1
|
Roumeliotou A, Alkahtani S, Alarifi S, Alkahtane AA, Stournaras C, Kallergi G. STIM1, ORAI1, and KDM2B in circulating tumor cells (CTCs) isolated from prostate cancer patients. Front Cell Dev Biol 2024; 12:1399092. [PMID: 38903530 PMCID: PMC11188415 DOI: 10.3389/fcell.2024.1399092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction: Previous publications have shown that STIM1, ORAI1, and KDM2B, are implicated in Ca2+ signaling and are highly expressed in various cancer subtypes including prostate cancer. They play multiple roles in cancer cell migration, invasion, and metastasis. In the current study we investigated the expression of the above biomarkers in circulating tumor cells from patients with metastatic prostate cancer. Methods: Thirty-two patients were enrolled in this study and CTCs' isolation was performed with Ficoll density gradient. Two different triple immunofluorescence stainings were conducted with the following combination of antibodies: CK/KDM2B/CD45 and CK/STIM1/ORAI1. Slides were analyzed using VyCAP microscopy technology. Results: CTC-positive patients were detected in 41% for (CK/KDM2B/CD45) staining and in 56% for (CK/STIM1/ORAI1) staining. The (CK+/KDM2B+/CD45-) and the (CK+/STIM1+/ORAI1+) were the most frequent phenotypes as they were detected in 85% and 94% of the CTC-positive patients, respectively. Furthermore, the expression of ORAI1 and STIM1 in patients' PBMCs was very low exhibiting them as interesting specific biomarkers for CTC detection. The (CK+/STIM1+/ORAI1+) phenotype was correlated to bone metastasis (p = 0.034), while the (CK+/STIM1+/ORAI1-) to disease relapse (p = 0.049). Discussion: STIM1, ORAI1, and KDM2B were overexpressed in CTCs from patients with metastatic prostate cancer. STIM1 and ORAI1 expression was related to disease recurrence and bone metastasis. Further investigation of these biomarkers in a larger cohort of patients will clarify their clinical significance for prostate cancer patients.
Collapse
Affiliation(s)
- Argyro Roumeliotou
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alkahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Christos Stournaras
- Department of Biochemistry, Medical School, University of Crete, Heraklion, Greece
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
2
|
Hagan CE, Snyder AG, Headley M, Oberst A. Apoptotic cells promote circulating tumor cell survival and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595217. [PMID: 38826267 PMCID: PMC11142129 DOI: 10.1101/2024.05.21.595217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
During tumor progression and especially following cytotoxic therapy, cell death of both tumor and stromal cells is widespread. Despite clinical observations that high levels of apoptotic cells correlate with poorer patient outcomes, the physiological effects of dying cells on tumor progression remain incompletely understood. Here, we report that circulating apoptotic cells robustly enhance tumor cell metastasis to the lungs. Using intravenous metastasis models, we observed that the presence of apoptotic cells, but not cells dying by other mechanisms, supports circulating tumor cell (CTC) survival following arrest in the lung vasculature. Apoptotic cells promote CTC survival by recruiting platelets to the forming metastatic niche. Apoptotic cells externalize the phospholipid phosphatidylserine to the outer leaflet of the plasma membrane, which we found increased the activity of the coagulation initiator Tissue Factor, thereby triggering the formation of platelet clots that protect proximal CTCs. Inhibiting the ability of apoptotic cells to induce coagulation by knocking out Tissue Factor, blocking phosphatidylserine, or administering the anticoagulant heparin abrogated the pro-metastatic effect of apoptotic cells. This work demonstrates a previously unappreciated role for apoptotic cells in facilitating metastasis by establishing CTC-supportive emboli, and suggests points of intervention that may reduce the pro-metastatic effect of apoptotic cells. GRAPHICAL ABSTRACT
Collapse
|
3
|
Abramova A, Rivandi M, Yang L, Stamm N, Cieslik JP, Honisch E, Niederacher D, Fehm T, Neubauer H, Franken A. A workflow for the enrichment, the identification, and the isolation of non-apoptotic single circulating tumor cells for RNA sequencing analysis. Cytometry A 2024; 105:242-251. [PMID: 38054742 DOI: 10.1002/cyto.a.24816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Circulating tumor cells (CTCs) are constantly shed by tumor tissue and can serve as a valuable analyte for a gene expression analysis from a liquid biopsy. However, a high proportion of CTCs can be apoptotic leading to rapid mRNA decay and challenging the analysis of their transcriptome. We established a workflow to enrich, to identify, and to isolate single CTCs including the discrimination of apoptotic and non-apoptotic CTCs for further single CTC transcriptome analysis. Viable tumor cells-we first used cells from breast cancer cell lines followed by CTCs from metastatic breast cancer patients-were enriched with the CellSearch system from diagnostic leukapheresis products, identified by immunofluorescence analysis for neoplastic markers, and isolated by micromanipulation. Then, their cDNA was generated, amplified, and sequenced. In order to exclude early apoptotic tumor cells, staining with Annexin V coupled to a fluorescent dye was used. Annexin V staining intensity was associated with decreased RNA integrity as well as lower numbers of total reads, exon reads, and detected genes in cell line cells and CTCs. A comparative RNA analysis of single cells from MDA-MB-231 and MCF7 cell lines revealed the expected differential transcriptome profiles. Enrichment and staining procedures of cell line cells that were spiked into blood had only little effect on the obtained RNA sequencing data compared to processing of naïve cells. Further, the detection of transcripts of housekeeping genes such as GAPDH was associated with a significantly higher quality of expression data from CTCs. This workflow enables the enrichment, detection, and isolation of single CTCs for individual transcriptome analyses. The discrimination of apoptotic and non-apoptotic cells allows to focus on CTCs with a high RNA integrity to ensure a successful transcriptome analysis.
Collapse
Affiliation(s)
- Anna Abramova
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Liwen Yang
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Nadia Stamm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Jan-Philipp Cieslik
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Ellen Honisch
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
4
|
Bae SY, Kamalanathan KJ, Galeano-Garces C, Konety BR, Antonarakis ES, Parthasarathy J, Hong J, Drake JM. Dissemination of Circulating Tumor Cells in Breast and Prostate Cancer: Implications for Early Detection. Endocrinology 2024; 165:bqae022. [PMID: 38366552 PMCID: PMC10904107 DOI: 10.1210/endocr/bqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Burgeoning evidence suggests that circulating tumor cells (CTCs) may disseminate into blood vessels at an early stage, seeding metastases in various cancers such as breast and prostate cancer. Simultaneously, the early-stage CTCs that settle in metastatic sites [termed disseminated tumor cells (DTCs)] can enter dormancy, marking a potential source of late recurrence and therapy resistance. Thus, the presence of these early CTCs poses risks to patients but also holds potential benefits for early detection and treatment and opportunities for possibly curative interventions. This review delves into the role of early DTCs in driving latent metastasis within breast and prostate cancer, emphasizing the importance of early CTC detection in these diseases. We further explore the correlation between early CTC detection and poor prognoses, which contribute significantly to increased cancer mortality. Consequently, the detection of CTCs at an early stage emerges as a critical imperative for enhancing clinical diagnostics and allowing for early interventions.
