoxibinduces apoptosis of human HT-29 colorectal cancer cells. Res Pharm Sci 2017; 12:67-73. [PMID: 28255316 PMCID: PMC5333482 DOI: 10.4103/1735-5362.199049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mono-targeting by imatinib as a main antitumor agent does not always accomplish complete cancer suppression. 2,5-dimethyl-celecoxib (DMC) is a close structural analog of the selective cyclooxygenase-2 (COX-2) inhibitor, celecoxib, that lacks COX-2 inhibitory function. In this study, we aimed to show the apoptotic effects of imatinib in combination with DMC in human HT-29 colorectal cancer (CRC) cells. HT-29 CRC cells were treated with IC50 dose of imatinib (6.60 μM), DMC (23.45 μM), and their combination (half dose of IC50) for 24 h. The caspase-3 activity was estimated with colorimetric kit. The caspase-3 gene expression was evaluated by real-time PCR method. There was a significant up-regulation in caspase-3 enzyme activity and caspase-3 expression by imatinib and its half dose combination with DMC as compared to control. As a summary, the results of this study strongly suggest that half dose combination of imatinib with DMC induced apoptosis as potent as full dose imatinib in human HT-29 CRC cells, while minimizing undesired side effects related to imatinib mono-therapy. This study also pointed towards possible caspase-dependent actions of imatinib and DMC.
Collapse
Affiliation(s)
- Somayeh Atari-Hajipirloo
- Department of Biochemistry, Student Research Committee, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Saba Nikanfar
- Department of Biochemistry, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Amir Heydari
- Department of Pharmacology, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, Cellular and Molecular and Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, I.R. Iran
| |
Collapse
|
9
|
Zhang B, Yan Y, Li Y, Zhang D, Zeng J, Wang L, Wang M, Lin N. Dimethyl celecoxib sensitizes gastric cancer cells to ABT-737 via AIF nuclear translocation. J Cell Mol Med 2016; 20:2148-2159. [PMID: 27374973 PMCID: PMC5082400 DOI: 10.1111/jcmm.12913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/20/2016] [Indexed: 01/22/2023] Open
Abstract
Gastric cancer is the fourth most common cancer in the world. The clinical applications of both chemotherapy and targeted drugs are limited because of the complexity of gastric cancer. In this study, sulforhodamine B, colony formation assay, 4',6‐diamidino‐2‐phenylindole (DAPI) stain, flow cytometry were used to determine the in vitro cytotoxicity, apoptosis and mitochondrial membrane potential of gastric cancer AGS and HGC‐27 cells before and after treatment. Real‐time PCR and Western blot were used to analyse the mRNA transcription and protein expression respectively. Confocal microscopy was used to determine the localization of target protein within the cells. Treatment with the combination of ABT‐737 and 2,5‐dimethyl‐celecoxib (DMC) showed strong synergistic effect in both AGS and HGC‐27 cells. Moreover, DMC would not influence the intracellular prostaglandin E2 (PGE2) level, thus lacking the toxicity profile of celecoxib. Interestingly, given the significant synergistic effect, combination treatment did not affect the protein expression of BH‐3 proteins including Puma, Noxa and Bim. In combination treatment, cell apoptosis was found independent of caspase‐3 activation. The translocation of apoptosis‐inducing factor (AIF) from mitochondrion to nuclear was responsible for the induced apoptosis in the combination treatment. Taken together, this study provided a novel combination treatment regimen for gastric cancer. Furthermore, the existence of caspase‐independent apoptotic pathway induced by treatment of ABT‐737 was not yet seen until combined with DMC, which shed light on an alternative mechanism involved in Bcl‐2 inhibitor‐induced apoptosis.
