1
|
Hewavisenti RV, Arena J, Ahlenstiel CL, Sasson SC. Human papillomavirus in the setting of immunodeficiency: Pathogenesis and the emergence of next-generation therapies to reduce the high associated cancer risk. Front Immunol 2023; 14:1112513. [PMID: 36960048 PMCID: PMC10027931 DOI: 10.3389/fimmu.2023.1112513] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
Human papillomavirus (HPV), a common sexually transmitted virus infecting mucosal or cutaneous stratified epithelia, is implicated in the rising of associated cancers worldwide. While HPV infection can be cleared by an adequate immune response, immunocompromised individuals can develop persistent, treatment-refractory, and progressive disease. Primary immunodeficiencies (PIDs) associated with HPV-related disease include inborn errors of GATA, EVER1/2, and CXCR4 mutations, resulting in defective cellular function. People living with secondary immunodeficiency (e.g. solid-organ transplants recipients of immunosuppression) and acquired immunodeficiency (e.g. concurrent human immunodeficiency virus (HIV) infection) are also at significant risk of HPV-related disease. Immunocompromised people are highly susceptible to the development of cutaneous and mucosal warts, and cervical, anogenital and oropharyngeal carcinomas. The specific mechanisms underlying high-risk HPV-driven cancer development in immunocompromised hosts are not well understood. Current treatments for HPV-related cancers include surgery with adjuvant chemotherapy and/or radiotherapy, with clinical trials underway to investigate the use of anti-PD-1 therapy. In the setting of HIV co-infection, persistent high-grade anal intraepithelial neoplasia can occur despite suppressive antiretroviral therapy, resulting in an ongoing risk for transformation to overt malignancy. Although therapeutic vaccines against HPV are under development, the efficacy of these in the setting of PID, secondary- or acquired- immunodeficiencies remains unclear. RNA-based therapeutic targeting of the HPV genome or mRNA transcript has become a promising next-generation therapeutic avenue. In this review, we summarise the current understanding of HPV pathogenesis, immune evasion, and malignant transformation, with a focus on key PIDs, secondary immunodeficiencies, and HIV infection. Current management and vaccine regimes are outlined in relation to HPV-driven cancer, and specifically, the need for more effective therapeutic strategies for immunocompromised hosts. The recent advances in RNA-based gene targeting including CRISPR and short interfering RNA (siRNA), and the potential application to HPV infection are of great interest. An increased understanding of both the dysregulated immune responses in immunocompromised hosts and of viral persistence is essential for the design of next-generation therapies to eliminate HPV persistence and cancer development in the most at-risk populations.
Collapse
Affiliation(s)
- Rehana V. Hewavisenti
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Joshua Arena
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Chantelle L. Ahlenstiel
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Kelleher AD, Cortez-Jugo C, Cavalieri F, Qu Y, Glanville AR, Caruso F, Symonds G, Ahlenstiel CL. RNAi therapeutics: an antiviral strategy for human infections. Curr Opin Pharmacol 2020; 54:121-129. [PMID: 33171339 DOI: 10.1016/j.coph.2020.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Gene silencing induced by RNAi represents a promising antiviral development strategy. This review will summarise the current state of RNAi therapeutics for treating acute and chronic human virus infections. The gene silencing pathways exploited by RNAi therapeutics will be described and include both classic RNAi, inducing cytoplasmic mRNA degradation post-transcription and novel RNAi, mediating epigenetic modifications at the transcription level in the nucleus. Finally, the challenge of delivering gene modifications via RNAi will be discussed, along with the unique characteristics of respiratory versus systemic administration routes to highlight recent advances and future potential of RNAi antiviral treatment strategies.