Collapse
Affiliation(s)
| | | | | | - Badrinath R Konety
- Astrin Biosciences, St. Paul, MN 55114, USA
- Allina Health Cancer Institute, Minneapolis, MN 55407, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jiarong Hong
- Astrin Biosciences, St. Paul, MN 55114, USA
- Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
| | - Justin M Drake
- Astrin Biosciences, St. Paul, MN 55114, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Deutsch TM, Fischer C, Riedel F, Haßdenteufel K, Michel LL, Sütterlin M, Riethdorf S, Pantel K, Wallwiener M, Schneeweiss A, Stefanovic S. Relationship of Ki-67 index in biopsies of metastatic breast cancer tissue and circulating tumor cells (CTCs) at the time of biopsy collection. Arch Gynecol Obstet 2024; 309:235-248. [PMID: 37480379 PMCID: PMC10769933 DOI: 10.1007/s00404-023-07080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/11/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND The proliferation marker Ki-67 is a major pathological feature for the description of the state of disease in breast cancer. It helps to define the molecular subtype and to stratify between therapy regimens in early breast cancer and helps to assess the therapy response. Circulating tumor cells (CTCs) are a negative prognostic biomarker for progression free (PFS) and overall survival (OS) in patients with metastatic breast cancer. Therefore, the CTC count is often described as surrogate for the tumor burden. Both, decrease of Ki-67 and CTC count are considered as evidence for therapy response. The presented work analyzed the correlation between the Ki-67 indices of metastatic tissue biopsies and CTC counts in biopsy time-adjacent peripheral blood samples. PATIENTS AND METHODS Blood samples from 70 metastatic breast cancer patients were obtained before the start of a new line of systemic therapy. CTCs were enumerated using CellSearch® (Menarini Silicon Biosystems, Bologna, Italy) whereas intact CTCs (iCTCs) and non-intact or apoptotic CTCs (aCTCs) were distinguished using morphologic criteria. The proportion of cells expressing Ki-67 was evaluated using immunohistochemistry on biopsies of metastases obtained concurrently with CTC sampling before the start of a new line of systemic therapy. RESULTS 65.7% of patients had a Ki-67 index of > 25%. 28.6% of patients had ≥ 5, 47.1% ≥ 1 iCTCs. 37.1% had ≥ 5, 51.4% ≥ 1 aCTCs. No correlation was shown between Ki-67 index and iCTC and aCTC count (r = 0.05 resp. r = 0.05, Spearman's correlation index). High CTC-counts did not coincide with high Ki-67 index. High Ki-67, ≥ 5 iCTCs and aCTCs are associated with poor progression free (PFS) and overall survival (OS). CONCLUSION CTCs and Ki-67 are independent prognostic markers in metastatic breast cancer. High Ki-67 in metastatic tumor tissue is not correlated to high iCTC or aCTC counts in peripheral blood.
Collapse
Affiliation(s)
- Thomas M Deutsch
- Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.
| | - Chiara Fischer
- Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Fabian Riedel
- Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Kathrin Haßdenteufel
- Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Laura L Michel
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Marc Sütterlin
- Department of Gynecology and Obstetrics, Mannheim University Hospital, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Markus Wallwiener
- Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Stefanovic
- Department of Gynecology and Obstetrics, Mannheim University Hospital, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
6
|
Nasr MM, Lynch CC. How circulating tumor cluster biology contributes to the metastatic cascade: from invasion to dissemination and dormancy. Cancer Metastasis Rev 2023; 42:1133-1146. [PMID: 37442876 PMCID: PMC10713810 DOI: 10.1007/s10555-023-10124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC cluster biology regarding invasion and survival in circulation. However, differences regarding dissemination, dormancy, and reawakening require more investigations compared to solitary CTCs. Here, we review the current state of CTC cluster research and consider their clinical significance. In addition, we discuss the concept of collective invasion by CTC clusters and molecular evidence as to how cluster survival in circulation compares to that of solitary CTCs. Molecular differences between solitary and clustered CTCs during dormancy and reawakening programs will also be discussed. We also highlight future directions to advance our current understanding of CTC cluster biology.
Collapse
Affiliation(s)
- Mostafa M Nasr
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Keup C, Kimmig R, Kasimir-Bauer S. The Diversity of Liquid Biopsies and Their Potential in Breast Cancer Management. Cancers (Basel) 2023; 15:5463. [PMID: 38001722 PMCID: PMC10670968 DOI: 10.3390/cancers15225463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Analyzing blood as a so-called liquid biopsy in breast cancer (BC) patients has the potential to adapt therapy management. Circulating tumor cells (CTCs), extracellular vesicles (EVs), cell-free DNA (cfDNA) and other blood components mirror the tumoral heterogeneity and could support a range of clinical decisions. Multi-cancer early detection tests utilizing blood are advancing but are not part of any clinical routine yet. Liquid biopsy analysis in the course of neoadjuvant therapy has potential for therapy (de)escalation.Minimal residual disease detection via serial cfDNA analysis is currently on its way. The prognostic value of blood analytes in early and metastatic BC is undisputable, but the value of these prognostic biomarkers for clinical management is controversial. An interventional trial confirmed a significant outcome benefit when therapy was changed in case of newly emerging cfDNA mutations under treatment and thus showed the clinical utility of cfDNA analysis for therapy monitoring. The analysis of PIK3CA or ESR1 variants in plasma of metastatic BC patients to prescribe targeted therapy with alpesilib or elacestrant has already arrived in clinical practice with FDA-approved tests available and is recommended by ASCO. The translation of more liquid biopsy applications into clinical practice is still pending due to a lack of knowledge of the analytes' biology, lack of standards and difficulties in proving clinical utility.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, 45147 Essen, Germany
| | | | | |
Collapse
|
8
|
Hanin L. The circulation stage of the metastatic cascade: A mathematical description and its clinical implications. J Theor Biol 2023; 572:111582. [PMID: 37481233 DOI: 10.1016/j.jtbi.2023.111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Metastatic cascade is a multi-stage process that starts with separation of a cancer cell from the primary tumor and ends with the emergence of a detectable metastasis. In the process the initiator cancer cell enters the circulatory system (intravasates), flows with the blood, and exits the circulation (extravasates) into an organ or tissue. The time period between intravasation and extravasation constitutes the circulation stage of the metastatic cascade. This stage is unique in that it lends itself naturally to various non-invasive observations and measurements in an individual cancer patient. This creates an opportunity for gaining insight into metastasis, its mathematical modeling, and designing diagnostic/prognostic tools and new cancer therapies. Although mechanisms of intravasation, survival and extravasation of circulating tumor cells (CTCs) are very complex and largely unknown, mathematical modeling of the circulation stage of the metastatic cascade is facilitated by two inter-related factors: a relative simplicity of the circulatory network and the cyclic nature of blood flow. The article presents a single-subject stochastic model of CTC dynamics that leads to simple formulas, applicable to any homogeneous CTC population, for organ-specific extravasation probabilities, the distribution and expected value of the number, X, of circulation cycles completed by a CTC prior to extravasation, and the average circulation time. In particular, we found that the distribution of random variable X is geometric G(x), where parameter x is measurable, at least in principle, in an individual subject. We also discuss implications of our results for cancer research and treatment.