Collapse
Affiliation(s)
- Bo Zhang
- Laboratory of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang, China.,Laboratory of Clinical Pharmacology, Hangzhou Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China.,Department of Clinical Pharmacy, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Youyou Yan
- Laboratory of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang, China.,Laboratory of Clinical Pharmacology, Hangzhou Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Yangling Li
- Laboratory of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang, China.,Laboratory of Clinical Pharmacology, Hangzhou Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China.,Department of Clinical Pharmacy, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Dan Zhang
- Laboratory of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang, China.,Laboratory of Clinical Pharmacology, Hangzhou Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China.,Department of Clinical Pharmacy, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Jianmei Zeng
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Linling Wang
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mimi Wang
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nengming Lin
- Laboratory of Clinical Pharmacology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang, China. .,Laboratory of Clinical Pharmacology, Hangzhou Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China. .,Department of Clinical Pharmacy, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China. .,Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Sobolewski C, Rhim J, Legrand N, Muller F, Cerella C, Mack F, Chateauvieux S, Kim JG, Yoon AY, Kim KW, Dicato M, Diederich M. 2,5-Dimethyl-Celecoxib Inhibits Cell Cycle Progression and Induces Apoptosis in Human Leukemia Cells. J Pharmacol Exp Ther 2015; 355:308-28. [DOI: 10.1124/jpet.115.225011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/28/2015] [Indexed: 12/19/2022] Open
|
11
|
Glynn SJ, Gaffney KJ, Sainz MA, Louie SG, Petasis NA. Molecular characterization of the boron adducts of the proteasome inhibitor bortezomib with epigallocatechin-3-gallate and related polyphenols. Org Biomol Chem 2015; 13:3887-99. [PMID: 25669488 PMCID: PMC4366333 DOI: 10.1039/c4ob02512a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The green tea polyphenol epigallocatechin-3-gallate (EGCG) was reported to effectively antagonize the ability of Bortezomib (BZM) to induce apoptosis in cancer cells. This interaction was attributed to the formation of a covalent adduct between a phenolic moiety of EGCG with the boronic acid group of Bortezomib. However, the structural details of this boron adduct and the molecular factors that contribute to its formation and its ability to inhibit Bortezomib's activity remain unclear. This paper describes the use of NMR spectroscopy and cell assays to characterize the structures and properties of the boron adducts of EGCG and related polyphenols. The observed boron adducts included both boronate and borate derivatives, and their structural characteristics were correlated with cell-based evaluation of the ability of EGCG and other phenols to antagonize the anticancer activity of Bortezomib. The enhanced stability of the BZM/EGCG adduct was attributed to electronic and steric reasons, and a newly identified intramolecular interaction of the boron atom of BZM with the adjacent amide bond. The reported approach provides a useful method for determining the potential ability of polyphenols to form undesired adducts with boron-based drugs and interfere with their actions.
Collapse
Affiliation(s)
- Stephen J Glynn
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, USA.
| | | | | | | | | |
Collapse
|
12
|
Gurpinar E, Grizzle WE, Piazza GA. COX-Independent Mechanisms of Cancer Chemoprevention by Anti-Inflammatory Drugs. Front Oncol 2013; 3:181. [PMID: 23875171 PMCID: PMC3708159 DOI: 10.3389/fonc.2013.00181] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022] Open
Abstract
Epidemiological and clinical studies suggest that non-steroidal anti-inflammatory drugs (NSAIDs), including cyclooxygenase (COX)-2 selective inhibitors, reduce the risk of developing cancer. Experimental studies in human cancer cell lines and rodent models of carcinogenesis support these observations by providing strong evidence for the antineoplastic properties of NSAIDs. The involvement of COX-2 in tumorigenesis and its overexpression in various cancer tissues suggest that inhibition of COX-2 is responsible for the chemopreventive efficacy of these agents. However, the precise mechanisms by which NSAIDs exert their antiproliferative effects are still a matter of debate. Numerous other studies have shown that NSAIDs can act through COX-independent mechanisms. This review provides a detailed description of the major COX-independent molecular targets of NSAIDs and discusses how these targets may be involved in their anticancer effects. Toxicities resulting from COX inhibition and the suppression of prostaglandin synthesis preclude the long-term use of NSAIDs for cancer chemoprevention. Furthermore, chemopreventive efficacy is incomplete and treatment often leads to the development of resistance. Identification of alternative NSAID targets and elucidation of the biochemical processes by which they inhibit tumor growth could lead to the development of safer and more efficacious drugs for cancer chemoprevention.
