1
|
Hua X, Xiang D, Xu J, Zhang S, Wu S, Tian Z, Zhu J, Huang C. ISO-upregulated BECN1 specifically promotes LC3B-dependent autophagy and anticancer activity in invasive bladder cancer. Transl Oncol 2025; 51:102178. [PMID: 39489089 PMCID: PMC11565558 DOI: 10.1016/j.tranon.2024.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Isorhapontigenin (ISO), an active compound isolated from the Chinese herb Gnetum Cleistostachyum, exhibited strong preventive and therapeutic effects on bladder cancer (BC) both in vitro and in vivo. Our previous studies revealed that ISO-induced autophagy is crucial for its anti-cancer activity. However, the underlying mechanism remains unclear. Here, we showed that BECN1, an important autophagic protein, was induced by ISO treatment and played crucial roles in ISO-induced late phase of LC3B-dependent, and LC3A-independent autophagy, as well as anti-cancer activity. Downregulation of BECN1 was observed in human BCs and BBN-induced mouse invasive BC tissues, whereas co-treatment with ISO completely reversed BECN1 downregulation in BBN-induced mouse invasive BCs. Consistently, ISO treatment significantly increased BECN1 expression in vitro in a dose- and time-dependent manner. Depletion of BECN1 significantly impaired LC3B-dependent autophagy following ISO treatment, as well as abolished the inhibitory effect of ISO on anchorage-independent growth of human BC cells. Mechanistic studies revealed that BECN1 induction was mediated by ISO downregulation of c-Myc, which resulted in miR-613 reduction, in turn leading to increased NCL translation and further promoting NCL binding to BECN1 mRNA, subsequently stabilizing BECN1 mRNA. In conclusion, our results demonstrate that by activating c-Myc/miR-613/NCL axis, ISO treatment results in BECN1 posttranscriptional upregulation, which specifically initiates LC3B-dependent autophagy and anti-cancer activity. Our findings further strengths our application of ISO for therapy of high-grade invasive BC (HGIBC) patients.
Collapse
Affiliation(s)
- Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; School of Laboratory Medicine and Life Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Daimin Xiang
- Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jiheng Xu
- School of Laboratory Medicine and Life Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shouyue Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuai Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhongxian Tian
- School of Laboratory Medicine and Life Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junlan Zhu
- School of Laboratory Medicine and Life Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; School of Laboratory Medicine and Life Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Kowalczyk T, Piekarski J, Merecz-Sadowska A, Muskała M, Sitarek P. Investigation of the molecular mechanisms underlying the anti-inflammatory and antitumour effects of isorhapontigenin: Insights from in vitro and in vivo studies. Biomed Pharmacother 2024; 180:117479. [PMID: 39326106 DOI: 10.1016/j.biopha.2024.117479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Isorhapontigenin (ISO), a naturally-occurring stilbene derivative, has garnered significant attention due to its potent anticancer and anti-inflammatory properties. This review synthesizes current knowledge regarding the mechanisms of action, efficacy, and potential therapeutic applications of Isorhapontigenin acquired in vitro and in vivo. It systematically analyzes its effects on various cancer cell lines, tumor models, and inflammatory conditions, examining its impact on cell proliferation, apoptosis, metastasis, and inflammatory mediators. In vitro studies reveal that Isorhapontigenin induces cell cycle arrest, promotes apoptosis, and inhibits cancer cell migration through modulation of key signaling pathways, including EGFR-PI3K-Akt and NF-κB. It also demonstrates potent antioxidant and anti-inflammatory effects by enhancing Nrf2 signaling and suppressing pro-inflammatory cytokine production. These findings are corroborated by in vivo studies confirming its ability to inhibit tumor growth in xenograft models and attenuate inflammatory responses in various disease models. Notably, Isorhapontigenin exhibits superior pharmacokinetic profiles then resveratrol, with higher oral bioavailability. Isorhapontigenin demonstrates multi-target actions, including epigenetic modulation through microRNA regulation, which highlight its potential as a versatile therapeutic agent. This review also identifies current limitations in Isorhapontigenin research that require further investigation. Overall, Isorhapontigenin offers promise as a multi-faceted compound for the treatment of cancer, inflammatory diseases, and metabolic disorders, providing a solid foundation for future research and potential clinical applications.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Janusz Piekarski
- Department of Surgical Oncology, Medical University in Lodz, 251 Pomorska St. Lodz 93-513, Poland
| | - Anna Merecz-Sadowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Lodz 90-725, Poland
| | - Martyna Muskała
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Lodz 90-151, Poland
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| |
Collapse
|
3
|
Peng M, Meng H, Wang J, Guo M, Li T, Qian X, Chen R, Jin H, Huang C. p27 specifically decreases in squamous carcinoma, and mediates NNK-induced transformation of human bronchial epithelial cells. J Cell Mol Med 2024; 28:e18577. [PMID: 39099000 PMCID: PMC11298314 DOI: 10.1111/jcmm.18577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths, with cigarette smoking being the most critical factor, linked to nearly 90% of lung cancer cases. NNK, a highly carcinogenic nitrosamine found in tobacco, is implicated in the lung cancer-causing effects of cigarette smoke. Although NNK is known to mutate or activate certain oncogenes, its potential interaction with p27 in modulating these carcinogenic effects is currently unexplored. Recent studies have identified specific downregulation of p27 in human squamous cell carcinoma, in contrast to adenocarcinoma. Additionally, exposure to NNK significantly suppresses p27 expression in human bronchial epithelial cells. Subsequent studies indicates that the downregulation of p27 is pivotal in NNK-induced cell transformation. Mechanistic investigations have shown that reduced p27 expression leads to increased level of ITCH, which facilitates the degradation of Jun B protein. This degradation in turn, augments miR-494 expression and its direct regulation of JAK1 mRNA stability and protein expression, ultimately activating STAT3 and driving cell transformation. In summary, our findings reveal that: (1) the downregulation of p27 increases Jun B expression by upregulating Jun B E3 ligase ITCH, which then boosts miR-494 transcription; (2) Elevated miR-494 directly binds to 3'-UTR of JAK1 mRNA, enhancing its stability and protein expression; and (3) The JAK1/STAT3 pathway is a downstream effector of p27, mediating the oncogenic effect of NNK in lung cancer. These findings provide significant insight into understanding the participation of mechanisms underlying p27 inhibition of NNK induced lung squamous cell carcinogenic effect.
Collapse
Affiliation(s)
- Minggang Peng
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hao Meng
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jingjing Wang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Mengxin Guo
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Tengda Li
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xiaohui Qian
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Ruifan Chen
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Honglei Jin
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiangChina
| |
Collapse
|
4
|
Yuan L, Xi H, Luo Z, Liu MF, Chen Q, Zhu Q, Zhao R, Sheng YY. Exploring the potential of isorhapontigenin: attenuating Staphylococcus aureus virulence through MgrA-mediated regulation. mSphere 2024; 9:e0031724. [PMID: 38837389 PMCID: PMC11332347 DOI: 10.1128/msphere.00317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
The emerging prevalence of drug-resistant Staphylococcus aureus isolates underscores the urgent need for alternative therapeutic strategies due to the declining effectiveness of traditional antibiotics in clinical settings. MgrA, a key virulence regulator in S. aureus, orchestrates the expression of numerous virulence factors. Here, we report the discovery of isorhapontigenin, a methoxylated analog of resveratrol, as a potential anti-virulence agent against S. aureus. Isorhapontigenin effectively inhibits the hemolytic activity of S. aureus in a non-bactericidal manner. Additionally, it significantly reduces the cytotoxicity of S. aureus and impairs its ability to survive in macrophages. Mechanistically, isorhapontigenin modulates the expression of virulence factors, dose-dependently downregulating hla and upregulating the MgrA-regulated gene spa. Electrophoretic mobility shift assays demonstrated that isorhapontigenin inhibits the binding of MgrA to the hla promoter in a dose-dependent manner. Thermal shift assays confirmed the direct interaction between isorhapontigenin and the MgrA protein. The in vivo experiments demonstrated that isorhapontigenin significantly reduced the area of skin abscesses and improved survival in a pneumonia model while decreasing bacterial burden and inflammation in the lungs. In conclusion, isorhapontigenin holds potential as a candidate drug for further development as an anti-virulence agent for treating S. aureus infections. IMPORTANCE The emergence of antibiotic-resistant Staphylococcus aureus strains presents a formidable challenge to public health, necessitating novel approaches in combating these pathogens. Traditional antibiotics are becoming increasingly ineffective, leading to a pressing need for innovative therapeutic strategies. In this study, targeting virulence factors that play a crucial role in the pathogenesis of bacterial infections offers a promising alternative to circumvent resistance mechanisms. The discovery of isorhapontigenin as an inhibitor of S. aureus virulence represents a significant advance in anti-virulence therapy.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Huimin Xi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhaoxia Luo
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Mei-fang Liu
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Chen
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qing Zhu
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rui Zhao
- Department of Clinical Laboratory, Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi-yun Sheng
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Meng H, Yang R, Lin Q, Du W, Chu Z, Cao Y, Du M, Zhao Y, Xu J, Yang Z, Xie X, He L, Huang C. Isorhapontigenin inhibition of basal muscle-invasive bladder cancer attributed to its downregulation of SNHG1 and DNMT3b. BMC Cancer 2024; 24:737. [PMID: 38879516 PMCID: PMC11180402 DOI: 10.1186/s12885-024-12490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Bladder cancer (BC) is among the most prevalent malignant urothelial tumors globally, yet the prognosis for patients with muscle-invasive bladder cancer (MIBC) remains dismal, with a very poor 5-year survival rate. Consequently, identifying more effective and less toxic chemotherapeutic alternatives is critical for enhancing clinical outcomes for BC patients. Isorhapontigenin (ISO), a novel stilbene isolated from a Gnetum found in certain provinces of China, has shown potential as an anticancer agent due to its diverse anticancer activities. Despite its promising profile, the specific anticancer effects of ISO on BC and the underlying mechanisms are still largely unexplored. METHODS The anchorage-independent growth, migration and invasion of BC cells were assessed by soft agar and transwell invasion assays, respectively. The RNA levels of SOX2, miR-129 and SNHG1 were quantified by qRT-PCR, while the protein expression levels were validated through Western blotting. Furthermore, methylation-specific PCR was employed to assess the methylation status of the miR-129 promoter. Functional assays utilized siRNA knockdown, plasmid-mediated overexpression, and chemical inhibition approaches. RESULTS Our study demonstrated that ISO treatment significantly reduced SNHG1 expression in a dose- and time-dependent manner in BC cells, leading to the inhibition of anchorage-independent growth and invasion in human basal MIBC cells. This effect was accompanied by the downregulation of MMP-2 and MMP-9 and the upregulation of the tumor suppressor PTEN. Further mechanistic investigations revealed that SOX2, a key upstream regulator of SNHG1, played a crucial role in mediating the ISO-induced transcriptional suppression of SNHG1. Additionally, we found that ISO treatment led to a decrease in DNMT3b protein levels, which in turn mediated the hypomethylation of the miR-129 promoter and the subsequent suppression of SOX2 mRNA 3'-UTR activity, highlighting a novel pathway through which ISO exerts its anticancer effects. CONCLUSIONS Collectively, our study highlights the critical role of SNHG1 downregulation as well as its upstream DNMT3b/miR-129/SOX2 axis in mediating ISO anticancer activity. These findings not only elucidate the mechanism of action of ISO but also suggest novel targets for BC therapy.