Collapse
Affiliation(s)
- Leonid Hanin
- Department of Mathematics and Statistics, Idaho State University, 921 S. 8th Avenue, Stop 8085, Pocatello, ID 83209-8085, USA.
| |
Collapse
|
9
|
Vardas V, Ju JA, Christopoulou A, Xagara A, Georgoulias V, Kotsakis A, Alix-Panabières C, Martin SS, Kallergi G. Functional Analysis of Viable Circulating Tumor Cells from Triple-Negative Breast Cancer Patients Using TetherChip Technology. Cells 2023; 12:1940. [PMID: 37566019 PMCID: PMC10416943 DOI: 10.3390/cells12151940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Metastasis, rather than the growth of the primary tumor, accounts for approximately 90% of breast cancer patient deaths. Microtentacles (McTNs) formation represents an important mechanism of metastasis. Triple-negative breast cancer (TNBC) is the most aggressive subtype with limited targeted therapies. The present study aimed to isolate viable circulating tumor cells (CTCs) and functionally analyze them in response to drug treatment. CTCs from 20 TNBC patients were isolated and maintained in culture for 5 days. Biomarker expression was identified by immunofluorescence staining and VyCap analysis. Vinorelbine-induced apoptosis was evaluated based on the detection of M30-positive cells. Our findings revealed that the CTC absolute number significantly increased using TetherChips analysis compared to the number of CTCs in patients' cytospins (p = 0.006) providing enough tumor cells for drug evaluation. Vinorelbine treatment (1 h) on live CTCs led to a significant induction of apoptosis (p = 0.010). It also caused a significant reduction in Detyrosinated α-tubulin (GLU), programmed death ligand (PD-L1)-expressing CTCs (p < 0.001), and disruption of McTNs. In conclusion, this pilot study offers a useful protocol using TetherChip technology for functional analysis and evaluation of drug efficacy in live CTCs, providing important information for targeting metastatic dissemination at a patient-individualized level.
Collapse
Affiliation(s)
- Vasileios Vardas
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece;
| | - Julia A. Ju
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.A.J.); (S.S.M.)
| | | | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece; (A.X.); (A.K.)
| | | | - Athanasios Kotsakis
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece; (A.X.); (A.K.)
- Department of Medical Oncology, University General Hospital of Larissa, GR-41110 Larissa, Greece
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Center of Montpellier, 34295 Montpellier, France;
- CREEC/CANECEV, MIVEGEC (CREES), Université de Montpellier, CNRS, IRD, 34090 Montpellier, France
- European Liquid Biopsy Society (ELBS), 20246 Hamburg, Germany
| | - Stuart S. Martin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.A.J.); (S.S.M.)
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece;
| |
Collapse
|
10
|
Vardas V, Tolios A, Christopoulou A, Georgoulias V, Xagara A, Koinis F, Kotsakis A, Kallergi G. Immune Checkpoint and EMT-Related Molecules in Circulating Tumor Cells (CTCs) from Triple Negative Breast Cancer Patients and Their Clinical Impact. Cancers (Basel) 2023; 15:1974. [PMID: 37046635 PMCID: PMC10093450 DOI: 10.3390/cancers15071974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. There are few targeted therapies for these patients, leading to an unmet need for new biomarkers. The present study aimed to investigate the expression of PD-L1, CTLA-4, GLU, and VIM in CTCs of TNBC patients. Ninety-five patients were enrolled in this study: sixty-four TNBC and thirty-one luminal. Of these patients, 60 were in the early stage, while 35 had metastatic disease. Protein expression was identified by immunofluorescence staining experiments and VyCAP analysis. All the examined proteins were upregulated in TNBC patients. The expression of the GLU+VIM+CK+ phenotype was higher (50%) in metastatic TNBC compared to early TNBC patients (17%) (p = 0.005). Among all the BC patients, a significant correlation was found between PD-L1+CD45-CK+ and CTLA-4+CD45-CK+ phenotypes (Spearman test, p = 0.024), implying an important role of dual inhibition in BC. Finally, the phenotypes GLU+VIM+CK+ and PD-L1+CD45-CK+ were associated with shorter OS in TNBC patients (OS: log-rank p = 0.048, HR = 2.9, OS: log-rank p < 0.001, HR = 8.7, respectively). Thus, PD-L1, CTLA-4, GLU, and VIM constitute significant biomarkers in TNBC associated with patients' outcome, providing new therapeutic targets for this difficult breast cancer subtype.