Collapse
Affiliation(s)
- Evrim Gurpinar
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham , Birmingham, AL , USA
| | | | | |
Collapse
|
13
|
Schönthal AH. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer. Biochem Pharmacol 2013; 85:653-666. [DOI: 10.1016/j.bcp.2012.09.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 02/08/2023]
|
14
|
Inhibition of autophagy and induction of breast cancer cell death by mefloquine, an antimalarial agent. Cancer Lett 2012; 326:143-54. [DOI: 10.1016/j.canlet.2012.07.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/09/2012] [Accepted: 07/26/2012] [Indexed: 12/22/2022]
|
15
|
Cho HY, Wang W, Jhaveri N, Torres S, Tseng J, Leong MN, Lee DJ, Goldkorn A, Xu T, Petasis NA, Louie SG, Schönthal AH, Hofman FM, Chen TC. Perillyl alcohol for the treatment of temozolomide-resistant gliomas. Mol Cancer Ther 2012; 11:2462-72. [PMID: 22933703 DOI: 10.1158/1535-7163.mct-12-0321] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Perillyl alcohol (POH) is a monoterpene that has been used orally for the treatment of systemic cancer. However, when used orally significant gastrointestinal side effects and lack of overall efficacy were documented. Recently, in a phase II trial in Brazil for the treatment of temozolomide (TMZ)-resistant malignant gliomas, POH was well tolerated when administered intranasally. The present study explores the effects and mechanisms of POH on TMZ-sensitive and TMZ-resistant glioma cells. In vitro studies showed that POH was cytotoxic to TMZ-resistant as well as TMZ-sensitive glioma cells, and this effect was independent of O(6)-methylguanine-DNA methyltransferase expression. POH induced cytotoxicity, in part, through the endoplasmic reticulum (ER) stress pathway as shown by the increased expression of glucose-regulated protein-78 (GRP78), activating transcription factor 3, and C/EBP-homologous protein. In addition, POH impeded survival pathways, such as mTOR and Ras. As well, POH reduced the invasive capacity of sensitive and resistant glioma cells. POH alone and/or in combination with other ER stress-inducing cytotoxic drugs (i.e., 2, 5-dimethyl-celecoxib, nelfinavir) further induced apoptosis in TMZ-sensitive and TMZ-resistant glioma cells. To show whether intranasal delivery of POH was effective for the treatment of TMZ-resistant gliomas, animals bearing intracranial tumors were given POH intranasally. Animals treated through intranasal administration of POH exhibited a decrease in tumor growth and an increase in survival. Our data show that POH is an effective anti-glioma cytotoxic agent for TMZ-resistant gliomas when administered intranasally.
Collapse
Affiliation(s)
- Hee-Yeon Cho
- Departments of Neurosurgery and Pathology, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Conde N, Cruz O, Albert A, Mora J. Antiangiogenic treatment as a pre-operative management of alveolar soft-part sarcoma. Pediatr Blood Cancer 2011; 57:1071-3. [PMID: 21744483 DOI: 10.1002/pbc.23241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 05/23/2011] [Indexed: 11/08/2022]
Abstract
Alveolar soft-part sarcoma (ASPS) is a rare tumor. Cure is based solely on radical surgery. The general prognosis is poor. The tongue is an unusual site in adults, but not in children. Tumor removal can cause a severe impact on quality of life, even if reconstruction is possible. ASPS is a highly vascularized tumor and antiangiogenic therapy may have a role. We describe the use of the antiangiogenic combination bevacizumab and celecoxib in the preoperative management of a patient with an ASPS of the tongue.
Collapse
Affiliation(s)
- Nuria Conde
- Department of Paediatric Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | | |
Collapse
|