Collapse
Affiliation(s)
- Hao Meng
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Rui Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Lin
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Wenqi Du
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zheng Chu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yaxin Cao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Mengxiang Du
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Yazhen Zhao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Jiheng Xu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Xiaomin Xie
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lijiong He
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325053, China.
| |
Collapse
|
6
|
Li T, Huang M, Sun N, Hua X, Chen R, Xie Q, Huang S, Du M, Zhao Y, Lin Q, Xu J, Han X, Zhao Y, Tian Z, Zhang Y, Chen W, Shen X, Huang C. Tumorigenesis of basal muscle invasive bladder cancer was mediated by PTEN protein degradation resulting from SNHG1 upregulation. J Exp Clin Cancer Res 2024; 43:50. [PMID: 38365726 PMCID: PMC10874020 DOI: 10.1186/s13046-024-02966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Phosphatase and tensin homolog deleted on chromosome ten (PTEN) serves as a powerful tumor suppressor, and has been found to be downregulated in human bladder cancer (BC) tissues. Despite this observation, the mechanisms contributing to PTEN's downregulation have remained elusive. METHODS We established targeted genes' knockdown or overexpressed cell lines to explore the mechanism how it drove the malignant transformation of urothelial cells or promoted anchorageindependent growth of human basal muscle invasive BC (BMIBC) cells. The mice model was used to validate the conclusion in vivo. The important findings were also extended to human studies. RESULTS In this study, we discovered that mice exposed to N-butyl-N-(4-hydroxybu-tyl)nitrosamine (BBN), a specific bladder chemical carcinogen, exhibited primary BMIBC accompanied by a pronounced reduction in PTEN protein expression in vivo. Utilizing a lncRNA deep sequencing high-throughput platform, along with gain- and loss-of-function analyses, we identified small nucleolar RNA host gene 1 (SNHG1) as a critical lncRNA that might drive the formation of primary BMIBCs in BBN-treated mice. Cell culture results further demonstrated that BBN exposure significantly induced SNHG1 in normal human bladder urothelial cell UROtsa. Notably, the ectopic expression of SNHG1 alone was sufficient to induce malignant transformation in human urothelial cells, while SNHG1 knockdown effectively inhibited anchorage-independent growth of human BMIBCs. Our detailed investigation revealed that SNHG1 overexpression led to PTEN protein degradation through its direct interaction with HUR. This interaction reduced HUR binding to ubiquitin-specific peptidase 8 (USP8) mRNA, causing degradation of USP8 mRNA and a subsequent decrease in USP8 protein expression. The downregulation of USP8, in turn, increased PTEN polyubiquitination and degradation, culminating in cell malignant transformation and BMIBC anchorageindependent growth. In vivo studies confirmed the downregulation of PTEN and USP8, as well as their positive correlations in both BBN-treated mouse bladder urothelium and tumor tissues of bladder cancer in nude mice. CONCLUSIONS Our findings, for the first time, demonstrate that overexpressed SNHG1 competes with USP8 for binding to HUR. This competition attenuates USP8 mRNA stability and protein expression, leading to PTEN protein degradation, consequently, this process drives urothelial cell malignant transformation and fosters BMIBC growth and primary BMIBC formation.
Collapse
Affiliation(s)
- Tengda Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Maowen Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ruifan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shirui Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mengxiang Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yazhen Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoyun Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Xian Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
7
|
Li AH, Park SY, Li P, Zhou C, Kluz T, Li J, Costa M, Sun H. Transcriptome Analysis Reveals Anti-Cancer Effects of Isorhapontigenin (ISO) on Highly Invasive Human T24 Bladder Cancer Cells. Int J Mol Sci 2024; 25:1783. [PMID: 38339062 PMCID: PMC10855786 DOI: 10.3390/ijms25031783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Bladder cancer, the most common malignancy of the urinary tract, has a poor overall survival rate when the tumor becomes muscle invasive. The discovery and evaluation of new alternative medications targeting high-grade muscle invasive bladder cancer (MIBC) are of tremendous importance in reducing bladder cancer mortality. Isorhapontigenin (ISO), a stilbene derivative from the Chinese herb Gnetum cleistostachyum, exhibits a strong anti-cancer effect on MIBCs. Here, we report the whole transcriptome profiling of ISO-treated human bladder cancer T24 cells. A total of 1047 differentially expressed genes (DEGs) were identified, including 596 downregulated and 451 upregulated genes. Functional annotation and pathway analysis revealed that ISO treatment induced massive changes in gene expression associated with cell movement, migration, invasion, metabolism, proliferation, and angiogenesis. Additionally, ISO treatment-activated genes involved in the inflammatory response but repressed genes involved in hypoxia signaling, glycolysis, the actin cytoskeleton, and the tumor microenvironment. In summary, our whole transcriptome analysis demonstrated a shift in metabolism and altered actin cytoskeleton in ISO-treated T24 cells, which subsequently contribute to tumor microenvironment remodeling that suppresses tumor growth and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Sun
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, 341 East 25th Street, New York, NY 10010, USA; (A.H.L.); (S.Y.P.); (P.L.); (C.Z.); (T.K.); (J.L.); (M.C.)
| |
Collapse
|
8
|
Navarro-Orcajada S, Vidal-Sánchez FJ, Conesa I, Escribano-Naharro F, Matencio A, López-Nicolás JM. Antiproliferative Effects in Colorectal Cancer and Stabilisation in Cyclodextrins of the Phytoalexin Isorhapontigenin. Biomedicines 2023; 11:3023. [PMID: 38002023 PMCID: PMC10669587 DOI: 10.3390/biomedicines11113023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Isorhapontigenin has been proposed as a better alternative for oral administration than the famous resveratrol, as it shares many biological activities, but with a structure that could make its delivery easier. Although this hydrophobic structure could enhance bioavailability, it could also be a disadvantage in the development of products. In this research, we study the antiproliferative activity of this stilbene against colorectal cancer and overcome its limitations through molecular encapsulation in cyclodextrins. The cytotoxic activity against human colorectal cancer cells of isorhapontigenin was similar to that of resveratrol or piceatannol, supporting its use as a bioactive alternative. The study of the encapsulation through fluorescence spectroscopy and molecular docking revealed that the complexation satisfies a 1:1 stoichiometry and that HP-β-CD is the most suitable CD to encapsulate this stilbene. Through a spectrophotometric assay, it was observed that this CD could double the basal water solubility, exceeding the solubility of other hydroxylated stilbenes. The stability of these inclusion complexes was higher at a pH below 9 and refrigeration temperatures. Moreover, the use of CDs retained more than 78% of isorhapontigenin after storage for 12 weeks, compared to 15% in free form. Overall, these findings could help design novel formulations to better deliver isorhapontigenin.
Collapse
Affiliation(s)
- Silvia Navarro-Orcajada
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia—Regional Campus of International Excellence “Campus Mare Nostrum”, E-30100 Murcia, Spain
| | - Francisco José Vidal-Sánchez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia—Regional Campus of International Excellence “Campus Mare Nostrum”, E-30100 Murcia, Spain
| | - Irene Conesa
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia—Regional Campus of International Excellence “Campus Mare Nostrum”, E-30100 Murcia, Spain
| | - Francisco Escribano-Naharro
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia—Regional Campus of International Excellence “Campus Mare Nostrum”, E-30100 Murcia, Spain
| | - Adrián Matencio
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - José Manuel López-Nicolás
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia—Regional Campus of International Excellence “Campus Mare Nostrum”, E-30100 Murcia, Spain
| |
Collapse
|
9
|
Hua X, Xiang D, Guo M, Qian X, Chen R, Li T, Tian Z, Xu J, Huang C, Xie Q, Huang C. Induction of RAC1 protein translation and MKK7/JNK-dependent autophagy through dicer/miR-145/SOX2/miR-365a axis contributes to isorhapontigenin (ISO) inhibition of human bladder cancer invasion. Cell Death Dis 2022; 13:753. [PMID: 36045117 PMCID: PMC9433410 DOI: 10.1038/s41419-022-05205-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
Although our previous studies have identified that isorhapontigenin (ISO) is able to initiate autophagy in human bladder cancer (BC) cells by activating JNK/C-Jun/SESN2 axis and possesses an inhibitory effect on BC cell growth, association of autophagy directly with inhibition of BC invasion has never been explored. Also, upstream cascade responsible for ISO activating JNK remains unknown. Thus, we explored both important questions in the current study and discovered that ISO treatment initiated RAC1 protein translation, and its downstream kinase MKK7/JNK phosphorylation/activation, and in turn promoted autophagic responses in human BC cells. Inhibition of autophagy abolished ISO inhibition of BC invasion, revealing that autophagy inhibition was crucial for ISO inhibition of BC invasion. Consistently, knockout of RAC1 also attenuated induction of autophagy and inhibition of BC invasion by ISO treatment. Mechanistic studies showed that upregulation of RAC1 translation was due to ISO inhibition of miR-365a transcription, which reduced miR-365a binding to the 3'-UTR of RAC1 mRNA. Further study indicated that inhibition of miR-365a transcription was caused by downregulation of its transcription factor SOX2, while ISO-promoted Dicer protein translation increased miR-145 maturation, and consequently downregulating SOX2 expression. These findings not only provide a novel insight into the understanding association of autophagy induction with BC invasion inhibition by ISO, but also identify an upstream regulatory cascade, Dicer/miR145/SOX2/miR365a/RAC1, leading to MKK7/JNKs activation and autophagy induction.
Collapse
Affiliation(s)
- Xiaohui Hua
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China ,grid.186775.a0000 0000 9490 772XDepartment of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032 China
| | - Daimin Xiang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Mengxin Guo
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Xiaohui Qian
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Ruifan Chen
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Tengda Li
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Zhongxian Tian
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jiheng Xu
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Chao Huang
- grid.33199.310000 0004 0368 7223Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Qipeng Xie
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Chuanshu Huang
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| |
Collapse
|
10
|
Isorhamnetin Suppresses Human Gastric Cancer Cell Proliferation through Mitochondria-Dependent Apoptosis. Molecules 2022; 27:molecules27165191. [PMID: 36014431 PMCID: PMC9415531 DOI: 10.3390/molecules27165191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Derivates of natural products have been wildly utilized in the treatment of malignant tumors. Isorhamnetin (ISO), a most important active ingredient derived from flavonoids, shows great potential in tumor therapy. However, the therapeutic effects of ISO on gastric cancer (GC) remain unclear. Here, we demonstrate that ISO treatment dramatically inhibited the proliferation of two types of GC cells (AGS-1 and HGC-27) both in vitro and in vivo in time- and dose-dependent manners. These results are consistent with the transcriptomic analysis of ISO-treated GC cells, which yielded hundreds of differentially expressed genes that were enriched with cell growth and apoptosis. Mechanically, ISO treatment initiated the activation of caspase-3 cascade and elevated the expression of mitochondria-associated Bax/Bcl-2, cytosolic cytochrome c, followed by the activation of the cleavage of caspase-3 as well as poly ADP-ribose polymerase (PARP), resulting in the severe reduction of the mitochondrial potential and the accumulation of reactive oxygen species (ROS), while pre-treatment of the caspase-3 inhibitor could block the anti-tumor effect. Therefore, these results indicate that ISO treatment induces the apoptosis of GC cells through the mitochondria-dependent apoptotic pathway, providing a potential strategy for clinical GC therapy.
Collapse
|
11
|
Huang M, Hua X, Xu J, Tian Z, Wang J, Chen H, Wang X, Shu P, Ye H, Shu J, Huang C. Induction of p27 contributes to inhibitory effect of isorhapontigenin (ISO) on malignant transformation of human urothelial cells. Cell Cycle 2022:1-14. [PMID: 35532178 DOI: 10.1080/15384101.2022.2074623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022] Open
Abstract
Bladder cancer (BC) is the most expensive cancer to manage on a per-patient basis, costing about $4 billion in total healthcare expenditure per annum in America alone. Therefore, identifying a natural compound for prevention of BC is of tremendous importance for managing this disease. Previous studies have identified isorhapontigenin (ISO) as having an 85% preventive effect against invasive BC formation induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). The results showed here that ISO treatment inhibited EGF-induced cell transformation of human urothelial cells through induction of tumor suppressor p27 transcription secondary to activation of an E2F1-dependentpathway.ISOtreatmentrenderedcellsresistanttoEGF-induced anchorage-independent growth concurrent with p27 protein induction in both UROtsa and SV-HUC-1 cells. ISO inhibition of EGF-induced cell transformation could be completely reversed by knockdown of p27, indicating that this protein was essential for the noted ISO inhibitory action. Mechanistic studies revealed that ISO treatment resulted in increased expression of E2F1, which in turn bound to its binding site in p27 promoter and initiated p27 transcription. The E2F1 induction was due to the elevation of its translation caused by ISO-induced miR-205 downregulation. Consistently, miR-205 was found to be overexpressed in human BCs, and ectopic expression of miR-205 mitigated ISO inhibitory effects against EGF-induced outcomes. Collectively, the results here demonstrate that ISO exhibits its preventive effect on EGF-induced human urothelial cell transformation by induction of p27 through a miR-205/E2F1 axis. This is distinct from what has been described for the therapeutic effects of ISO on human BC cells.