Collapse
Affiliation(s)
- Vasileios Vardas
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece
| | - Anastasios Tolios
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece
| | | | | | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece
| | - Filippos Koinis
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece
- Department of Medical Oncology, University General Hospital of Larissa, GR-41110 Larissa, Greece
| | - Athanasios Kotsakis
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, GR-41110 Larissa, Greece
- Department of Medical Oncology, University General Hospital of Larissa, GR-41110 Larissa, Greece
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
11
|
Spurling D, Anchan A, Hucklesby J, Finlay G, Angel CE, Graham ES. Melanoma Cells Produce Large Vesicular-Bodies That Cause Rapid Disruption of Brain Endothelial Barrier-Integrity and Disassembly of Junctional Proteins. Int J Mol Sci 2023; 24:ijms24076082. [PMID: 37047054 PMCID: PMC10093843 DOI: 10.3390/ijms24076082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
It is known that many cells produce extracellular vesicles, and this includes a range of different cancer cell types. Here we demonstrate the profound effects of large vesicular-like bodies produced by melanoma cells on the barrier integrity of human brain endothelial cells. These vesicular-bodies have not been fully characterised but range in size from ~500 nm to >10 µm, are surrounded by membrane and are enzymatically active based on cell-tracker incorporation. Their size is consistent with previously reported large oncosomes and apoptotic bodies. We demonstrate that these melanoma-derived vesicular-bodies rapidly affect brain endothelial barrier integrity, measured using ECIS biosensor technology, where the disruption is evident within ~60 min. This disruption involves acquisition of the vesicles through transcellular uptake into the endothelial cells. We also observed extensive actin-rearrangement, actin removal from the paracellular boundary of the endothelial cells and envelopment of the vesicular-bodies by actin. This was concordant with widespread changes in CD144 localisation, which was consistent with the loss of junctional strength. High-resolution confocal imaging revealed proximity of the melanoma vesicular-bodies juxtaposed to the endothelial nucleus, often containing fragmented DNA themselves, raising speculation over this association and potential delivery of nuclear material into the brain endothelial cells. The disruption of the endothelial cells occurs in a manner that is faster and completely distinct to that of invasion by intact melanoma cells. Given the clinical observation of large vesicles in the circulation of melanoma patients by others, we hypothesize their involvement in weakening or priming the brain vasculature for melanoma invasion.
Collapse
Affiliation(s)
- Dayna Spurling
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Akshata Anchan
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - James Hucklesby
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - Graeme Finlay
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Catherine E Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - E Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
12
|
Extracellular Vesicles as Biomarkers in Head and Neck Squamous Cell Carcinoma: From Diagnosis to Disease-Free Survival. Cancers (Basel) 2023; 15:cancers15061826. [PMID: 36980712 PMCID: PMC10046514 DOI: 10.3390/cancers15061826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arising from different anatomical sites present with different incidences and characteristics, which requires a personalized treatment strategy. Despite the extensive research that has conducted on this malignancy, HNSCC still has a poor overall survival rate. Many attempts have been made to improve the outcomes, but one of the bottlenecks is thought to be the lack of an effective biomarker with high sensitivity and specificity. Extracellular vesicles (EVs) are secreted by various cells and participate in a great number of intercellular communications. Based on liquid biopsy, EV detection in several biofluids, such as blood, saliva, and urine, has been applied to identify the existence and progression of a variety of cancers. In HNSCC, tumor-derived EVs exhibit many functionalities by transporting diverse cargoes, which highlights their importance in tumor screening, the determination of multidisciplinary therapy, prediction of prognosis, and evaluation of therapeutic effects. This review illustrates the classification and formation of EV subtypes, the cargoes conveyed by these vesicles, and their respective functions in HNSCC cancer biology, and discloses their potential as biomarkers during the whole process of tumor diagnosis, treatment, and follow-up.
Collapse
|
13
|
Stergiopoulou D, Markou A, Strati A, Zavridou M, Tzanikou E, Mastoraki S, Kallergi G, Georgoulias V, Lianidou E. Comprehensive liquid biopsy analysis as a tool for the early detection of minimal residual disease in breast cancer. Sci Rep 2023; 13:1258. [PMID: 36690653 PMCID: PMC9870904 DOI: 10.1038/s41598-022-25400-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/28/2022] [Indexed: 01/24/2023] Open
Abstract
Liquid biopsy (LB) provides a unique minimally invasive tool to follow-up cancer patients over time, to detect minimal residual disease (MRD), to study metastasis-biology and mechanisms of therapy-resistance. Molecular characterization of CTCs offers additionally the potential to understand resistance to therapy and implement individualized targeted treatments which can be modified during the disease evolution and follow-up period of a patient. In this study, we present a long-term follow-up of operable breast cancer patients based on a comprehensive liquid biopsy analysis. We performed a comprehensive liquid biopsy analysis in peripheral blood of 13 patients with early-stage operable breast cancer at several time points for a period of ten years, consisting of: (a) CTC enumeration using the CellSearch system, (b) phenotypic analysis of CTCs using Immunofluorescence, (c) gene expression analysis, in EpCAM(+) CTCs for CK-19, CD24,CD44, ALDH1, and TWIST1, (d) analysis of PIK3CA and ESR1 mutations in EpCAM(+) CTCs and corresponding plasma ctDNA and (e) DNA methylation of ESR1 in CTCs. 10/13 (77%) patients were found negative for LB markers in PB during the whole follow-up period, and these patients did not relapse during the follow-up. However, 3/13(18%) patients that were positive for at least one LB marker relapsed within the follow-up period. The molecular characteristics of CTCs were highly different even for the same patient at different time points, and always increased before the clinical relapse. Our results indicate that liquid biopsy can reveal the presence of MRD at least 4 years before the appearance of clinically detectable metastatic disease demonstrating that a comprehensive liquid biopsy analysis provides highly important information for the therapeutic management of breast cancer patients.
Collapse
Affiliation(s)
- Dimitra Stergiopoulou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Athina Markou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Areti Strati
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Martha Zavridou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Eleni Tzanikou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Sophia Mastoraki
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Galatea Kallergi
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece
| | - Vassilis Georgoulias
- First Department of Medical Oncology, METROPOLITAN General Hospital, 264, Mesogion Av, Cholargos, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece.
| |
Collapse
|
14
|
Perelmuter VM, Grigorieva ES, Zavyalova MV, Tashireva LA, Alifanov VV, Saveleva OE, Vtorushin SV, Choynzonov EL, Cherdyntsevа NV. Signs of apoptosis in circulating tumor cell subpopulations with phenotypes associated with stemness and epithelial-mesenchymal transition in breast carcinoma. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-96-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. Ability of circulating tumor cells (CTC) initiate metastases in distant sites is associated primarily with their resistance to apoptosis which allows them to retain viability in the blood. Knowledge of phenotypical signs associated with this ability would allow to predict the risk of metastases and optimize adjuvant therapy.Aim. To examine signs of apoptosis in CTC populations with various phenotypical characteristics.Materials and methods. The study included 58 patients with invasive breast carcinoma of unspecified type, stages T1–4N0–3M0. Cell concentrates extracted from patients’ whole blood were stained with an antibody cocktail against CK7 / 8, CD45, EpCAM, CD44, CD24, CD133, ALDH, N-cadherin which allowed to identify CTC with signs of stemness and epithelial-mesenchymal transition. Annexin V and 7‑amino-actinomycin D staining was used for evaluation of apoptosis stage in CTC populations.Results. Circulating tumor cells are characterized by heterogeneity in respect to signs of stemness and epithelial-mesenchymal transition and presence of early and late signs of apoptosis and necrosis. CTC phenotypes including co-expression of epithelial marker CK7 / 8 and stemness marker CD133 (but not CD44) are characterized by absence of signs of apoptosis. Co-expression of CK7 / 8 and CD133 in CTC with stemness markers CD44+ / C D24– is associated with development of early but not late signs of apoptosis and necrosis. Circulating tumor cells without co-expression of CK7 / 8 and CD133 could have both early and late signs of apoptosis and necrosis. Circulating tumor cells phenotypes with signs of early apoptosis expressing CD133 remain in blood after non-adjuvant chemotherapy opposed to CTC without CD133 expression.Conclusion. There are CTC phenotypical signs associated with stemness and epithelial-mesenchymal transition and linked to apoptosis resistance or sensitivity.