Collapse
Affiliation(s)
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Yijiao Qu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
3
|
Mangino G, Iuliano M, Carlomagno S, Bernardini N, Rosa P, Chiantore MV, Skroza N, Calogero A, Potenza C, Romeo G. Interleukin-17A affects extracellular vesicles release and cargo in human keratinocytes. Exp Dermatol 2020; 28:1066-1073. [PMID: 31373041 DOI: 10.1111/exd.14015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory systemic disease caused by deregulation of the interleukin-23/-17 axis that allows the activation of Th17 lymphocytes and the reprogramming of keratinocytes proliferative response, thereby inducing the secretion of cyto-/chemokines and antimicrobial peptides. Beside cell-to-cell contacts and release of cytokines, hormones and second messengers, cells communicate each other through the release of extracellular vesicles containing DNA, RNA, microRNAs and proteins. It has been reported the alteration of extracellular vesicles trafficking in several diseases, but there is scarce evidence of the involvement of extracellular vesicles trafficking in the pathogenesis of psoriasis. The main goal of the study was to characterize the release, the cargo content and the capacity to transfer bioactive molecules of extracellular vesicles produced by keratinocytes following recombinant IL-17A treatment if compared to untreated keratinocytes. A combined approach of standard ultracentrifugation, RNA isolation and real-time RT-PCR techniques was used to characterize extracellular vesicles cargo. Flow cytometry was used to quantitatively and qualitatively analyse extracellular vesicles and to evaluate cell-to-cell extracellular vesicles transfer. We report that the treatment of human keratinocytes with IL-17A significantly modifies the extracellular vesicles cargo and release. Vesicles from IL-17A-treated cells display a specific pattern of mRNA which is undid by IL-17A neutralization. Extracellular vesicles are taken up by acceptor cells irrespective of their content but only those derived from IL-17A-treated cells enable recipient cells to express psoriasis-associated mRNA. The results imply a role of extracellular vesicles in amplifying the pro-inflammatory cascade induced in keratinocyte by pro-psoriatic cytokines.
Collapse
Affiliation(s)
- Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Silvia Carlomagno
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Nicoletta Bernardini
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Dermatology Unit "Daniele Innocenzi", Fiorini Hospital, Terracina, Italy
| | - Paolo Rosa
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Nevena Skroza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Dermatology Unit "Daniele Innocenzi", Fiorini Hospital, Terracina, Italy
| | - Antonella Calogero
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Istituto Chirurgico Ortopedico Traumatologico, ICOT, Latina, Italy
| | - Concetta Potenza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Dermatology Unit "Daniele Innocenzi", Fiorini Hospital, Terracina, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
4
|
Arjuman A, Chandra NC. LOX-1: A potential target for therapy in atherosclerosis; an in vitro study. Int J Biochem Cell Biol 2017; 91:65-80. [DOI: 10.1016/j.biocel.2017.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/16/2023]
|
5
|
Zakaria MK, Sarkar DP, Chattopadhyay P. Induction of Transcriptional Gene Silencing by Expression of shRNA Directed to c-Myc P2 Promoter in Hepatocellular Carcinoma by Tissue-Specific Virosomal Delivery. Methods Mol Biol 2017; 1543:245-257. [PMID: 28349432 DOI: 10.1007/978-1-4939-6716-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Double-stranded RNA-mediated transcriptional gene silencing (TGS) has shown promising results over posttranscriptional gene silencing (PTGS) due to its long term and heritable nature. Various research groups have shed light on different mechanisms by which TGS operate. Some of these include histone modification, DNA methylation, or restriction of RNA polymerase binding onto the target gene's promoter. This serves as an added advantage since permanent c-Myc inactivation is critical for suppressing hepatocellular carcinoma (HCC). Inability to target cancer cells specifically, without affecting the normal cells, has been one of the biggest drawbacks of an effective cancer therapy. Therefore, we aimed to overcome this barrier by first generating tumor-specific transcriptional units expressing TGS inducing shRNAs against c-Myc's P2 promoter only in neoplastic liver cells. Secondly, we coupled this TGS inducing system with Sendai fusion virosomes for liver-specific delivery to minimize nonspecific side effects in vitro.