Collapse
Affiliation(s)
- Maowen Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiajing Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Hengchao Chen
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Xuyao Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Peng Shu
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Hongyan Ye
- Department of Clinical Laboratory, Beilun People's Hospital, Zhejiang, China
| | - Jianfeng Shu
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Zhang W, Sun C, Zhou S, Zhao W, Wang L, Sheng L, Yi J, Liu T, Yan J, Ma X, Fang B. Recent advances in chemistry and bioactivity of Sargentodoxa cuneata. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113840. [PMID: 33460761 DOI: 10.1016/j.jep.2021.113840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Sargentodoxa comprises only one species, Sargentodoxa cuneata (Oliv.) Rehd et al., widely distributed in the subtropical zone of China. The plant is extensively used in traditional medicine for treating arthritis, joint pains, amenorrhea, acute appendicitis and inflammatory intestinal obstruction. Pharmacological studies show anti-inflammatory, antioxidant, antitumor, antimicrobial, and anti-sepsis activities. AIM OF THE REVIEW This review aims to summarize the information about distribution, traditional uses, chemical constituents and pharmacological activities of S. cuneata, as an attempt to provide a scientific basis for its traditional uses and to support its application and development for new drug development. METHODOLOGY Scientific information of S. cuneata was retrieved from the online bibliographic databases, including Web of Science, Google Scholar, PubMed, Springer Link, the Wiley online library, SciFinder, Baidu Scholar, China national knowledge infrastructure (CNKI) and WANFANG DATA (up to March 2020). We also search doctoral dissertations, master dissertations conference papers and published books. The keywords were used: "Sargentodoxa", "Da Xue Teng", "Hong Teng", "Xue Teng", "secondary metabolites", "chemical components", "biological activity", "pharmacology", "traditional uses". OBSERVATIONS AND RESULTS S. cuneata is utilized as valuable herbal medicines to treat various diseases in China. Over 110 chemical constituents have been isolated and identified from the stem of S. cuneata, including phenolic acids, phenolic glycosides, lignans, flavones, triterpenoids and other compounds. The extract and compounds of S. cuneata have a wide spectrum of pharmacological activities, including antitumor, anti-inflammatory, antioxidant, antimicrobial, anti-sepsis and anti-arthritis effects, as well as protective activity against cerebrovascular diseases. CONCLUSION S. cuneata has a rich legacy for the treatment of many diseases, especially arthritis and sepsis, which is reinforced by current investigations. However, the present studies about bioactive chemical constituents and detail pharmacological mechanisms of S. cuneata were insufficient. Further studies should focus on these aspects in relation to its clinical applications. This review has systematically summarized the traditional uses, phytochemical constituents and pharmacological effects of S. cuneata, providing references for the therapeutic potential of new drug development.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chengpeng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Shuang Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenyu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Lin Wang
- Department of Traditional Chinese Medicine Shanghai Pudong New Area People's Hospital Pudong, Shanghai, 201200, China
| | - Lingli Sheng
- Nephrology, Pudong Branch of Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jing Yi
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Tiantian Liu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Juanjuan Yan
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiaochi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Bangjiang Fang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
13
|
Jin H, Ma J, Xu J, Li H, Chang Y, Zang N, Tian Z, Wang X, Zhao N, Liu L, Chen C, Xie Q, Lu Y, Fang Z, Huang X, Huang C, Huang H. Oncogenic role of MIR516A in human bladder cancer was mediated by its attenuating PHLPP2 expression and BECN1-dependent autophagy. Autophagy 2021; 17:840-854. [PMID: 32116109 PMCID: PMC8078721 DOI: 10.1080/15548627.2020.1733262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Although MIR516A has been reported to be downregulated and act as a tumor suppressor in multiple cancers, its expression and potential contribution to human bladder cancer (BC) remain unexplored. Unexpectedly, we showed here that MIR516A was markedly upregulated in human BC tissues and cell lines, while inhibition of MIR516A expression attenuated BC cell monolayer growth in vitro and xenograft tumor growth in vivo, accompanied with increased expression of PHLPP2. Further studies showed that MIR516A was able to directly bind to the 3'-untranslated region of PHLPP2 mRNA, which was essential for its attenuating PHLPP2 expression. The knockdown of PHLPP2 expression in MIR516A-inhibited cells could reverse BC cell growth, suggesting that PHLPP2 is a MIR516A downstream mediator responsible for MIR516A oncogenic effect. PHLPP2 was able to mediate BECN1/Beclin1 stabilization indirectly, therefore promoting BECN1-dependent macroautophagy/autophagy, and inhibiting BC tumor cell growth. In addition, our results indicated that the increased autophagy by attenuating MIR516A resulted in a dramatic inhibition of xenograft tumor formation in vivo. Collectively, our results reveal that MIR516A has a novel oncogenic function in BC growth by directing binding to PHLPP2 3'-UTR and inhibiting PHLPP2 expression, in turn at least partly promoting CUL4A-mediated BECN1 protein degradation, thereby attenuating autophagy and promoting BC growth, which is a distinct function of MIR516A identified in other cancers.Abbreviation: ATG3: autophagy related 3; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BAF: bafilomycin A1; BC: bladder cancer; CHX: cycloheximide; Co-IP: co-immunoprecipitation; CUL3: cullin 3; CUL4A: cullin 4A; CUL4B: cullin 4B; IF: immunofluorescence: IHC-p: immunohistochemistry-paraffin; MIR516A: microRNA 516a (microRNA 516a1 and microRNA 516a2); MS: mass spectrometry; PHLPP2: PH domain and leucine rich repeat protein phosphatase.
Collapse
Affiliation(s)
- Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiugao Ma
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Jiheng Xu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Chang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Zang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Liu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Caiyi Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyong Lu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouxi Fang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
Wang J, Zhang N, Peng M, Hua X, Huang C, Tian Z, Xie Q, Zhu J, Li J, Huang H, Huang C. p85α Inactivates MMP-2 and Suppresses Bladder Cancer Invasion by Inhibiting MMP-14 Transcription and TIMP-2 Degradation. Neoplasia 2019; 21:908-920. [PMID: 31401412 PMCID: PMC6700442 DOI: 10.1016/j.neo.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
Recent studies show p85α up-regulates epidermal growth factor (EGF) receptor, thereby promoting malignant cell transformation and migration in normal mouse embryonic fibroblasts (MEFs). However, the potential role of p85α in human bladder cancer (BC) remains unknown. Here, we show that p85α is down-regulated in BC tumor tissues. Ectopic expression of p85α inhibited cell invasion, but not migration, whereas p85α knockdown promoted invasion in BC cells, revealing that p85α inhibits BC invasion. Overexpression of kinase-deficient p110 in T24 T(p85α) cells inhibited BC cell migration, but not invasion, suggesting that the inhibition of p85α on invasion is independent of PI3K activity. The effect of p85α on inhibiting BC invasion was mediated by the inactivation of MMP-2 concomitant with the up-regulation of TIMP-2 and down-regulation of MMP-14. Mechanistic studies revealed c-Jun inactivation was associated with p85α knockdown-induced MMP-14 expression, and down-regulated miR-190, leading to ATG7 mRNA degradation. This suppressed the autophagy-dependent removal of TIMP-2 in human BC cells. The present results identify a novel function of p85α and clarify the mechanisms underlying its inhibition of BC invasion, providing insight into the role of p85α in normal and cancer cells.
Collapse
Affiliation(s)
- Jingjing Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Ning Zhang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Minggang Peng
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Xiaohui Hua
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Chao Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Zhongxian Tian
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Junlan Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035.
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA.
| |
Collapse
|
15
|
Zhang TT, Wang YL, Jin B, Li T, Ma C. Plasma pharmacokinetics of isorhapontigenin, a novel derivative of stilbenes, in mice by LC-MS/MS method. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:895-904. [PMID: 30589363 DOI: 10.1080/10286020.2018.1540602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Isorhapontigenin (ISO), a novel derivative of stilbene compound, possessess good pharmacological activities such as antiviral, antioxidant, and anticancer. The purpose of this study is to investigate the pharmacokinetic of ISO in mice plasma, after oral administration of three doses (40, 80, and 160 mg/kg). Isorhapontigenin was detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a reliable LC-MS/MS assay for ISO in mice plasma was developed. The method was linear over a concentration range of 5-2000 ng/ml, and the lower limit of quantification was 5 ng/ml. The results indicated that there was a linear relationship between AUC(0-t), AUC(0-∞), and Cmax of ISO and dosages. ISO underwent quick absorption and elimination in mice.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- a Department of Pharmaceutical Analysis, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ya-Li Wang
- a Department of Pharmaceutical Analysis, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Bo Jin
- a Department of Pharmaceutical Analysis, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Tong Li
- a Department of Pharmaceutical Analysis, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Chen Ma
- a Department of Pharmaceutical Analysis, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
16
|
Cirillo F, Lappano R, Bruno L, Rizzuti B, Grande F, Guzzi R, Briguori S, Miglietta AM, Nakajima M, Di Martino MT, Maggiolini M. AHR and GPER mediate the stimulatory effects induced by 3-methylcholanthrene in breast cancer cells and cancer-associated fibroblasts (CAFs). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:335. [PMID: 31370872 PMCID: PMC6676524 DOI: 10.1186/s13046-019-1337-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The chemical carcinogen 3-methylcholanthrene (3MC) binds to the aryl hydrocarbon receptor (AHR) that regulates the expression of cytochrome P450 (CYP) enzymes as CYP1B1, which is involved in the oncogenic activation of environmental pollutants as well as in the estrogen biosynthesis and metabolism. 3MC was shown to induce estrogenic responses binding to the estrogen receptor (ER) α and stimulating a functional interaction between AHR and ERα. Recently, the G protein estrogen receptor (GPER) has been reported to mediate certain biological responses induced by endogenous estrogens and environmental compounds eliciting an estrogen-like activity. METHODS Molecular dynamics and docking simulations were performed to evaluate the potential of 3MC to interact with GPER. SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) derived from breast tumor patients were used as model system. Real-time PCR and western blotting analysis were performed in order to evaluate the activation of transduction mediators as well as the mRNA and protein levels of CYP1B1 and cyclin D1. Co-immunoprecipitation studies were performed in order to explore the potential of 3MC to trigger the association of GPER with AHR and EGFR. Luciferase assays were carried out to determine the activity of CYP1B1 promoter deletion constructs upon 3MC exposure, while the nuclear shuttle of AHR induced by 3MC was assessed through confocal microscopy. Cell proliferation stimulated by 3MC was determined as biological counterpart of the aforementioned experimental assays. The statistical analysis was performed by ANOVA. RESULTS We first ascertained by docking simulations the ability of 3MC to interact with GPER. Thereafter, we established that 3MC activates the EGFR/ERK/c-Fos transduction signaling through both AHR and GPER in SkBr3 cells and CAFs. Then, we found that these receptors are involved in the up-regulation of CYP1B1 and cyclin D1 as well as in the stimulation of growth responses induced by 3MC. CONCLUSIONS In the present study we have provided novel insights regarding the molecular mechanisms by which 3MC may trigger a physical and functional interaction between AHR and GPER, leading to the stimulation of both SkBr3 breast cancer cells and CAFs. Altogether, our results indicate that 3MC may engage both GPER and AHR transduction pathways toward breast cancer progression.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF. Cal and Department of Physics, University of Calabria, 87036, Rende, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | - Rita Guzzi
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF. Cal and Department of Physics, University of Calabria, 87036, Rende, Italy.,Molecular Biophysics Laboratory, Department of Physics, University of Calabria, 87036, Rende, Italy
| | - Sara Briguori
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | | | - Miki Nakajima
- Drug Metabolism and Toxicology, WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy.
| |
Collapse
|
17
|
Tian Z, Luo Y, Zhu J, Hua X, Xu J, Huang C, Jin H, Huang H, Huang C. Transcriptionally elevation of miR-494 by new ChlA-F compound via a HuR/JunB axis inhibits human bladder cancer cell invasion. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:822-833. [PMID: 31167152 DOI: 10.1016/j.bbagrm.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 01/10/2023]
Abstract
Muscle invasive bladder cancer (MIBC) is characterized by a poor overall survival rate in patients. Therefore, innovation and evaluation of idea anti-cancer compounds is of importance for reducing the mortality of MIBCs. The chemotherapeutic activity of ChlA-F, a novel C8 fluoride derivative of cheliensisin A with potent anti-neoplastic properties, was barely investigated. We reported here that ChlA-F treatment significantly induced miR-494 expression and suppressed cell invasion in human MIBC cells. Our results indicated that miR-494 was downregulated in M1 metastatic BC patients in comparison to non-metastatic (M0) BC patients, and such downregulation was also well correlated with over survival rate for MIBC patients. Mechanistically, ChlA-F-induced upregulation of miR-494 was due to a HuR-mediated increase in JunB mRNA stabilization and protein expression, which led to an increase in miR-494 transcription via directly binding to the miR-494 promoter region, while the upregulated miR-494 was able to bind the 3'-UTR region of c-Myc mRNA, resulting in decreased c-Myc mRNA stability and protein expression and further reducing the transcription of c-Myc-regulated MMP-2 and ultimately inhibiting BC invasion. Our results provide the first evidence showing that miR-494 downregulation was closely associated with BC metastatic status and overall BC survival, and ChlA-F was able to reverse the level of miR-494 with a profound inhibition of human BC invasion in human invasive BC cells. Our studies also reveal that ChlA-F is a promising therapeutic compound for BCs and miR-494 could also serve as a promising therapeutic target for the treatment of MIBC patients.