Collapse
Affiliation(s)
- V. M. Perelmuter
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - E. S. Grigorieva
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - M. V. Zavyalova
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University, Ministry of Health of Russia
| | - L. A. Tashireva
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - V. V. Alifanov
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University, Ministry of Health of Russia
| | - O. E. Saveleva
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - S. V. Vtorushin
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University, Ministry of Health of Russia
| | - E. L. Choynzonov
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University, Ministry of Health of Russia
| | - N. V. Cherdyntsevа
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University, Ministry of Health of Russia; National Research Tomsk State University
| |
Collapse
|
15
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
16
|
Grigoryeva ES, Tashireva LA, Alifanov VV, Savelieva OE, Vtorushin SV, Zavyalova MV, Cherdyntseva NV, Perelmuter VM. The Novel Association of Early Apoptotic Circulating Tumor Cells with Treatment Outcomes in Breast Cancer Patients. Int J Mol Sci 2022; 23:ijms23169475. [PMID: 36012742 PMCID: PMC9408919 DOI: 10.3390/ijms23169475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Stemness and epithelial-mesenchymal plasticity are widely studied in the circulating tumor cells of breast cancer patients because the roles of both processes in tumor progression are well established. An important property that should be taken into account is the ability of CTCs to disseminate, particularly the viability and apoptotic states of circulating tumor cells (CTCs). Recent data demonstrate that apoptosis reversal promotes the formation of stem-like tumor cells with pronounced potential for dissemination. Our study focused on the association between different apoptotic states of CTCs with short- and long-term treatment outcomes. We evaluated the association of viable CTCs, CTCs with early features of apoptosis, and end-stage apoptosis/necrosis CTCs with clinicopathological parameters of breast cancer patients. We found that the proportion of circulating tumor cells with features of early apoptosis is a perspective prognosticator of metastasis-free survival, which also correlates with the neoadjuvant chemotherapy response in breast cancer patients. Moreover, we establish that apoptotic CTCs are associated with the poor response to neoadjuvant chemotherapy, and metastasis-free survival expressed at least two stemness markers, CD44 and CD133.
Collapse
Affiliation(s)
- Evgeniya S. Grigoryeva
- The Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
- Correspondence:
| | - Liubov A. Tashireva
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Vladimir V. Alifanov
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Olga E. Savelieva
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Sergey V. Vtorushin
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Marina V. Zavyalova
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Nadezhda V. Cherdyntseva
- The Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Vladimir M. Perelmuter
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| |
Collapse
|
17
|
Papadaki MA, Mala A, Merodoulaki AC, Vassilakopoulou M, Mavroudis D, Agelaki S. Investigating the Role of CTCs with Stem/EMT-like Features in Metastatic Breast Cancer Patients Treated with Eribulin Mesylate. Cancers (Basel) 2022; 14:cancers14163903. [PMID: 36010896 PMCID: PMC9405936 DOI: 10.3390/cancers14163903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Eribulin mesylate, an anti-mitotic drug used for the treatment of metastatic breast cancer (BC), exhibits significant effects on cancer cell migration, invasion, and metastatic seeding in experimental models. Interestingly, eribulin treatment has been shown to target the cancer stem cell (CSC) subsets in vitro and reverse the epithelial-to-mesenchymal transition (EMT) state of BC cells. In the current study, circulating tumor cells (CTCs) identified in the peripheral blood of patients with metastatic BC were analyzed at different time points during eribulin treatment and on disease progression. The results contribute new data on the mechanisms of resistance to eribulin mesylate and the prognostic relevance of CTC analyses for eribulin-treated metastatic BC. Abstract We herein aimed to assess the effect of eribulin mesylate on the cancer stem cell (CSC)/EMT-like phenotype of CTCs, and to investigate the prognostic role of CTC detection and monitoring for eribulin-treated BC patients. Peripheral blood was obtained at baseline (n = 42 patients) and 8 days after treatment initiation (C1D8: n = 22), and on disease progression (PD: n = 26). PBMCs cytospins were immunofluorescently stained for Cytokeratins/ALDH1/TWIST1/DAPI and analyzed via Ariol microscopy. CTCs were detected in 33.3%, 27.3%, and 23.1% of patients at baseline, C1D8, and PD, respectively. Accordingly, partial-EMT+ CTCs represented 61.3%, 0%, and 37.5% of total CTCs, whereas the CSC-like phenotype was consistently expressed by 87.5%, 75%, and 91.7% of CTCs at the respective time points. Interestingly, the CSC+/partial-EMT+ subset prevailed at baseline, but it was eradicated on C1D8 and resurged again during PD. CTC detection at baseline was associated with reduced PFS (p = 0.007) and OS (p = 0.005), and was an independent risk factor for death (HR: 3.779, p = 0.001; multivariate analysis). The CSC+/partial-EMT+ CTCs emerged as the only subset with adverse prognostic significance, while CTC monitoring during eribulin therapy improved the prediction of disease progression. These results indicate that resistant CTC subsets persevere eribulin treatment and highlight the prognostic implications of CTC analyses for eribulin-treated BC patients.