Collapse
Affiliation(s)
- Mohammad Khalid Zakaria
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Trieste, 34149, Italy.
| | - Debi P Sarkar
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, 110021, India
| | - Parthaprasad Chattopadhyay
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
6
|
Weinberg MS, Morris KV. Transcriptional gene silencing in humans. Nucleic Acids Res 2016; 44:6505-17. [PMID: 27060137 PMCID: PMC5001580 DOI: 10.1093/nar/gkw139] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/21/2023] Open
Abstract
It has been over a decade since the first observation that small non-coding RNAs can functionally modulate epigenetic states in human cells to achieve functional transcriptional gene silencing (TGS). TGS is mechanistically distinct from the RNA interference (RNAi) gene-silencing pathway. TGS can result in long-term stable epigenetic modifications to gene expression that can be passed on to daughter cells during cell division, whereas RNAi does not. Early studies of TGS have been largely overlooked, overshadowed by subsequent discoveries of small RNA-directed post-TGS and RNAi. A reappraisal of early work has been brought about by recent findings in human cells where endogenous long non-coding RNAs function to regulate the epigenome. There are distinct and common overlaps between the proteins involved in small and long non-coding RNA transcriptional regulatory mechanisms, suggesting that the early studies using small non-coding RNAs to modulate transcription were making use of a previously unrecognized endogenous mechanism of RNA-directed gene regulation. Here we review how non-coding RNA plays a role in regulation of transcription and epigenetic gene silencing in human cells by revisiting these earlier studies and the mechanistic insights gained to date. We also provide a list of mammalian genes that have been shown to be transcriptionally regulated by non-coding RNAs. Lastly, we explore how TGS may serve as the basis for development of future therapeutic agents.
Collapse
Affiliation(s)
- Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, WITS 2050, South Africa HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, WITS 2050, South Africa
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA Center for Gene Therapy, City of Hope - BeckmanResearch Institute; Duarte, CA 91010, USA School of Biotechnology and Biomedical Sciences, University of New South Wales, Kensington, NSW, 2033 Australia
| |
Collapse
|
7
|
Butler AA, Webb WM, Lubin FD. Regulatory RNAs and control of epigenetic mechanisms: expectations for cognition and cognitive dysfunction. Epigenomics 2015; 8:135-51. [PMID: 26366811 DOI: 10.2217/epi.15.79] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The diverse functions of noncoding RNAs (ncRNAs) can influence virtually every aspect of the transcriptional process including epigenetic regulation of genes. In the CNS, regulatory RNA networks and epigenetic mechanisms have broad relevance to gene transcription changes involved in long-term memory formation and cognition. Thus, it is becoming increasingly clear that multiple classes of ncRNAs impact neuronal development, neuroplasticity, and cognition. Currently, a large gap exists in our knowledge of how ncRNAs facilitate epigenetic processes, and how this phenomenon affects cognitive function. In this review, we discuss recent findings highlighting a provocative role for ncRNAs including lncRNAs and piRNAs in the control of epigenetic mechanisms involved in cognitive function. Furthermore, we discuss the putative roles for these ncRNAs in cognitive disorders such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Anderson A Butler
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - William M Webb
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Khan I, Zakaria MK, Kumar M, Mani P, Chattopadhyay P, Sarkar DP, Sinha S. A novel placental like alkaline phosphatase promoter driven transcriptional silencing combined with single chain variable fragment antibody based virosomal delivery for neoplastic cell targeting [corrected]. J Transl Med 2015; 13:254. [PMID: 26242403 PMCID: PMC4524171 DOI: 10.1186/s12967-015-0602-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Placental like alkaline phosphatase (PLAP), an oncofetal antigen, is highly expressed in germ cell, cervical, ovarian and several other tumour types but minimally in normal tissues [corrected]. The expression of a PLAP promoter based transcriptional unit following antigen mediated cell