Collapse
Affiliation(s)
- Zhongxian Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yisi Luo
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Junlan Zhu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiaohui Hua
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiheng Xu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| |
Collapse
|
18
|
Xu J, Hua X, Jin H, Zhu J, Li Y, Li J, Huang C. NFκB2 p52 stabilizes rhogdiβ mRNA by inhibiting AUF1 protein degradation via a miR-145/Sp1/USP8-dependent axis. Mol Carcinog 2019; 58:777-793. [PMID: 30604907 DOI: 10.1002/mc.22970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 12/29/2022]
Abstract
Although overexpression of the non-canonical NFκB subunit p52 has been observed in several tumors, the function and mechanism of p52 in bladder cancer (BC) are less well understood. Here, we aimed at understanding the role and mechanism underlying p52 regulation of BC invasion. Human p52 was stably knockdown with shRNA targeting p52 in two bladder cancer cell lines (T24 and UMUC3). Two constitutively expressing constructs, p52 and p100, were stably transfected in to T24 or UMUC3, respectively. The stable transfectants were used to determine function and mechanisms responsible for p52 regulation of BC invasion. We demonstrate that p52 mediates human BC invasion. Knockdown of p52 impaired bladder cancer invasion by reduction of rhogdiβ mRNA stability and expression. Positively regulation of rhogdiβ mRNA stability was mediated by p52 promoting AUF1 protein degradation, consequently resulting in reduction of AUF1 binding to rhogdiβ mRNA. Further studies indicated that AUF1 protein degradation was mediated by upregulating USP8 transcription, which was modulated by its negative regulatory transcription factor Sp1. Moreover, we found that p52 upregulated miR-145, which directly bound to the 3'-UTR of sp1 mRNA, leading to downregulation of Sp1 protein translation. Our results reveal a comprehensive pathway that p52 acts as a positive regulator of BC invasion by initiating a novel miR-145/Sp1/USP8/AUF1/RhoGDIβ axis. These findings provide insight into the understanding of p52 in the pathology of human BC invasion and progression, which may be useful information in the development of preventive and therapeutic approaches for using p52 as a potential target.
Collapse
Affiliation(s)
- Jiawei Xu
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Yang Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Chuangshu Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| |
Collapse
|
19
|
Peng M, Wang J, Tian Z, Zhang D, Jin H, Liu C, Xu J, Li J, Hua X, Xu J, Huang C, Huang C. Autophagy-mediated Mir6981 degradation exhibits CDKN1B promotion of PHLPP1 protein translation. Autophagy 2019; 15:1523-1538. [PMID: 30821592 DOI: 10.1080/15548627.2019.1586254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PHLPP1 (PH domain and leucine rich repeat protein phosphatase 1) is a newly identified family of Ser/Thr phosphatases that catalyzes the dephosphorylation of a conserved regulatory motif of the AGC kinases resulting in a tumor suppressive function, while CDKN1B/p27 also acts as a tumor suppressor by regulating cell cycle, senescence, apoptosis, and cell motility. Our most recent studies reveal that CDKN1B is required for PHLPP1 abundance, which contributes to the inhibition of carcinogenic arsenite-induced cell malignant transformation through inhibition of RPS6-mediated Hif1a translation. However, nothing is known about the mechanisms underlying the crosstalk between these 2 key tumor suppressors in intact cells. Here, for the first time to the best of our knowledge, we show that CDKN1B is able to promote PHLPP1 protein translation by attenuating the abundance of Mir6981, which binds directly to the 5'untranslated region (UTR) of Phlpp1 mRNA. Further studies indicate that the attenuation of Mir6981 expression is due to macroautophagy/autophagy-mediated degradation of Mir6981 in an SQSTM1/p62-dependent fashion. Moreover, we have determined that Sqstm1 is upregulated by CDKN1B at the level of transcription via enhancing SP1 protein stability in an HSP90-depdendent manner. Collectively, our studies prove that: 1) SQSTM1 is a CDKN1B downstream effector responsible for CDKN1B-mediated autophagy; 2) by promoting the autophagy-mediated degradation of Mir6981, CDKN1B exerts a positive regulatory effect on PHLPP1 translation; 3) Mir6981 suppresses PHLPP1 translation by binding directly to its mRNA 5'-UTR, rather than classical binding to the 3'-UTR. These findings provide significant insight into understanding the crosstalk between CDKN1B and PHLPP1. Abbreviations: ATG: autophagy related; ACTB: actin beta; BAF: bafilomycin; BECN1: beclin 1; Cdkn1b/p27: cyclin-dependent kinase inhibitor 1B; CHX: cycloheximide; DMEM: dulbecco's modified eagle medium; FBS: fetal bovine serum; GAPDH: glyceraldehyde -3-phosphate dehydrogenase; Hif1a: hypoxia inducible factor 1, alpha subunit; Hsp90: heat shock protein 90; JUN: Jun proto-oncogene, AP1 transcription factor subunit; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MG132: proteasome inhibitor; Mtor: mechanistic target of rapamycin kinase; Phlpp1: PH domain and leucine rich repeat protein phosphatase 1; Phlpp2: PH domain and leucine rich repeat protein phosphatase 2; Pp2c: protein phosphatase 2 C; RPS6: ribosomal protein S6; Sp1: trans-acting transcription factor 1; Sqstm1/p62: sequestosome 1; TUBA: alpha tubulin; 3'-UTR; 3'-untranslated region; 5'-UTR: 5'-untranslated region.
Collapse
Affiliation(s)
- Minggang Peng
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingjing Wang
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Zhongxian Tian
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Dongyun Zhang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Honglei Jin
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Claire Liu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jiawei Xu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingxia Li
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Xiaohui Hua
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jiheng Xu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Chao Huang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Chuanshu Huang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| |
Collapse
|
20
|
Caffeic Acid Phenethyl Ester Loaded in Microemulsions: Enhanced In Vitro Activity against Colon and Breast Cancer Cells and Possible Cellular Mechanisms. FOOD BIOPHYS 2018. [DOI: 10.1007/s11483-018-9559-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Hua X, Xu J, Deng X, Xu J, Li J, Zhu DQ, Zhu J, Jin H, Tian Z, Huang H, Zhao QS, Huang C. New compound ChlA-F induces autophagy-dependent anti-cancer effect via upregulating Sestrin-2 in human bladder cancer. Cancer Lett 2018; 436:38-51. [PMID: 30118841 PMCID: PMC6245652 DOI: 10.1016/j.canlet.2018.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
ChlA-F is a novel conformation-derivative of Cheliensisin A, styryl-lactone isolates that show potent anti-tumor potential in vivo and vitro. However, the anti-cancer activity and its potential mechanisms underlying ChlA-F action have never been explored. In the present study, we evaluated the potency of ChlA-F on autophagy-mediated anchorage-independent growth inhibition in human high-grade invasive bladder cancer (BC) cells. We found that ChlA-F treatment significantly inhibited anchorage-independent growth of human BC cells by inducing autophagy in a Sestrin-2 (SESN2)-dependent fashion. Our results revealed that ChlA-F treatment specifically induced SESN2 expression via increasing its transcription and mRNA stability. On one hand, ChlA-F treatment markedly attenuated Dicer protein abundance, in turn abolishing miR-27a maturation and further relieving miR-27a binding directly to SESN2 mRNA 3'UTR, thereby promoting SESN2 mRNA stabilization. On the other hand, ChlA-F treatment promoted Sp1 abundance and consequently mediated SESN2 transcription. These results demonstrate that its activation of the autophagic pathway through specifically promoting SESN2 expression mediates the anti-cancer effect of ChlA-F, which offers insights into the novel anti-cancer effect of ChlA-F on BC, as well as providing therapeutic alternatives against human BC.
Collapse
Affiliation(s)
- Xiaohui Hua
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Jiheng Xu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Jiawei Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - David Q Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA.
| |
Collapse
|
22
|
Peng M, Wang J, Zhang D, Jin H, Li J, Wu XR, Huang C. PHLPP2 stabilization by p27 mediates its inhibition of bladder cancer invasion by promoting autophagic degradation of MMP2 protein. Oncogene 2018; 37:5735-5748. [PMID: 29930380 PMCID: PMC6202328 DOI: 10.1038/s41388-018-0374-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/24/2023]
Abstract
Pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) is a tumor suppressor that catalyzes the de-phosphorylation of the AGC kinases, while p27 acts as a tumor suppressor that regulates cell cycle, apoptosis, and cell motility. Our previous studies have identified that PHLPP2 participates in inhibition of transformation of human bronchial epithelial cells following lung carcinogen B[a]P/B[a]PDE exposure. However, nothing was known about the association of p27 with regulation of PHLPP2 expression and the role of PHLPP2 in bladder cancer (BC) invasion. In our current studies, we demonstrated that PHLPP2 inhibited BC invasion through promoting MMP2 degradation via p62-mediated autophagy; and p27 expression was able to stabilize PHLPP2 protein by inhibiting protein degradation of Hsp90, which could directly bind to PHLPP2 and protect it from degradation. More in-depth studies discovered that stabilization of Hsp90 by p27 was mediated by calpain1 proteolysis system, whereas p27 inhibited calpain1 gene transcription by attenuating Jak1/Stat1 cascade in human invasive BC cells. Collectively, we for the first time revealed PHLPP2 downregulation in BCs and its participating in promotion of BC invasion, as well as novel role of p27 and mechanisms underlying its regulation of PHLPP2 protein degradation through Hsp90-dependent manner. Our findings improve our understanding of p27 and PHLPP2 roles and their crosstalk in regulation of BC invasion, which further contributes to improve the current strategy for invasive bladder cancer therapy.
Collapse
Affiliation(s)
- Minggang Peng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Jingjing Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Honglei Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA.
| |
Collapse
|
23
|
Guo X, Huang H, Jin H, Xu J, Risal S, Li J, Li X, Yan H, Zeng X, Xue L, Chen C, Huang C. ISO, via Upregulating MiR-137 Transcription, Inhibits GSK3β-HSP70-MMP-2 Axis, Resulting in Attenuating Urothelial Cancer Invasion. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:337-349. [PMID: 30195772 PMCID: PMC6037888 DOI: 10.1016/j.omtn.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/02/2018] [Accepted: 05/20/2018] [Indexed: 01/23/2023]
Abstract
Our most recent studies demonstrate that miR-137 is downregulated in human bladder cancer (BC) tissues, while treatment of human BC cells with isorhapontigenin (ISO) elevates miR-137 abundance. Since ISO showed a strong inhibition of invasive BC formation in the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced invasive BC mouse model, the elucidation of a potential biological effect of miR-137 on antagonizing BC invasion and molecular mechanisms underlying ISO upregulation of miR-137 are very important. Here we discovered that ectopic expression of miR-137 led to specific inhibition of BC invasion in human high-grade BC T24T and UMUC3 cells, while miR-137 deletion promoted the invasion of both cells, indicating the inhibitory effect of miR-137 on human BC invasion. Mechanistic studies revealed that ISO treatment induced miR-137 transcription by promoting c-Jun phosphorylation and, in turn, abolishing matrix metalloproteinase-2 (MMP-2) abundance and invasion in BC cells. Moreover, miR-137 was able to directly bind to the 3' UTR of Glycogen synthase kinase-3β (GSK3β) mRNA and inhibit GSK3β protein translation, consequently leading to a reduction of heat shock protein-70 (HSP70) translation via targeting the mTOR/S6 axis. Collectively, our studies discover an unknown function of miR-137, directly targeting the 3' UTR of GSK3β mRNA and, thereby, inhibiting GSK3β protein translation, mTOR/S6 activation, and HSP70 protein translation and, consequently, attenuating HSP70-mediated MMP-2 expression and invasion in human BC cells. These novel discoveries provide a deep insight into understanding the biomedical significance of miR-137 downregulation in invasive human BCs and the anti-cancer effect of ISO treatment on mouse invasive BC formation.