Collapse
Affiliation(s)
- Maria A. Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Correspondence:
| | - Anastasia Mala
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Aikaterini C. Merodoulaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Maria Vassilakopoulou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
18
|
Wu M, Huang Y, Zhou Y, Zhao H, Lan Y, Yu Z, Jia C, Cong H, Zhao J. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection. SMALL METHODS 2022; 6:e2200226. [PMID: 35595707 DOI: 10.1002/smtd.202200226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) enumeration has been widely used as a surrogate predictive marker for early diagnoses, the evaluation of chemotherapy efficacy, and cancer prognosis. Microfluidic technologies for CTCs enrichment and detection have been developed and commercialized as automation platforms. Currently, in addition to CTCs, some new types of circulating cancer-related cells (e.g., CCSCs, CTECs, CAMLs, and heterotypic CTC clusters) in circulation are also reported to be correlated to cancer diagnosis, metastasis, or prognosis. And they widely differ from the conventional CTCs in positive markers, cellular morphology, or size, which presents a new technological challenge to microfluidic devices that use affinity-based capture methods or size-based filtration methods for CTCs detection. This review focuses on the biological and physical properties as well as clinical significance of the novel circulating cancer-related cells, and discusses the challenges of their discovery to microfluidic chip for enrichment. Finally, the current challenges of CTCs detection in clinical application and future opportunities are also discussed.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Huang
- Shanghai Normal University, Shanghai, 200030, China
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Abstract
Metastasis is responsible for a large majority of death from malignant solid tumors. Bone is one of the most frequently affected organs in cancer metastasis, especially in breast and prostate cancer. Development of bone metastasis requires cancer cells to successfully complete a number of challenging steps, including local invasion and intravasation, survival in circulation, extravasation and initial seeding, and finally, formation of metastatic colonies after a period of dormancy or indolent growth. During this process, cancer cells often undergo a series of cellular and molecular changes to gain cellular plasticity that helps them adapt to various environments they encounter along the journey of metastasis. Understanding the mechanisms behind cellular plasticity and adaptation during the formation of bone metastasis is crucial for the development of novel therapies.
Collapse
Affiliation(s)
- Cao Fang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
20
|
PARP-1 Expression and BRCA1 Mutations in Breast Cancer Patients' CTCs. Cancers (Basel) 2022; 14:cancers14071731. [PMID: 35406503 PMCID: PMC8996866 DOI: 10.3390/cancers14071731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Recent estimates have shown that approx. 70% of individuals with BRCA1 mutations will develop breast cancer by the age of 70. To make matters worse, breast cancer patients with BRCA1 mutations are more likely to have the more aggressive triple-negative breast cancer. PARPs, belong to a family of nuclear enzymes, which are involved in many cellular processes, including DNA repair. PARP inhibitors have been approved for the treatment of BRCA-mutated breast cancer. The aim of the study was the determination of PARP-1 expression in the context of the presence of BRCA1 mutations in circulating tumor cells of breast cancer patients. PARP-1 (nuclear) expression and BRCA1 mutations were mainly detected in triple negative breast cancer patients, and the latter were correlated with decreased survival. Our data suggest that PARP-1, in conjunction with BRCA1, could potentially be used as (a) biomarker(s) for patients’ stratification. Abstract BRCA1 and PARP are involved in DNA damage repair pathways. BRCA1 mutations have been linked to higher likelihood of triple negative breast cancer (TNBC). The aim of the study was to determine PARP-1 expression and BRCA1 mutations in circulating tumor cells (CTCs) of BC patients. Fifty patients were enrolled: 23 luminal and 27 TNBC. PARP expression in CTCs was identified by immunofluorescence. Genotyping was performed by PCR-Sanger sequencing in the same samples. PARP-1 expression was higher in luminal (61%) and early BC (54%), compared to TNBC (41%) and metastatic (33%) patients. In addition, PARP-1 distribution was mostly cytoplasmic in luminal patients (p = 0.024), whereas it was mostly nuclear in TNBC patients. In cytokeratin (CK)-positive patients, those with the CK+PARP+ phenotype had longer overall survival (OS, log-rank p = 0.046). Overall, nine mutations were detected; M1 and M2 were completely new and M4, M7 and M8 were characterized as pathogenic. M7 and M8 were predominantly found in metastatic TNBC patients (p = 0.014 and p = 0.002). Thus, PARP-1 expression and increased mutagenic burden in TNBC patients’ CTCs, could be used as an indicator to stratify patients regarding therapeutic approaches.
Collapse
|
21
|
Radfar P, Aboulkheyr Es H, Salomon R, Kulasinghe A, Ramalingam N, Sarafraz-Yazdi E, Thiery JP, Warkiani ME. Single-cell analysis of circulating tumour cells: enabling technologies and clinical applications. Trends Biotechnol 2022; 40:1041-1060. [DOI: 10.1016/j.tibtech.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
|
22
|
Rossi T, Gallerani G, Martinelli G, Maltoni R, Fabbri F. Circulating Tumor Cells as a Tool to Untangle the Breast Cancer Heterogeneity Issue. Biomedicines 2021; 9:biomedicines9091242. [PMID: 34572427 PMCID: PMC8466266 DOI: 10.3390/biomedicines9091242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Breast cancer (BC) is a disease characterized by high degrees of heterogeneity at morphologic, genomic, and genetic levels, even within the same tumor mass or among patients. As a consequence, different subpopulations coexist and less represented clones may have a selective advantage, significantly influencing the outcome of BC patients. Circulating tumor cells (CTCs) represent a rare population of cells with a crucial role in metastatic cascade, and in recent years have represented a fascinating alternative to overcome the heterogeneity issue as a “liquid biopsy”. However, besides the raw enumeration of these cells in advanced epithelial tumors, there are no CTC-based assays applied in the clinical practice to improve personalized medicine. In this review, we report the latest findings in the field of CTCs for intra-tumoral heterogeneity unmasking in BC, supporting the need to deepen their analysis to investigate their role in metastatic process and include the molecular characterization in the clinical practice. In the future, CTCs will be helpful in monitoring patients during treatment, as well as to better address therapeutic strategies.
Collapse
Affiliation(s)
- Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
- Correspondence: ; Tel.: +39-0549-73-9982
| | - Giulia Gallerani
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
| |
Collapse
|
23
|
Schuster E, Taftaf R, Reduzzi C, Albert MK, Romero-Calvo I, Liu H. Better together: circulating tumor cell clustering in metastatic cancer. Trends Cancer 2021; 7:1020-1032. [PMID: 34481763 PMCID: PMC8541931 DOI: 10.1016/j.trecan.2021.07.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 01/30/2023]
Abstract
Circulating tumor cells (CTCs) are vital components of liquid biopsies for diagnosis of residual cancer, monitoring of therapy response, and prognosis of recurrence. Scientific dogma focuses on metastasis mediated by single CTCs, but advancement of CTC detection technologies has elucidated multicellular CTC clusters, which are associated with unfavorable clinical outcomes and a 20- to 100-fold greater metastatic potential than single CTCs. While the mechanistic understanding of CTC cluster formation is still in its infancy, multiple cell adhesion molecules and tight junction proteins have been identified that underlie the outperforming attributes of homotypic and heterotypic CTC clusters, such as cell survival, cancer stemness, and immune evasion. Future directions include high-resolution characterization of CTCs at multiomic levels for diagnostic/prognostic evaluations and targeted therapies.