specific delivery is a possible approach for tumour targeting. METHODS PLAP promoter alone or in combination with NFκB DNA response elements was used for expressing shRNA targeting the long control region (LCR) of human papillomavirus (HPV)-16 oncogenes E6 and E7 via transcriptional gene silencing in PLAP expressing cervical cancer cell lines, SiHa and CaSki. This was packaged in a Sendai virus envelope incorporating a single chain variable fragment antibody (scFv) for antibody mediated targeting. Specificity and efficacy of the shRNA was assessed by studying the heterochromatization, down regulation of the HPV-16 E6/E7 genes and subsequent effects on their targets and cell growth properties. RESULTS Reduction of HPV-16 E6 and E7 expression by TGS led to the activation of the previously suppressed target genes of p53 (PUMA and NOXA) and Rb (cyclins A2 and E). Cell death was seen only in PLAP expressing HPV-16 infected SiHa and CaSki cells but not in the HPV-18 integrated HeLa and non-PLAP CHO cells. There was reduction in the enhancer associated transcripts of the long control region (LCR) of HPV-16 E6/E7 genes. Also, an increase in the enrichment of dimethylated histone three lysine nine (H3K9Me2) and trimethylated histone three lysine twenty-seven (H3K27Me3) was observed by ChIP assay, which decreased upon trichostatin A treatment, indicating a possible mechanism for the heterochromatization of the target LCR region. CONCLUSION A combination of novel PLAP promoter and antibody based specificities has the potential for being developed as a possible therapeutic strategy for PLAP positive neoplasia.
Collapse
Affiliation(s)
- Imran Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Mohammad Khalid Zakaria
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India. .,National Brain Research Centre, Manesar, Gurgaon, Haryana, 122051, India.
| | - Mukesh Kumar
- National Brain Research Centre, Manesar, Gurgaon, Haryana, 122051, India.
| | - Prashant Mani
- Department of Biochemistry, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | | | - Debi P Sarkar
- Department of Biochemistry, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India. .,National Brain Research Centre, Manesar, Gurgaon, Haryana, 122051, India.
| |
Collapse
|
9
|
Kassab MA, Mudassir M, Singh A, N M, Bhagat M, Palanichamy JK, Ramalingam P, Chosdol K, Sinha S, Chattopadhyay P. Gene Silencing and Activation of Human Papillomavirus 18 Is Modulated by Sense Promoter Associated RNA in Bidirectionally Transcribed Long Control Region. PLoS One 2015; 10:e0128416. [PMID: 26047143 PMCID: PMC4457724 DOI: 10.1371/journal.pone.0128416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/27/2015] [Indexed: 12/02/2022] Open
Abstract
Background Recently various studies have demonstrated the role of promoter associated non-coding RNAs (pRNA) in dsRNA induced transcriptional gene silencing and activation. However the exact mechanistic details of these processes with respect to the orientation of pRNAs are poorly defined. Methodology/Principal Findings We have identified novel sense and antisense long control region (LCR) associated RNAs (pRNAs) in HPV18 positive cervical cancer cell lines HeLa, C-4 I and C-4 II. Using dsRNAs against these pRNAs, we were able to achieve upregulation or downregulation of the sense and antisense pRNAs and the downstream E6 and E7 oncogenes. We present evidence that knockdown of the sense pRNA is associated with reduction in E6 and E7 oncogenes and an upregulation of antisense pRNA. Conversely upregulation of sense pRNA is accompanied by an induction of the oncogenes and a concomitant reduction in antisense pRNA. Moreover, the exact role of sense and antisense pRNAs in dsRNA mediated gene modulation was confirmed by their selective degradation using antisense phosphorothioate oligodeoxynucleotides (ODN). Degradation of sense pRNA with antisense ODN led to loss of dsRNA induced silencing and activation, suggesting that dsRNA mediated gene modulation requires sense pRNA. Both processes were accompanied with congruent changes in the methylation pattern of activating and repressive histones. Conclusion/Significance Thus this data identifies and demonstrates the role of previously unknown important regulatory transcripts in HPV18 gene expression which can prove valuable targets in cervical cancer therapeutics. This mode of gene regulation by bidirectional transcription could be operational in other promoters as well and serve as a mechanism of regulating gene expression.