Collapse
Affiliation(s)
- Xirui Guo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sanjiv Risal
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Xin Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiying Yan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Lei Xue
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
24
|
Dai Y, Yeo SCM, Barnes PJ, Donnelly LE, Loo LC, Lin HS. Pre-clinical Pharmacokinetic and Metabolomic Analyses of Isorhapontigenin, a Dietary Resveratrol Derivative. Front Pharmacol 2018; 9:753. [PMID: 30050440 PMCID: PMC6050476 DOI: 10.3389/fphar.2018.00753] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Isorhapontigenin (trans-3,5,4'-trihydroxy-3'-methoxystilbene, ISO), a dietary resveratrol (trans-3,5,4'-trihydroxystilbene) derivative, possesses various health-promoting activities. To further evaluate its medicinal potentials, the pharmacokinetic and metabolomic profiles of ISO were examined in Sprague-Dawley rats. Methods: The plasma pharmacokinetics and metabolomics were monitored by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), respectively. Results: Upon intravenous injection (90 μmol/kg), ISO exhibited a fairly rapid clearance (CL) and short mean residence time (MRT). After a single oral administration (100 μmol/kg), ISO was rapidly absorbed and showed a long residence in the systemic circulation. Dose escalation to 200 μmol/kg resulted in higher dose-normalized maximal plasma concentrations (Cmax/Dose), dose-normalized plasma exposures (AUC/Dose), and oral bioavailability (F). One-week repeated daily dosing of ISO did not alter its major oral pharmacokinetic parameters. Pharmacokinetic comparisons clearly indicated that ISO displayed pharmacokinetic profiles superior to resveratrol as its Cmax/Dose, AUC/Dose, and F were approximately two to three folds greater than resveratrol. Metabolomic investigation revealed that 1-week ISO administration significantly reduced plasma concentrations of arachidonic acid, cholesterol, fructose, allantoin, and cadaverine but increased tryptamine levels, indicating its impact on metabolic pathways related to health-promoting effects. Conclusion: ISO displayed favorable pharmacokinetic profiles and may be a promising nutraceutical in view of its health-promoting properties.
Collapse
Affiliation(s)
- Yu Dai
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Samuel C M Yeo
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.,Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Shimadzu (Asia Pacific) Pte. Ltd., Singapore, Singapore
| | - Peter J Barnes
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lai C Loo
- Shimadzu (Asia Pacific) Pte. Ltd., Singapore, Singapore
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Safe S, Abbruzzese J, Abdelrahim M, Hedrick E. Specificity Protein Transcription Factors and Cancer: Opportunities for Drug Development. Cancer Prev Res (Phila) 2018; 11:371-382. [PMID: 29545399 DOI: 10.1158/1940-6207.capr-17-0407] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Specificity protein (Sp) transcription factors (TFs) such as Sp1 are critical for early development but their expression decreases with age and there is evidence that transformation of normal cells to cancer cells is associated with upregulation of Sp1, Sp3, and Sp4, which are highly expressed in cancer cells and tumors. Sp1 is a negative prognostic factor for pancreatic, colon, glioma, gastric, breast, prostate, and lung cancer patients. Functional studies also demonstrate that Sp TFs regulate genes responsible for cancer cell growth, survival, migration/invasion, inflammation and drug resistance, and Sp1, Sp3 and Sp4 are also nononcogene addiction (NOA) genes and important drug targets. The mechanisms of drug-induced downregulation of Sp TFs and pro-oncogenic Sp-regulated genes are complex and include ROS-dependent epigenetic pathways that initially decrease expression of the oncogene cMyc. Many compounds such as curcumin, aspirin, and metformin that are active in cancer prevention also exhibit chemotherapeutic activity and these compounds downregulate Sp TFs in cancer cell lines and tumors. The effects of these compounds on downregulation of Sp TFs in normal cells and the contribution of this response to their chemopreventive activity have not yet been determined. Cancer Prev Res; 11(7); 371-82. ©2018 AACR.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - James Abbruzzese
- Department of Medicine, Division of Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Maen Abdelrahim
- GI Medical Oncology, Cockrell Center for Advanced Therapeutics, Houston Methodist Cancer Center and Institute of Academic Medicine, Houston, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
26
|
Jin H, Sun W, Zhang Y, Yan H, Liufu H, Wang S, Chen C, Gu J, Hua X, Zhou L, Jiang G, Rao D, Xie Q, Huang H, Huang C. MicroRNA-411 Downregulation Enhances Tumor Growth by Upregulating MLLT11 Expression in Human Bladder Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:312-322. [PMID: 29858066 PMCID: PMC5889700 DOI: 10.1016/j.omtn.2018.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/25/2022]
Abstract
Although several previous studies have reported the implication of various microRNAs (miRNAs) in regulation of human bladder cancer (BC) development, alterations and function of many miRNAs in bladder cancer growth are not explored yet at present. Here, we screened 1,900 known miRNAs and first discovered that miR-411 was one of the major miRNAs, which was down-regulated in n-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced BCs. This miR-411 down-regulation was also observed in human BC tissues and cell lines. The results from evaluating the relationship between miR-411 and patient survival in BC using the TCGA (The Cancer Genome Atlas) database indicated that miR-411 was positively correlated with DFS (disease-free survival). Our studies also showed that miR-411 inhibited tumor growth of human BC cells in a xenograft animal model. Mechanistic studies revealed that overexpression of miR-411 repressed the expression of ALL1-fused gene from the chromosome 1q (AF1q) (MLLT11) by binding to the 3′ untranslated region (UTR) of mllt11 mRNA and in turn induced p21 expression and caused cell cycle arrest at the G2/M phase, further inhibiting BC tumor growth. Collectively, our results improve our understanding of the role of miR-411 in BC tumor growth and suggest miR-411 and MLLT11 as potential new targets for the treatment of BC patients.
Collapse
Affiliation(s)
- Honglei Jin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenrui Sun
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuanmei Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiying Yan
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huating Liufu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Shuai Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Caiyi Chen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiayan Gu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Lingli Zhou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guosong Jiang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Dapang Rao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qipeng Xie
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Haishan Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
27
|
Jiang G, Huang C, Li J, Huang H, Wang J, Li Y, Xie F, Jin H, Zhu J, Huang C. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells. Carcinogenesis 2018; 39:482-492. [PMID: 29409027 PMCID: PMC5862297 DOI: 10.1093/carcin/bgy015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.
Collapse
Affiliation(s)
- Guosong Jiang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Haishan Huang
- Department of Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Wang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Yawei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Xie
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Honglei Jin
- Department of Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlan Zhu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| |
Collapse
|
28
|
Aboushousha T, Hammam O, Helal N, El Dahshan S. Impact of Cyclin D1 and Heterogeneous Nuclear
Ribonucleoprotein-K (HnRNP-K) on Urinary Bladder
Carcinogenesis. Asian Pac J Cancer Prev 2018; 19:513-519. [PMID: 29480994 PMCID: PMC5980943 DOI: 10.22034/apjcp.2018.19.2.513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective: This study aimed to investigate the expression of cyclin D1 and hnRNP-K in relation to the pathological findings in bladder cancer including the type, grade, muscle invasion and bilharzial association. Methods: We studied the immunoexpression; as regard the percentage, intensity and score of both cyclin D1 and hnRNP-K in different bladder lesions including 10 cases of cystitis; 10 cases of carcinoma insitu (CIS), 20 cases of Squamous cell carcinoma (SCC) and 66 cases of urothelial carcinoma (UC). Results: High expression of cyclin D1 was found in UC compared to other groups (p<0.001) and in UC with low grade, non-muscle invasive and papillary tumors compared to their counterparts (p<0.05, <0.01 and <0.05 respectively), however, bilharzial association does not affect cyclin D1 expression. Higher hnRNP-K expression was found in SCC compared to other groups (p <0.001) and in UC with high grade, muscle invasive and non-papillary tumors compared to their counterparts (p<0.001each). Bilharzial-associated UC showed higher expression of hnRNP-K percent (p<0.05) compared to non-bilharzial cases. Conclusion: This study elucidated a possible contribution of cyclin D1 and hnRNP-K expression in the initiation and progression of urinary bladder carcinoma, so, both of them can be used in predicting progression of urinary bladder carcinoma and to differentiate between UC and SCC in high grade tumors. The possible role of both markers in immunotherapy deserves supplementary studies.
Collapse
Affiliation(s)
- Tarek Aboushousha
- Pathology Departments,Theodor Bilharz Research Institute, Cairo, Egypt.
| | | | | | | |
Collapse
|
29
|
XIAP RING domain mediates miR-4295 expression and subsequently inhibiting p63α protein translation and promoting transformation of bladder epithelial cells. Oncotarget 2018; 7:56540-56557. [PMID: 27447744 PMCID: PMC5302933 DOI: 10.18632/oncotarget.10645] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
The X-linked inhibitor of apoptosis protein (XIAP) contains three N-terminal BIR domains that mediate anti-apoptosis and one C-terminal RING finger domain whose function(s) are not fully defined. Here we show that the RING domain of XIAP strongly inhibits the expression of p63α, a known tumor suppressor. XIAP knockdown in urothelial cells or RING deletion in knockin mice markedly upregulates p63α expression. This RING-mediated p63α downregulation is critical for the malignant transformation of normal urothelial cells following EGF treatment. We further show that the RING domain promotes Sp1-mediated transcription of miR-4295 which targets the 3′UTR of p63α mRNA and consequently inhibits p63α translation. Our results reveal a previously unknown function of the RING of XIAP in promoting miR-4295 transcription, thereby reducing p63α translation and enhancing urothelial transformation. Our data offer novel insights into the multifunctional effects of the XIAP RING domain on urothelial tumorigenesis and the potential for targeting this frequently overexpressed protein as a therapeutic alternative.
Collapse
|
30
|
Inhibition of PHLPP2/cyclin D1 protein translation contributes to the tumor suppressive effect of NFκB2 (p100). Oncotarget 2018; 7:34112-30. [PMID: 27095572 PMCID: PMC5085141 DOI: 10.18632/oncotarget.8746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022] Open
Abstract
Although the precursor protein of NFκB2 (p100) is thought to act as a tumor suppressor in mammalian cells, the molecular mechanism of its anti-tumor activity is far from clear. Here, we are, for the first time, to report that p100 protein expression was dramatically decreased in bladder cancers of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-treated mice and human patients. Knockdown of p100 in cultured human bladder cancer cells promoted anchorage-independent growth accompanied with elevating abundance of cell-cycle-related proteins and accelerated cell-cycle progression. Above effects could be completely reversed by ectopically expression of p100, but not p52. Mechanistically, p100 inhibited Cyclin D1 protein translation by activating the transcription of LARP7 and its hosted miR-302d, which could directly bind to 3'-UTR of cyclin d1 mRNA and inhibited its protein translation. Furthermore, p100 suppressed the expression of PHLPP2 (PH domain and leucine-rich repeat protein phosphatases 2), thus promoting CREB phosphorylation at Ser133 and subsequently leading to miR-302d transcription. Taken together, our studies not only for the first time establish p100 as a key tumor suppressor of bladder cancer growth, but also identify a novel molecular cascade of PHLPP2/CREB/miR-302d that mediates the tumor suppressive function of p100.