Collapse
Affiliation(s)
- Emma Schuster
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rokana Taftaf
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carolina Reduzzi
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mary K Albert
- Biomedical Visualization Graduate Program, Department of Biomedical and Health Information Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Isabel Romero-Calvo
- Biomedical Visualization Graduate Program, Department of Biomedical and Health Information Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Lurie Comprehensive Cancer Center and Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
24
|
Chantzara E, Xenidis N, Kallergi G, Georgoulias V, Kotsakis A. Circulating tumor cells as prognostic biomarkers in breast cancer: current status and future prospects. Expert Rev Mol Diagn 2021; 21:1037-1048. [PMID: 34328384 DOI: 10.1080/14737159.2021.1962710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction : Despite advances in diagnostic and therapeutic techniques breast cancer is still associated with significant morbidity and mortality. CTCs play a crucial role in the metastatic process, which is the main cause of death in BC patients.Areas covered : This review discusses the prognostic and predictive value of CTCs and their prospective in management of BC patients.Expert opinion : The analysis of CTCs through improved technologies offers a new insight into the metastatic cascade. Assessment of the number and molecular profile of CTCs holds great promises for disease monitoring and therapeutic decisions. However, more research is needed until they can be used in therapeutic decisions in clinical practice.
Collapse
Affiliation(s)
- Evagelia Chantzara
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece
| | - Nikolaos Xenidis
- Department of Medical Oncology, University General Hospital of Alexandroupolis, Alexandroupolis, Thrace, Greece
| | - Galatea Kallergi
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Vassilis Georgoulias
- Department of Medical Oncology, Hellenic Oncology Research Group (HORG), Athens, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, Larissa, Thessaly, Greece.,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Thessaly, Greece
| |
Collapse
|
25
|
Enkhbat M, Liu Y, Kim J, Xu Y, Yin Z, Liu T, Deng C, Zou C, Xie X, Li X, Wang P. Expansion of Rare Cancer Cells into Tumoroids for Therapeutic Regimen and Cancer Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yung‐Chiang Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Jua Kim
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Yanshan Xu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Zongyi Yin
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Tzu‐Ming Liu
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chu‐Xia Deng
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chang Zou
- The First Affiliated Hospital of Southern University Shenzhen People's Hospital Shenzhen Guangdong 518020 China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐sen University Guangzhou 510275 China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Peng‐Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- Department of Chemistry and Biotechnology Swinburne University of Technology Victoria 3122 Australia
| |
Collapse
|
26
|
Clinical Relevance of Mesenchymal- and Stem-Associated Phenotypes in Circulating Tumor Cells Isolated from Lung Cancer Patients. Cancers (Basel) 2021; 13:cancers13092158. [PMID: 33947159 PMCID: PMC8124761 DOI: 10.3390/cancers13092158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Lung cancer is the most frequent malignancy in the world. Most lung cancer patients are diagnosed at an advanced stage. To make matters worse, the survival of patients is very poor. Circulating tumor cells (CTCs), albeit rare, have been portrayed as essential players in the progression of lung cancer. It is definitely not easy being a CTC. First, they escape from the primary tumor, then they travel in the bloodstream, have to survive really harsh conditions, and finally, they form metastases. The adoption of epithelial-to-mesenchymal transition as well as cancer stem cell features has been suggested to allow CTCs to survive and metastasize. This review will focus on how these features can be used to estimate the prognosis of lung cancer patients. Abstract Lung cancer is the leading cause of cancer-related mortality globally. Among the types of lung cancer, non-small-cell lung cancer (NSCLC) is more common, while small-cell lung cancer (SCLC) is less frequent yet more aggressive. Circulating tumor cells (CTCs), albeit rare, have been portrayed as essential players in the progression of lung cancer. CTCs are considered to adopt an epithelial-to-mesenchymal transition (EMT) phenotype and characteristics of cancer stem cells (CSCs). This EMT (or partial) phenotype affords these cells the ability to escape from the primary tumor, travel into the bloodstream, and survive extremely adverse conditions, before colonizing distant foci. Acquisition of CSC features, such as self-renewal, differentiation, and migratory potential, further reflect CTCs’ invasive potential. CSCs have been identified in lung cancer, and expression of EMT markers has previously been correlated with poor clinical outcomes. Thus far, a vast majority of studies have concentrated on CTC detection and enumeration as a prognostic tools of patients’ survival or for monitoring treatment efficacy. In this review, we highlight EMT and CSC markers in CTCs and focus on the clinical significance of these phenotypes in the progression of both non-small- and small-cell lung cancer.
Collapse
|
27
|
Spiliotaki M, Kallergi G, Nikolaou C, Xenidis N, Politaki E, Apostolaki S, Georgoulia N, Koinis F, Tsoukalas N, Hatzidaki D, Kotsakis A, Georgoulias V. Dynamic changes of CTCs in patients with metastatic HR(+)/HER2(-) breast cancer receiving salvage treatment with everolimus/exemestane. Cancer Chemother Pharmacol 2021; 87:277-287. [PMID: 33515073 DOI: 10.1007/s00280-020-04227-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/29/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE Detection of CTCs represents a poor prognostic factor in patients with early and metastatic breast cancer (mBC) and treatment with everolimus-exemestane (E/E) is an established effective treatment in hormone receptor-positive/HER2-negative mBC patients. The effect of E/E on CTCs in mBC patients was prospectively investigated. METHODS CTCs from 50 pre-treated patients with mBC receiving E/E were analyzed using the CellSearch (CS) platform and triple immunofluorescence (IF) staining for cytokeratin, M30 and Ki67 expression to assess their proliferative and apoptotic status. RESULTS CTCs (by CS) were detected in 64% of patients before treatment and E/E administration resulted in their decreased prevalence [(n = 18; 36%, p = 0.004) and (n = 7; 19.4%, p = 0.019) post-1st and post-3rd treatment cycle, respectively] whereas it was significantly increased at disease progression (PD: 61%) compared to post-1st and post-3rd cycle (p = 0.049 and p = 0.021, respectively). Ki67-positive CTCs were detected in 60%, 60%, 17% and 50% of patients before treatment, post-1st, post-3rd cycle and at PD, respectively, while the opposite was observed for M30-positive CTCs (0% at baseline, 10% after the 1st cycle, 50% after the 3rd cycle and 0% at PD). The detection of even ≥ 1 CTC/5 ml after one cycle was associated with decreased PFS (3.3 vs 9.0 months, p = 0.025) whereas the detection of even ≥ 2 CTCs at PD was associated with decreased OS (32.4 vs 19.5 months; p = 0.009). CONCLUSIONS The combination of E/E resulted in early elimination of proliferating CTCs in mBC patients and this effect was associated with a favorable clinical outcome.