Collapse
Affiliation(s)
- Muzaffer Ahmad Kassab
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Madeeha Mudassir
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Anand Singh
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States of America
| | - Muthuraman N
- Department of Biochemistry, Institute of Liver and Biliary Sciences, New Delhi, Vasant Kunj, India
| | - Mohita Bhagat
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | - Pradeep Ramalingam
- Weill Cornell Medical College, York Avenue, New York, NY, United States of America
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Subrata Sinha
- National Brain Research Center, Manesar, Gurgaon, Haryana, India
| | - Parthaprasad Chattopadhyay
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- * E-mail:
| |
Collapse
|
10
|
Irshad K, Mohapatra SK, Srivastava C, Garg H, Mishra S, Dikshit B, Sarkar C, Gupta D, Chandra PS, Chattopadhyay P, Sinha S, Chosdol K. A combined gene signature of hypoxia and notch pathway in human glioblastoma and its prognostic relevance. PLoS One 2015; 10:e0118201. [PMID: 25734817 PMCID: PMC4348203 DOI: 10.1371/journal.pone.0118201] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/08/2015] [Indexed: 11/18/2022] Open
Abstract
Hypoxia is a hallmark of solid tumors including glioblastoma (GBM). Its synergism with Notch signaling promotes progression in different cancers. However, Notch signaling exhibits pleiotropic roles and the existing literature lacks a comprehensive understanding of its perturbations under hypoxia in GBM with respect to all components of the pathway. We identified the key molecular cluster(s) characteristic of the Notch pathway response in hypoxic GBM tumors and gliomaspheres. Expression of Notch and hypoxia genes was evaluated in primary human GBM tissues by q-PCR. Clustering and statistical analyses were applied to identify the combination of hypoxia markers correlated with upregulated Notch pathway components. We found well-segregated tumor—clusters representing high and low HIF-1α/PGK1-expressors which accounted for differential expression of Notch signaling genes. In combination, a five-hypoxia marker set (HIF-1α/PGK1/VEGF/CA9/OPN) was determined as the best predictor for induction of Notch1/Dll1/Hes1/Hes6/Hey1/Hey2. Similar Notch-axis genes were activated in gliomaspheres, but not monolayer cultures, under moderate/severe hypoxia (2%/0.2% O2). Preliminary evidence suggested inverse correlation between patient survival and increased expression of constituents of the hypoxia-Notch gene signature. Together, our findings delineated the Notch-axis maximally associated with hypoxia in resected GBM, which might be prognostically relevant. Its upregulation in hypoxia-exposed gliomaspheres signify them as a better in-vitro model for studying hypoxia-Notch interactions than monolayer cultures.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Chitrangda Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Harshit Garg
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Mishra
- Department of Biochemistry, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Bhawana Dikshit
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gupta
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Subrata Sinha
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
- * E-mail: (KC); (SS)
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- * E-mail: (KC); (SS)
| |
Collapse
|
11
|
Combination of hepatocyte specific delivery and transformation dependent expression of shRNA inducing transcriptional gene silencing of c-Myc promoter in hepatocellular carcinoma cells. BMC Cancer 2014; 14:582. [PMID: 25108398 PMCID: PMC4153911 DOI: 10.1186/1471-2407-14-582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022] Open
Abstract