Collapse
|
31
|
Zhu J, Li Y, Chen C, Ma J, Sun W, Tian Z, Li J, Xu J, Liu CS, Zhang D, Huang C, Huang H. NF-κB p65 Overexpression Promotes Bladder Cancer Cell Migration via FBW7-Mediated Degradation of RhoGDIα Protein. Neoplasia 2017; 19:672-683. [PMID: 28772241 PMCID: PMC5540704 DOI: 10.1016/j.neo.2017.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Since invasive bladder cancer (BC) is one of the most lethal urological malignant tumors worldwide, understanding the molecular mechanisms that trigger the migration, invasion, and metastasis of BC has great significance in reducing the mortality of this disease. Although RelA/p65, a member of the NF-kappa B transcription factor family, has been reported to be upregulated in human BCs, its regulation of BC motility and mechanisms have not been explored yet. METHODS NF-κBp65 expression was evaluated in N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced high invasive BCs by immunohistochemistry staining and in human BC cell lines demonstrated by Western Blot. The effects of NF-κBp65 knockdown on BC cell migration and invasion, as well as its regulated RhoGDIα and FBW7, were also evaluated in T24T cells by using loss- and gain-function approaches. Moreover, the interaction of FBW7 with RhoGDIα was determined with immunoprecipitation assay, while critical role of ubiquitination of RhoGDIα by FBW7 was also demonstrated in the studies. RESULTS p65 protein was remarkably upregulated in the BBN-induced high invasive BCs and in human BC cell lines. We also observed that p65 overexpression promoted BC cell migration by inhibiting RhoGDIα expression. The regulatory effect of p65 on RhoGDIα expression is mediated by its upregulation of FBW7, which specifically interacted with RhoGDIα and promoted RhoGDIα ubiquitination and degradation. Mechanistic studies revealed that p65 stabilizing the E3 ligase FBW7 protein was mediated by its attenuating pten mRNA transcription. CONCLUSIONS We demonstrate that p65 overexpression inhibits pten mRNA transcription, which stabilizes the protein expression of ubiquitin E3 ligase FBW7, in turn increasing the ubiquitination and degradation of RhoGDIα protein and finally promoting human BC migration. The novel identification of p65/PTEN/FBW7/RhoGDIα axis provides a significant insight into understanding the nature of BC migration, further offering a new theoretical support for cancer therapy.
Collapse
Key Words
- bc, bladder cancer
- bbn, n-butyl-n-(4-hydroxybutyl)-nitrosamine
- chx, cycloheximide
- rt-pcr, reverse transcription-polymerase chain reaction
- nf-κb, transcription factors of the nuclear factor kappa b
- rhogdi, rho guanosine diphosphate dissociation inhibitors
- fbw7, f-box and wd repeat domain-containing 7
- pten, phosphatase and tensin homolog
- gfp, green fluorescent protein
- mef, murine embryonic fibroblasts
Collapse
Affiliation(s)
- Junlan Zhu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Yang Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Caiyi Chen
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Jiugao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Wenrui Sun
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Zhongxian Tian
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Jiheng Xu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Claire S Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Chuanshu Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | - Haishan Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035.
| |
Collapse
|
32
|
Jin H, Xie Q, Guo X, Xu J, Wang A, Li J, Zhu J, Wu XR, Huang H, Huang C. p63α protein up-regulates heat shock protein 70 expression via E2F1 transcription factor 1, promoting Wasf3/Wave3/MMP9 signaling and bladder cancer invasion. J Biol Chem 2017; 292:15952-15963. [PMID: 28794159 DOI: 10.1074/jbc.m117.792010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/08/2017] [Indexed: 01/15/2023] Open
Abstract
Bladder cancer (BC) is the sixth most common cancer in the United States and is the number one cause of death among patients with urinary system malignancies. This makes the identification of invasive regulator(s)/effector(s) as the potential therapeutic targets for managing BC a high priority. p63 is a member of the p53 family of tumor suppressor genes/proteins, plays a role in the differentiation of epithelial tissues, and is believed to function as a tumor suppressor. However, it remains unclear whether and how p63 functions in BC cell invasion after tumorigenesis. Here, we show that p63α protein levels were much higher in mouse high-invasive BC tissues than in normal tissues. Our results also revealed that p63α is crucial for heat shock protein 70 (Hsp70) expression and subsequently increases the ability of BC invasion. Mechanistic experiments demonstrated that p63α can transcriptionally up-regulate Hsp70 expression, thereby promoting BC cell invasion via the Hsp70/Wasf3/Wave3/MMP-9 axis. We further show that E2F transcription factor 1 (E2F1) mediates p63α overexpression-induced Hsp70 transcription. We also found that p63α overexpression activates E2F1 transcription, which appears to be stimulated by p63α together with E2F1. Collectively, our results demonstrate that p63α is a positive regulator of BC cell invasion after tumorigenesis, providing significant insights into the biological function of p63α in BC and supporting the notion that p63α might be a potential target for invasive BC therapy.
Collapse
Affiliation(s)
- Honglei Jin
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987.,Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China, and
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China, and
| | - Xirui Guo
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jiheng Xu
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Annette Wang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jingxia Li
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Junlan Zhu
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, New York 10016 and the Veterans Affairs New York Harbor Healthcare System in Manhattan, New York, New York 10010
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China, and
| | - Chuanshu Huang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987,
| |
Collapse
|
33
|
Yeo SCM, Fenwick PS, Barnes PJ, Lin HS, Donnelly LE. Isorhapontigenin, a bioavailable dietary polyphenol, suppresses airway epithelial cell inflammation through a corticosteroid-independent mechanism. Br J Pharmacol 2017; 174:2043-2059. [PMID: 28369685 PMCID: PMC5466528 DOI: 10.1111/bph.13803] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic obstructive pulmonary disease (COPD) is a corticosteroid-resistant airway inflammatory condition. Resveratrol exhibits anti-inflammatory activities in COPD but has weak potency and poor pharmacokinetics. This study aimed to evaluate the potential of isorhapontigenin, another dietary polyphenol, as a novel anti-inflammatory agent for COPD by examining its effects in vitro and pharmacokinetics in vivo. EXPERIMENTAL APPROACH Primary human airway epithelial cells derived from healthy and COPD subjects, and A549 epithelial cells were incubated with isorhapontigenin or resveratrol and stimulated with IL-1β in the presence or absence of cigarette smoke extract. Effects of isorhapontigenin and resveratrol on the release of IL-6 and chemokine (C-X-C motif) ligand 8 (CXCL8), and the activation of NF-κB, activator protein-1 (AP-1), MAPKs and PI3K/Akt/FoxO3A pathways were determined and compared with those of dexamethasone. The pharmacokinetic profiles of isorhapontigenin, after i.v. or oral administration, were assessed in Sprague-Dawley rats. KEY RESULTS Isorhapontigenin concentration-dependently inhibited IL-6 and CXCL8 release, with IC50 values at least twofold lower than those of resveratrol. These were associated with reduced activation of NF-κB and AP-1 and, notably, the PI3K/Akt/FoxO3A pathway, that was relatively insensitive to dexamethasone. In vivo, isorhapontigenin was rapidly absorbed with abundant plasma levels after oral dosing. Its oral bioavailability was approximately 50% higher than resveratrol. CONCLUSIONS AND IMPLICATIONS Isorhapontigenin, an orally bioavailable dietary polyphenol, displayed superior anti-inflammatory effects compared with resveratrol. Furthermore, it suppressed the PI3K/Akt pathway that is insensitive to corticosteroids. These favourable efficacy and pharmacokinetic properties support its further development as a novel anti-inflammatory agent for COPD.
Collapse
Affiliation(s)
- Samuel Chao Ming Yeo
- Airway Disease, National Heart and Lung InstituteImperial College LondonLondonUK
- Department of Pharmacy, Faculty of ScienceNational University of SingaporeSingapore
| | - Peter S Fenwick
- Airway Disease, National Heart and Lung InstituteImperial College LondonLondonUK
| | - Peter J Barnes
- Airway Disease, National Heart and Lung InstituteImperial College LondonLondonUK
| | - Hai Shu Lin
- Department of Pharmacy, Faculty of ScienceNational University of SingaporeSingapore
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
34
|
Zhu J, Li Y, Tian Z, Hua X, Gu J, Li J, Liu C, Jin H, Wang Y, Jiang G, Huang H, Huang C. ATG7 Overexpression Is Crucial for Tumorigenic Growth of Bladder Cancer In Vitro and In Vivo by Targeting the ETS2/miRNA196b/FOXO1/p27 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 7:299-313. [PMID: 28624205 PMCID: PMC5415961 DOI: 10.1016/j.omtn.2017.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 11/28/2022]
Abstract
Human bladder cancer (BC) is the fourth most common cancer in the United States. Investigation of the strategies aiming to elucidate the tumor growth and metastatic pathways in BC is critical for the management of this disease. Here we found that ATG7 expression was remarkably elevated in human bladder urothelial carcinoma and N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-induced mouse invasive BC. Knockdown of ATG7 resulted in a significant inhibitory effect on tumorigenic growth of human BC cells both in vitro and in vivo by promoting p27 expression and inducing cell cycle arrest at G2/M phase. We further demonstrated that knockdown of ATG7 upregulated FOXO1 (forkhead box protein O 1) expression, which specifically promoted p27 transcription. Moreover, mechanistic studies revealed that inhibition of ATG7 stabilized ETS2 mRNA and, in turn, reduced miR-196b transcription and expression of miR-196b, which was able to bind to the 3' UTR of FOXO1 mRNA, consequently stabilizing FOXO1 mRNA and finally promoting p27 transcription and attenuating BC tumorigenic growth. The identification of the ATG7/FOXO1/p27 mechanism for promoting BC cell growth provides significant insights into understanding the nature of BC tumorigenesis. Together with our most recent discovery of the crucial role of ATG7 in promoting BC invasion, it raises the potential for developing an ATG7-based specific therapeutic strategy for treatment of human BC patients.
Collapse
Affiliation(s)
- Junlan Zhu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Yang Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Zhongxian Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Hua
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Claire Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yulei Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
35
|
Zhu C, Zhu Q, Wu Z, Yin Y, Kang D, Lu S, Liu P. Isorhapontigenin induced cell growth inhibition and apoptosis by targeting EGFR-related pathways in prostate cancer. J Cell Physiol 2017; 233:1104-1119. [PMID: 28422286 DOI: 10.1002/jcp.25968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/18/2017] [Indexed: 12/30/2022]
Abstract
Isorhapontigenin (ISO), a naturally phytopolyphenol compound existing in Chinese herb, apples, and various vegetables, has attracted extensive interest in recent years for its diverse pharmacological characteristics. Increasing evidences reveal that ISO can inhibit cancer cell growth by induced apoptosis, however, the molecular mechanisms is not fully understood. In this study, we found for the first time that ISO apparently induced cell growth inhibition and apoptosis by targeting EGFR and its downstream signal pathways in prostate cancer (PCa) cells both in vitro and in vivo, whereas no obviously effect on normal prostate cells. From the results, we found that ISO competitively targeted EGFR with EGF and inhibited EGFR auto-phosphorylation, and then decreased the levels of p-Erk1/2, p-PI3 K, and p-AKT, and further induced down-regulation of p-FOXO1 and promoted FOXO1 nuclear translocation; and finally resulted in a significantly up-regulation of Bim/p21/27/Bax/cleaved Caspase-3/cleaved PARP-1 and a markedly down-regulation of Sp1/Bcl-2/XIAP/Cyclin D1. Moreover, our experimental data demonstrated that treatment of ISO decreased protein level of AR via both inhibiting the expression of AR gene and promoting the ubiquitination/degradation of AR proteins in proteasome. In vivo, we also found that ISO inhibited the growth of subcutaneous xenotransplanted tumor in nude mice by inducing PCa cell growth inhibition and apoptosis. Taken together, all findings here clearly implicated that EGFR-related signal pathways, including EGFR-PI3K-Akt and EGFR-Erk1/2 pathways, were involved in ISO-induced cell growth inhibition and apoptosis in PCa cells, providing a more solid theoretical basis for the application of ISO to treat patients with prostate cancer in clinic.
Collapse
Affiliation(s)
- Cuicui Zhu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qingyi Zhu
- Laboratory of Molecular Biology, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu, China
| | - Zhaomeng Wu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yingying Yin
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Dan Kang
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shan Lu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ping Liu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Jiang G, Huang C, Li J, Huang H, Jin H, Zhu J, Wu XR, Huang C. Role of STAT3 and FOXO1 in the Divergent Therapeutic Responses of Non-metastatic and Metastatic Bladder Cancer Cells to miR-145. Mol Cancer Ther 2017; 16:924-935. [PMID: 28223425 DOI: 10.1158/1535-7163.mct-16-0631] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/03/2017] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
Although miR-145 is the most frequently downregulated miRNA in bladder cancer, its exact stage association and downstream effector have not been defined. Here, we found that miR-145 was upregulated in human patients with bladder cancer with lymph node metastasis and in metastatic T24T cell line. Forced expression of miR-145 promoted anchorage-independent growth of T24T cells accompanied by the downregulation of forkhead box class O1 (FOXO1). In contrast, in non-metastatic T24 cells, miR-145 overexpression inhibited cell growth with upregulation of FOXO1, and the knockdown of FOXO1 abolished the miR-145-mediated inhibition of cell growth. Mechanistic studies revealed that miR-145 directly bound to and attenuated 3'-untranslated region (UTR) activity of foxo1 mRNA in both T24 and T24T cells. Interestingly, miR-145 suppressed STAT3 phosphorylation at Tyr705 and increased foxo1 promoter transcriptional activity in T24 cells, but not in T24T cells, suggesting a role of STAT3 in the divergent responses to miR-145. Supporting this was our finding that STAT3 knockdown mimicked miR-145-mediated upregulation of FOXO1 in T24T cells and inhibition of anchorage-independent growth. Consistently, ectopic expression of miR-145 promoted tumor formation of xenograft T24T cells, whereas such promoting effect became inhibitory due to specific knockdown of STAT3. Together, our findings demonstrate the stage-specific association and function of miR-145 in bladder cancers and provide novel insights into the therapeutic targeting of miR-145. Mol Cancer Ther; 16(5); 924-35. ©2017 AACR.