Background A specific targeting modality for hepatocellular carcinoma (HCC) could ideally encompass a liver cell specific delivery system of a transcriptional unit that is active only in neoplastic cells. Sendai virosomes, derived from Sendai viral envelopes, home to hepatocytes based on the liver specific expression of asialoglycoprotein receptors (ASGPRs) which are recognized by the Sendai virosomal fusion (F) proteins. As reported earlier by us and other groups, transcriptional gene silencing (TGS) does not require continuous presence of the effector siRNA/shRNA molecule and is heritable, involving epigenetic modifications, leading to long term transcriptional repression. This could be advantageous over conventional gene therapy approaches, since continuous c-Myc inactivation is required to suppress hepatocarcinoma cells. Methods Exploiting such virosomal delivery, the alpha-fetoprotein (AFP) promoter, in combination with various tumour specific enhancers, was used to drive the expression of shRNA directed against ME1a1 binding site of the proto-oncogene c-Myc P2 promoter, in order to induce TGS in neoplastic liver cells. Results The dual specificity achieved by the Sendai virosomal delivery system and the promoter/enhancer guided expression ensured that the shRNA inducing TGS was active only in liver cells that had undergone malignant transformation. Our results indicate that such a bimodal therapeutic system induced specific activation of apoptosis in hepatocarcinoma cells due to heterochromatization and increased DNA methylation of the CpG islands around the target loci. Conclusions The Sendai virosomal delivery system, combined with AFP promoter/enhancer expression machinery, could serve as a generalized mechanism for the expression of genes deleterious to transformed hepatocarcinoma cells. In this system, the epigenetic suppression of c-Myc could have an added advantage for inducing cell death in the targeted cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-582) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Singh A, Palanichamy JK, Ramalingam P, Kassab MA, Bhagat M, Andrabi R, Luthra K, Sinha S, Chattopadhyay P. Long-term suppression of HIV-1C virus production in human peripheral blood mononuclear cells by LTR heterochromatization with a short double-stranded RNA. J Antimicrob Chemother 2013; 69:404-15. [PMID: 24022068 DOI: 10.1093/jac/dkt348] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES A region in the conserved 5' long terminal repeat (LTR) promoter of the integrated HIV-1C provirus was identified for effective targeting by a short double-stranded RNA (dsRNA) to cause heterochromatization leading to a long-lasting decrease in viral transcription, replication and subsequent productive infection in human host cells. METHODS Small interfering RNAs (siRNAs) were transfected into siHa cells containing integrated LTR-luciferase reporter constructs and screened for efficiency of inducing transcriptional gene silencing (TGS). TGS was assessed by a dual luciferase assay and real-time PCR. Chromatin modification at the targeted region was also studied. The efficacy of potent siRNA was then checked for effectiveness in TZM-bl cells and human peripheral blood mononuclear cells (PBMCs) infected with HIV-1C virus. Viral Gag-p24 antigen levels were determined by ELISA. RESULTS One HIV-1C LTR-specific siRNA significantly decreased luciferase activity and its mRNA expression with no such effect on HIV-1B LTR. This siRNA-mediated TGS was induced by histone methylation, which leads to heterochromatization of the targeted LTR region. The same siRNA also substantially suppressed viral replication in TZM-bl cells and human PBMCs infected with various HIV-1C clinical isolates for ≥3 weeks after a single transfection, even of a strain that had a mismatch in the target region. CONCLUSIONS We have identified a potent dsRNA that causes long-term suppression of HIV-1C virus production in vitro and ex vivo by heritable epigenetic modification at the targeted C-LTR region. This dsRNA has promising therapeutic potential in HIV-1C infection, the clade responsible for more than half of AIDS cases worldwide.
Collapse
Affiliation(s)
- Anand Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Smalheiser NR. The search for endogenous siRNAs in the mammalian brain. Exp Neurol 2011; 235:455-63. [PMID: 22062046 DOI: 10.1016/j.expneurol.2011.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/28/2011] [Accepted: 10/17/2011] [Indexed: 02/08/2023]
Abstract
A decade ago, RNA interference was proposed to serve as a physiologic means of regulating long-term gene expression in the mammalian brain. However, during the intervening years, this hypothesis appeared to be contradicted by both experimental data and theoretical considerations. More recently, the advent of deep sequencing technology has permitted a re-assessment of this issue. As reviewed here, a large population of small RNAs having features characteristic of endogenous siRNAs are detected within adult mouse hippocampus, which derive from genes involved in synaptic structure and signaling, and which show a significant, though modest (16-22%) up-regulation during olfactory discrimination training. Small RNAs derived from abundant cellular noncoding RNAs are also detected; in particular, a subpopulation of RNAs 25-30 nt. in length shows very large (>100 fold) up-regulation during olfactory discrimination training. Preliminary data suggest that the 25-30 nt. RNAs may associate with MIWI rather than Argonaute 1-4 homologues. I conclude that, despite their apparent low abundance, endogenous siRNAs and noncoding RNA-derived small RNAs are likely to play an important role in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Neil R Smalheiser
- University of Illinois at Chicago, Psychiatric Institute MC912, Chicago, IL 60612, USA.
| |
Collapse
|
14
|
Mehndiratta M, Palanichamy JK, Pal A, Bhagat M, Singh A, Sinha S, Chattopadhyay P. CpG hypermethylation of the C-myc promoter by dsRNA results in growth suppression. Mol Pharm 2011; 8:2302-9. [PMID: 21879731 DOI: 10.1021/mp200177z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deregulation of the c-myc proto-oncogene plays an important role in carcinogenesis. It is, therefore, commonly found to be overexpressed in various types of tumors. Downregulation of c-myc expression assumes great importance in tumor therapy because of its ability to promote and maintain cancer stem cells. Apart from post-transcriptional gene silencing (PTGS), siRNAs have also been shown to cause transcriptional gene silencing (TGS) through epigenetic modifications of a gene locus. This approach can potentially be used to silence genes for longer periods and at a much lesser dosage than PTGS. In this study, we have examined the effect of transfection of a novel siRNA directed against a CpG island encompassing the CT-I(2) region in the P2 promoter of c-myc in U87MG and other cell lines. Transient transfection with this siRNA resulted in c-myc promoter CpG hypermethylation and decreased expression of c-myc (both mRNA and protein) and its downstream targets. A decrease was also observed in the expression of some stemness markers (oct-4 and nanog). Stable transfection also confirmed the promoter CpG hypermethylation and reduced c-myc expression along with reduced cell proliferation and an increase in apoptosis and senescence. A significant decrease in c-myc levels was also observed in three other cancer cell lines after transient transfection under similar conditions. Thus this novel siRNA has the capability of becoming an effective therapeutic tool in malignancies with overexpression of c-myc and may be of particular use in the eradication of recalcitrant cancer stem cells.
Collapse
Affiliation(s)
- Mohit Mehndiratta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | | | | | | | |
Collapse
|
15
|
Green VA, Weinberg MS. Small RNA-induced transcriptional gene regulation in mammals mechanisms, therapeutic applications, and scope within the genome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:11-46. [PMID: 21846568 DOI: 10.1016/b978-0-12-415795-8.00005-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Argonaute-bound small RNAs, derived from RNA interference and related pathways, are well-known effectors of posttranscriptional gene silencing (PTGS). Yet, these complexes also play an important role in affecting gene expression at the transcriptional level, either by transcriptional gene silencing (TGS) or activation (TGA). Our current understanding of how small RNAs are able to both activate and suppress transcription is unclear. In this review, we briefly outline the biogenesis of small RNAs and explore the mechanisms behind the various phenomena attributed to AGO-bound small RNA-mediated transcriptional regulation. The therapeutic potential of TGS and TGA is examined, emphasizing the distinct advantages over PTGS approaches with examples of application to cancer and diseases associated with viruses, aberrant splicing, and dysregulated heterochromatin. Finally, the influence of promoter architecture on gene susceptibility to transcriptional regulation is discussed in the light of how this impacts the scope of small RNA-induced transcriptional regulation within the genome.
Collapse
Affiliation(s)
- Victoria A Green
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|