Collapse
Affiliation(s)
- Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.,Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.,Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York; Veterans Affairs Medical Center in Manhattan, New York, New York
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.
| |
Collapse
|
37
|
High temperature and UV-C treatments affect stilbenoid accumulation and related gene expression levels in Gnetum parvifolium. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2016.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
38
|
Liang Y, Zhu J, Huang H, Xiang D, Li Y, Zhang D, Li J, Wang Y, Jin H, Jiang G, Liu Z, Huang C. SESN2/sestrin 2 induction-mediated autophagy and inhibitory effect of isorhapontigenin (ISO) on human bladder cancers. Autophagy 2016; 12:1229-39. [PMID: 27171279 DOI: 10.1080/15548627.2016.1179403] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Isorhapontigenin (ISO) is a new derivative of stilbene isolated from the Chinese herb Gnetum cleistostachyum. Our recent studies have revealed that ISO treatment at doses ranging from 20 to 80 μM triggers apoptosis in multiple human cancer cell lines. In the present study, we evaluated the potential effect of ISO on autophagy induction. We found that ISO treatment at sublethal doses induced autophagy effectively in human bladder cancer cells, which contributed to the inhibition of anchorage-independent growth of cancer cells. In addition, our studies revealed that ISO-mediated autophagy induction occurred in a SESN2 (sestrin 2)-dependent and BECN1 (Beclin 1, autophagy related)-independent manner. Furthermore, we identified that ISO treatment induced SESN2 expression via a MAPK8/JNK1 (mitogen-activated protein kinase 8)/JUN-dependent mechanism, in which ISO triggered MAPK8-dependent JUN activation and facilitated the binding of JUN to a consensus AP-1 binding site in the SESN2 promoter region, thereby led to a significant transcriptional induction of SESN2. Importantly, we found that SESN2 expression was dramatically downregulated or even lost in human bladder cancer tissues as compared to their paired adjacent normal tissues. Collectively, our results demonstrate that ISO treatment induces autophagy and inhibits bladder cancer growth through MAPK8-JUN-dependent transcriptional induction of SESN2, which provides a novel mechanistic insight into understanding the inhibitory effect of ISO on bladder cancers and suggests that ISO might act as a promising preventive and/or therapeutic drug against human bladder cancer.
Collapse
Affiliation(s)
- Yuguang Liang
- a Department of Clinical Pharmacology , Affiliated Hospital, Academy of Military Medical Sciences , Beijing , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY USA
| | - Junlan Zhu
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY USA
| | - Haishan Huang
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY USA.,c Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Daimin Xiang
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY USA
| | - Yang Li
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY USA
| | - Dongyun Zhang
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY USA
| | - Jingxia Li
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY USA
| | - Yulei Wang
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY USA
| | - Honglei Jin
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY USA
| | - Guosong Jiang
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY USA
| | - Zeyuan Liu
- a Department of Clinical Pharmacology , Affiliated Hospital, Academy of Military Medical Sciences , Beijing , China
| | - Chuanshu Huang
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY USA
| |
Collapse
|
39
|
Inagaki H, Ito R, Setoguchi Y, Oritani Y, Ito T. Administration of Piceatannol Complexed with α-Cyclodextrin Improves Its Absorption in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3557-3563. [PMID: 27078058 DOI: 10.1021/acs.jafc.6b00398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Piceatannol is polyphenolic antioxidant found in passion fruit (Passiflora edulis) seeds. The aim of this study was to improve the absorption of piceatannol using α-cyclodextrin (αCD). The solubility of piceatannol in neutral and acidic solutions increased in an αCD concentration-dependent manner. The maximum plasma concentration of intact piceatannol and the time-to-maximum plasma concentration of O-methylated piceatannol metabolites increased in rats administered αCD-piceatannol inclusion complexes (PICs). Administering the αCD inclusion complexes significantly increased the area under the concentration-time curve of total stilbene derivatives (0-3 h) in terms of the total amount of intact piceatannol, O-methylated piceatannol, conjugated piceatannol, and isorhapontigenin. Gastrointestinal ligation experiments demonstrated that substantially higher levels of piceatannol metabolites were present in the lower intestine (the ileum) at 1 h postintragastric αCD-PICs administration as compared to those observed following piceatannol administration only. These results suggested that αCD enhanced piceatannol movement and absorption in the small intestine.
Collapse
Affiliation(s)
- Hiroyuki Inagaki
- Research Institute, Morinaga & Company, Ltd. , 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa 230-8504, Japan
| | - Ryouichi Ito
- Research Institute, Morinaga & Company, Ltd. , 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa 230-8504, Japan
| | - Yuko Setoguchi
- Research Institute, Morinaga & Company, Ltd. , 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa 230-8504, Japan
| | - Yukihiro Oritani
- Research Institute, Morinaga & Company, Ltd. , 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa 230-8504, Japan
| | - Tatsuhiko Ito
- Research Institute, Morinaga & Company, Ltd. , 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa 230-8504, Japan
| |
Collapse
|
40
|
Jiang G, Wu AD, Huang C, Gu J, Zhang L, Huang H, Liao X, Li J, Zhang D, Zeng X, Jin H, Huang H, Huang C. Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis. Cancer Prev Res (Phila) 2016; 9:567-80. [PMID: 27080594 DOI: 10.1158/1940-6207.capr-15-0338] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/29/2016] [Indexed: 11/16/2022]
Abstract
Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR.
Collapse
Affiliation(s)
- Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Amy D Wu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liping Zhang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Liao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.
| |
Collapse
|
41
|
Zeng X, Xu Z, Gu J, Huang H, Gao G, Zhang X, Li J, Jin H, Jiang G, Sun H, Huang C. Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo. Mol Cancer Ther 2016; 15:512-22. [PMID: 26832795 DOI: 10.1158/1535-7163.mct-15-0606] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/30/2015] [Indexed: 01/30/2023]
Abstract
Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell-cycle G0-G1 arrest as well as downregulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In the current study, the potential ISO inhibition of bladder tumor formation has been explored in a xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anticancer activities have been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by directly targeting Sp1 mRNA 3'-untranslated region (UTR). Similar to ISO treatment, ectopic expression of miR-137 alone led to G0-G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by overexpression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced inhibition of Sp1/Cyclin D1 expression, induction of G0-G1 cell growth arrest, and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3'-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0-G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anticancer activity of ISO in the therapy of human bladder cancer.
Collapse
Affiliation(s)
- Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York. Department of Nephrology, Central Hospital of Wuhan, Wuhan, China
| | - Zhou Xu
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishan Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guangxun Gao
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Xiaoru Zhang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Hong Sun
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York.
| |
Collapse
|
42
|
Deng N, Chang E, Li M, Ji J, Yao X, Bartish IV, Liu J, Ma J, Chen L, Jiang Z, Shi S. Transcriptome Characterization of Gnetum parvifolium Reveals Candidate Genes Involved in Important Secondary Metabolic Pathways of Flavonoids and Stilbenoids. FRONTIERS IN PLANT SCIENCE 2016; 7:174. [PMID: 26973657 PMCID: PMC4778121 DOI: 10.3389/fpls.2016.00174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/01/2016] [Indexed: 05/05/2023]
Abstract
Gnetum is a small, unique group of Gnetophyta with a controversial phylogenetic position. Gnetum parvifolium is an important Chinese traditional medicinal plant, which is rich in bioactive compounds such as flavonoids and stilbenoids. These compounds provide significant medicinal effects, mostly as antioxidant, anticancer, and antibacterial agents. However, the mechanisms involved in the biosynthesis and regulation of these compounds in G. parvifolium are still unknown. In this study, we found that flavonoids and stilbene compounds accumulated at different levels in various tissues of G. parvifolium. We further obtained and analyzed massive sequence information from pooled samples of G. parvifolium by transcriptome sequencing, which generated 94,816 unigenes with an average length of 724 bp. Functional annotation of all these unigenes revealed that many of them were associated with several important secondary metabolism pathways including flavonoids and stilbenoids. In particular, several candidate unigenes (PAL-, C4H-, 4CL-, and STS-like genes) involved in stilbenoids biosynthesis were highly expressed in leaves and mature fruits. Furthermore, high temperature and UV-C strongly induced the expression of these genes and enhanced stilbene production (i.e., resveratrol and piceatannol) in leaves of young seedlings. Our present transcriptomic and biochemical data on secondary metabolites in G. parvifolium should encourage further investigation on evolution, ecology, functional genomics, and breeding of this plant with strong pharmaceutical potential.
Collapse
Affiliation(s)
- Nan Deng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Minghe Li
- College of Landscape Architecture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Xiamei Yao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Igor V. Bartish
- Department of Genetic Ecology, Institute of Botany, Academy of Sciences of the Czech RepublicPraha, Czech Republic
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Jing Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Lanzhen Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural SciencesBeijing, China
- Risk Assessment Laboratory for Bee Products, Quality and Safety of Ministry of AgricultureBeijing, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- *Correspondence: Zeping Jiang
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Shengqing Shi
| |
Collapse
|
43
|
Xu Z, Zeng X, Xu J, Xu D, Li J, Jin H, Jiang G, Han X, Huang C. Isorhapontigenin suppresses growth of patient-derived glioblastoma spheres through regulating miR-145/SOX2/cyclin D1 axis. Neuro Oncol 2015; 18:830-9. [PMID: 26681767 DOI: 10.1093/neuonc/nov298] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/11/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant brain tumor, and glioma stem cells (GSCs) are considered a major source of treatment resistance for glioblastoma. Identifying new compounds that inhibit the growth of GSCs and understanding their underlying molecular mechanisms are therefore important for developing novel therapy for GBM. METHODS We investigated the potential inhibitory effect of isorhapontigenin (ISO), an anticancer compound identified in our recent investigations, on anchorage-independent growth of patient-derived glioblastoma spheres (PDGS) and its mechanism of action. RESULTS ISO treatment resulted in significant anchorage-independent growth inhibition, accompanied with cell cycle G0-G1 arrest and cyclin D1 protein downregulation in PDGS. Further studies established that cyclin D1 was downregulated by ISO at transcription levels in a SOX2-dependent manner. In addition, ISO attenuated SOX2 expression by specific induction of miR-145, which in turn suppressed 3'UTR activity of SOX2 mRNA without affecting its mRNA stability. Moreover, ectopic expression of exogenous SOX2 rendered D456 cells resistant to induction of cell cycle G0-G1 arrest and anchorage-independent growth inhibition upon ISO treatment, whereas inhibition of miR-145 resulted in D456 cells resistant to ISO inhibition of SOX2 and cyclin D1 expression. In addition, overexpression of miR-145 mimicked ISO treatment in D456 cells. CONCLUSIONS ISO induces miR-145 expression, which binds to the SOX2 mRNA 3'UTR region and inhibits SOX2 protein translation. Inhibition of SOX2 leads to cyclin D1 downregulation and PDGS anchorage-independent growth inhibition. The elucidation of the miR-145/SOX2/cyclin D1 axis in PDGS provides a significant insight into understanding the anti-GBM effect of ISO compound.
Collapse
Affiliation(s)
- Zhou Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Jiawei Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Derek Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Xiaosi Han
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| |
Collapse
|
44
|
Li Y, Liu H, Lai C, Su Z, Heng B, Gao S. Repression of engrailed 2 inhibits the proliferation and invasion of human bladder cancer in vitro and in vivo. Oncol Rep 2015; 33:2319-30. [PMID: 25812440 DOI: 10.3892/or.2015.3858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/27/2015] [Indexed: 11/06/2022] Open
Abstract
Engrailed 2 (EN2) is a member of the homeobox gene family. Many studies suggest that overexpression of EN2 protein may be associated with tumor development, including bladder cancer (BC). However, to date, the mechanisms of how EN2 functions to promote BC progression remain elusive. The present study introduced RNAi to silence the expression of EN2 in BC cell lines. In vitro invasion and migration assays and in vivo experiments were carried out to examine the functions of EN2 in BC invasion and metastasis. The results of the present study indicated that EN2 was significantly expressed in BC cells. Ectopic expression of EN2 in normal urothelial cells significantly enhanced cellular proliferation and invasion, but inhibited cellular apoptosis. EN2 knockdown significantly promoted cell cycle arrest and apoptosis of BC cells with inhibition of proliferation and invasion in vitro as well as EN2 knockdown decreased the tumor growth of BC. The tumor growth was decreased by regulation of the cell cycle, apoptosis and epithelial-mesenchymal transition-related proteins, with inhibition of metastasis to the liver and lung in vivo. Furthermore, EN2 knockdown significantly decreased the levels of pAkt-473, pAkt-308 and phosphatidylinositol 3-kinase (PI3K), whereas EN2 knockdown increased the expression of PTEN in vitro. Taken together, EN2 may be a candidate oncogene in BC by activating the PI3K/Akt pathway and inhibiting PTEN, and may be a potential therapeutic target for the treatment of BC.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Urology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Haitao Liu
- Department of Obstetrics and Gynecology, Guangdong Women and Children's Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Caiyong Lai
- Department of Urology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zexuan Su
- Department of Urology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Baoli Heng
- Department of Urology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Shuangquan Gao
- Department of Pathology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
45
|
Isorhapontigenin (ISO) inhibited cell transformation by inducing G0/G1 phase arrest via increasing MKP-1 mRNA Stability. Oncotarget 2015; 5:2664-77. [PMID: 24797581 PMCID: PMC4058035 DOI: 10.18632/oncotarget.1872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cancer chemopreventive property of Chinese herb new isolate isorhapontigenin (ISO) and mechanisms underlying its activity have never been explored. Here we demonstrated that ISO treatment with various concentrations for 3 weeks could dramatically inhibit TPA/EGF-induced cell transformation of Cl41 cells in Soft Agar assay, whereas co-incubation of cells with ISO at the same concentrations could elicit G0/G1 cell-cycle arrest without redundant cytotoxic effects on non-transformed cells. Further studies showed that ISO treatment resulted in cyclin D1 downregulation in dose- and time-dependent manner. Our results indicated that ISO regulated cyclin D1 at transcription level via targeting JNK/C-Jun/AP-1 activation. Moreover, we found that ISO-inhibited JNK/C-Jun/AP-1 activation was mediated by both upregulation of MKP-1 expression through increasing its mRNA stability and deactivating MKK7. Most importantly, MKP-1 knockdown could attenuate ISO-mediated suppression of JNK/C-Jun activation and cyclin D1 expression, as well as G0/G1 cell cycle arrest and cell transformation inhibition, while ectopic expression of FLAG-cyclin D1 T286A mutant also reversed ISO-induced G0/G1 cell-cycle arrest and inhibition of cell transformation. Our results demonstrated that ISO is a promising chemopreventive agent via upregulating mkp-1 mRNA stability, which is distinct from its cancer therapeutic effect with downregulation of XIAP and cyclin D1 expression.
Collapse
|
46
|
Regulation of growth of human bladder cancer by miR-192. Tumour Biol 2015; 36:3791-7. [PMID: 25566965 DOI: 10.1007/s13277-014-3020-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/23/2014] [Indexed: 01/30/2023] Open
Abstract
The regulation of microRNA-192 (miR-192) is impaired in many cancers. Here, we investigated the role of miR-192 in the proliferation, cell cycle progression, and apoptosis of bladder cancer cells. Human bladder cancer cells were transfected with human miR-192 precursor or non-specific control miRNA. The effect of miR-192 on cell proliferation was assessed by a MTT assay. The effects of miR-192 on cell cycle regulation and apoptosis were evaluated by flow cytometry. Western blot was used to analyze the protein levels of cyclin D1, p21, p27, Bcl-2, Bax, and Mcl-1. We found that overexpression of miR-192 significantly decreased the proliferation of bladder cancer cells by 22 and 54 % at 48 and 72 h, respectively. MiR-192-overexpressing cells exhibited a significant increase in G0/G1 phase and a significant decrease in S phase compared to the control miRNA-transfected cells. Moreover, overexpression of miR-192 significantly induced apoptotic death in bladder cancer cells, increased the levels of p21, p27, and Bax, and decreased the levels of cyclin D1, Bcl-2, and Mcl-1. Taken together, these data suggest that miR-192 may be a suppressor for bladder cancer cells by cell cycle regulation.
Collapse
|
47
|
Zhang J, Gao G, Chen L, Li J, Deng X, Zhao QS, Huang C. Hydrogen peroxide/ATR-Chk2 activation mediates p53 protein stabilization and anti-cancer activity of cheliensisin A in human cancer cells. Oncotarget 2015; 5:841-52. [PMID: 24553354 PMCID: PMC3996661 DOI: 10.18632/oncotarget.1780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cheliensisine A (Chel A) as a novel styryl-lactone isolated from Goniothalamus cheliensis Hu has been indicated to be a chemotherapeutic agent in Leukemia HL-60 cells. However, its potential for cancer treatment and the underlying mechanisms are not deeply investigated to the best of our knowledge. Current studies showed that Chel A could trigger p53-mediated apoptosis, accompanied with dramatically inhibition of anchorage-independent growth of human colon cancer HCT116 cells. Further studies found that Chel A treatment resulted in p53 protein stabilization and accumulation via the induction of its phosphorylation at Ser20 and Ser15. Moreover, Chel A-induced p53 protein accumulation and activation required ATR/Chk2 axis, which is distinct from the mechanism that we have most recently identified the Chk1/p53-dependent apoptotic response by Chel A in normal mouse epidermal Cl41 cells. In addition, our results demonstrated that hydrogen peroxide generation induced by Chel A acted as a precursor for all these signaling events and downstream biological effects. Taken together, we have identified the Chel A as a new therapeutic agent, which highlights its potential for cancer therapeutic effect.
Collapse
Affiliation(s)
- Jingjie Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Liang Z, Li S, Xu X, Xu X, Wang X, Wu J, Zhu Y, Hu Z, Lin Y, Mao Y, Chen H, Luo J, Liu B, Zheng X, Xie L. MicroRNA-576-3p inhibits proliferation in bladder cancer cells by targeting cyclin D1. Mol Cells 2014; 38:130-7. [PMID: 25556372 PMCID: PMC4332027 DOI: 10.14348/molcells.2015.2146] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/05/2014] [Accepted: 11/17/2014] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small, endogenous RNAs that play important gene-regulatory roles by binding to the imperfectly complementary sequences at the 3'-UTR of mRNAs and directing their gene expression. Here, we first discovered that miR-576-3p was down-regulated in human bladder cancer cell lines compared with the non-malignant cell line. To better characterize the role of miR-576-3p in bladder cancer cells, we over-expressed or down-regulated miR-576-3p in bladder cancer cells by transfecting with chemically synthesized mimic or inhibitor. The overexpression of miR-576-3p remarkably inhibited cell proliferation via G1-phase arrest, and decreased both mRNA and protein levels of cyclin D1 which played a key role in G1/S phase transition. The knock-down of miR-576-3p significantly promoted the proliferation of bladder cancer cells by accelerating the progression of cell cycle and increased the expression of cyclin D1. Moreover, the dual-luciferase reporter assays indicated that miR-576-3p could directly target cyclin D1 through binding its 3'-UTR. All the results demonstrated that miR-576-3p might be a novel suppressor of bladder cancer cell proliferation through targeting cyclin D1.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Shiqi Li
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xin Xu
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xianglai Xu
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xiao Wang
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Jian Wu
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yi Zhu
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Zhenghui Hu
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yiwei Lin
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yeqing Mao
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hong Chen
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Jindan Luo
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ben Liu
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xiangyi Zheng
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Liping Xie
- Department of Urology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
49
|
A new tumour suppression mechanism by p27Kip1: EGFR down-regulation mediated by JNK/c-Jun pathway inhibition. Biochem J 2014; 463:383-92. [PMID: 25121353 PMCID: PMC4209780 DOI: 10.1042/bj20140103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
p27Kip1 is a potent inhibitor of cyclin-dependent kinases that drive G1-to-S cell-cycle transition. Reduced p27Kip1 expression is prevalent in a wide range of human tumours; however, the exact mechanism(s) of p27Kip1-mediated tumour suppression remains obscure. In the present study, we identified a close inverse relationship between p27Kip1 and EGFR (epidermal growth factor receptor) expression: the parental T24 human bladder cancer cells had high p27Kip1 expression but low EGFR expression and, in striking contrast, the metastatic derivative of T24 (T24T) had low p27Kip1 expression but high EGFR expression. This relationship was also found in various human cancer tissues, and was not only just correlative but also causal; depletion of p27Kip1 in MEF (mouse embryonic fibroblast) cells resulted in markedly elevated EGFR expression, a result reproducible with an Egfr promoter-luciferase reporter in both T24 and MEF cells, suggesting transcriptional repression of EGFR by p27Kip1. Indeed, p27Kip1 was found to regulate EGFR expression via the JNK (c-Jun N-terminal kinase)/c-Jun transcription factor: p27Kip1 deficiency activated JNK/c-Jun, whereas inhibition of JNK/c-Jun by dominant-negative mutants dramatically repressed Egfr transcription. Furthermore, the proximal promoter of the Egfr gene was crucial for its transcription, where the recruiting activity of c-Jun was much greater in p27Kip1−/− cells than in p27Kip1+/+ cells. Introduction of GFP–p27Kip1 into T24T cells suppressed JNK/c-Jun activation, EGFR expression and anchorage-independent growth. The results of the present study demonstrate that p27Kip1 suppresses JNK/c-Jun activation and EGFR expression in MEFs and human bladder cancer cells, and the results obtained are consistent with those from human cancer specimens. The present study provides new insights into p27Kip1 suppression of cancer cell growth, migration and metastasis. An inverse relationship between p27Kip1 and EGFR expression in parental T24 human bladder cancer cells and various human cancer tissues was found. Depletion of p27Kip1 in cells markedly elevated EGFR expression through transcriptional repression of Egfr by p27Kip1 via the JNK/c-Jun cascade.
Collapse
|
50
|
Liu B, Gao YQ, Wang XM, Wang YC, Fu LQ. Germacrone inhibits the proliferation of glioma cells by promoting apoptosis and inducing cell cycle arrest. Mol Med Rep 2014; 10:1046-50. [PMID: 24889088 DOI: 10.3892/mmr.2014.2290] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 03/06/2014] [Indexed: 11/06/2022] Open
Abstract
Germacrone is one of the major bioactive components of the traditional Chinese Medicinal plant Curcuma aromatica Salisb. and has been shown to possess anti‑tumor properties. In the present study, the anti‑proliferative effect of germacrone on human glioma cells and the molecular mechanism underlying its cytotoxicity were investigated. Treatment of the U87 and U251 human glioma cell lines with germacrone inhibited the cell proliferation in a dose‑ and time‑dependent manner as assessed by MTT assay, while significantly lower effects were observed on normal human astrocytes. Flow cytometric analysis and DNA fragmentation revealed that germacrone promoted apoptosis of glioma cells, associated with an increased expression of p53 and bax and decreased expression of bcl‑2. Furthermore, flow cytometric cell cycle analysis revealed that germacrone induced G1 phase arrest, associated with an obvious decrease in the expression of cyclin D1 and CDK2 and an increased expression of p21. In conclusion, the present study suggested that germacrone may be a novel potent chemopreventive drug candidate for gliomas via regulating the expression of proteins associated with apoptosis and G1 cell cycle arrest.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163411, Daqing, Heilongjiang 163316, P.R. China
| | - Yue-Qiu Gao
- Department of Gastroenterology and Hepatology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Xiao-Min Wang
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163411, Daqing, Heilongjiang 163316, P.R. China
| | - Yu-Chun Wang
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163411, Daqing, Heilongjiang 163316, P.R. China
| | - Li-Qi Fu
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163411, Daqing, Heilongjiang 163316, P.R. China
| |
Collapse
|