Collapse
Affiliation(s)
- Maria Spiliotaki
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece
| | - Galatea Kallergi
- Department of Biochemistry, University of Crete Medical School, Heraklion, Crete, Greece
| | - Christos Nikolaou
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece
| | - Nikolaos Xenidis
- Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece.,Department of Medical Oncology, Medical School, Democritus University of Thrace, Xanthi, Greece
| | - Eleni Politaki
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece
| | - Stella Apostolaki
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece
| | - Nefeli Georgoulia
- Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece
| | - Filippos Koinis
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece.,Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece.,Department of Medical Oncology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa & Laboratory of Oncology, University of Thessaly Mezourlo, Larissa, Thessaly, Greece
| | - Nikolaos Tsoukalas
- Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece.,Medical Oncology Unit, NIMITS Hospital, Athens, Greece
| | - Dora Hatzidaki
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece.,Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece
| | - Athanasios Kotsakis
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece.,Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece.,Department of Medical Oncology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa & Laboratory of Oncology, University of Thessaly Mezourlo, Larissa, Thessaly, Greece
| | - Vassilis Georgoulias
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Crete, Greece. .,Hellenic Oncology Research Group (HORG), 55 Lombardou str, 11474, Athens, Greece.
| |
Collapse
|
28
|
Sol N, In 't Veld SGJG, Vancura A, Tjerkstra M, Leurs C, Rustenburg F, Schellen P, Verschueren H, Post E, Zwaan K, Ramaker J, Wedekind LE, Tannous J, Ylstra B, Killestein J, Mateen F, Idema S, de Witt Hamer PC, Navis AC, Leenders WPJ, Hoeben A, Moraal B, Noske DP, Vandertop WP, Nilsson RJA, Tannous BA, Wesseling P, Reijneveld JC, Best MG, Wurdinger T. Tumor-Educated Platelet RNA for the Detection and (Pseudo)progression Monitoring of Glioblastoma. CELL REPORTS MEDICINE 2020; 1:100101. [PMID: 33103128 PMCID: PMC7576690 DOI: 10.1016/j.xcrm.2020.100101] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 01/09/2023]
Abstract
Tumor-educated platelets (TEPs) are potential biomarkers for cancer diagnostics. We employ TEP-derived RNA panels, determined by swarm intelligence, to detect and monitor glioblastoma. We assessed specificity by comparing the spliced RNA profile of TEPs from glioblastoma patients with multiple sclerosis and brain metastasis patients (validation series, n = 157; accuracy, 80%; AUC, 0.81 [95% CI, 0.74–0.89; p < 0.001]). Second, analysis of patients with glioblastoma versus asymptomatic healthy controls in an independent validation series (n = 347) provided a detection accuracy of 95% and AUC of 0.97 (95% CI, 0.95–0.99; p < 0.001). Finally, we developed the digitalSWARM algorithm to improve monitoring of glioblastoma progression and demonstrate that the TEP tumor scores of individual glioblastoma patients represent tumor behavior and could be used to distinguish false positive progression from true progression (validation series, n = 20; accuracy, 85%; AUC, 0.86 [95% CI, 0.70–1.00; p < 0.012]). In conclusion, TEPs have potential as a minimally invasive biosource for blood-based diagnostics and monitoring of glioblastoma patients. TEP RNA enables blood-based brain tumor diagnostics TEP RNA is dynamic throughout anti-tumor treatment TEP RNA may be employed for therapy monitoring
Collapse
Affiliation(s)
- Nik Sol
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Sjors G J G In 't Veld
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Adrienne Vancura
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Maud Tjerkstra
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Cyra Leurs
- Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - François Rustenburg
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Pepijn Schellen
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Heleen Verschueren
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Edward Post
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Kenn Zwaan
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Jip Ramaker
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Laurine E Wedekind
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Jihane Tannous
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Joep Killestein
- Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Farrah Mateen
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Sander Idema
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Philip C de Witt Hamer
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Anna C Navis
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, Maastricht Academical Medical Center, Maastricht, the Netherlands
| | - Bastiaan Moraal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - David P Noske
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - W Peter Vandertop
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - R Jonas A Nilsson
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Pieter Wesseling
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jaap C Reijneveld
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Myron G Best
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Thomas Wurdinger
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Impact of mRNA-Assessed Molecular Subtype Conversion, Intact and Apoptotic Circulating Tumor Cells on Survival of Metastatic Breast Cancer Patients: Proof of Principle. Diagnostics (Basel) 2020; 10:diagnostics10060369. [PMID: 32512707 PMCID: PMC7344651 DOI: 10.3390/diagnostics10060369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Breast cancers (BC) can mutate, allowing metastatic tumors (MT) to sometimes differ to primary tumors (PT) in gene expression. Despite contemporary metastatic breast cancer (MBC) therapy, subtype conversion seems prognostically disadvantageous. We strived to determine the influence of mRNA-assessed intrinsic subtype stability comparing PT and MT biopsies and circulating tumor cell (CTC)-based liquid biopsies on progression free survival (PFS) and overall survival (OS). Additional analyzed prognostic factors were PT subtype, MT subtype and hormone receptor loss. Kaplan-Meier curves and the log rank tests were used to compare PFSs and OSs. The proportions of luminal B and triple negative subtype MTs were increased compared to those observed in PTs. Fifteen patients were found to have tumors that underwent intrinsic subtype conversion and their OS was significantly decreased (p = 0.038). No such difference was observed when it comes to PFS. The majority of these tumors switched to a more aggressive intrinsic subtype. No significant differences in PFSs or OSs were observed between subtype converters with triple negative PTs compared to those with luminal subtype PTs. The same is true of subtype stable patients. Total CTC, iCTC and aCTC counts decreased with therapy, but there were no significant differences between subtype converters and subtype stable patients. Our data confirm a poorer overall survival of the intrinsic subtype converters and emphasize the importance of acquiring biopsies and re-biopsies of all available metastatic lesions alongside with CTC-based liquid biopsies for earlier recognition of patients with poorer prognosis and in need of altered individualized therapy regimens.
Collapse
|
30
|
Kong D, Hughes CJ, Ford HL. Cellular Plasticity in Breast Cancer Progression and Therapy. Front Mol Biosci 2020; 7:72. [PMID: 32391382 PMCID: PMC7194153 DOI: 10.3389/fmolb.2020.00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
With the exception of non-melanoma skin cancer, breast cancer is the most frequently diagnosed malignant disease among women, with the majority of mortality being attributable to metastatic disease. Thus, even with improved early screening and more targeted treatments which may enable better detection and control of early disease progression, metastatic disease remains a significant problem. While targeted therapies exist for breast cancer patients with particular subtypes of the disease (Her2+ and ER/PR+), even in these subtypes the therapies are often not efficacious once the patient's tumor metastasizes. Increases in stemness or epithelial-to-mesenchymal transition (EMT) in primary breast cancer cells lead to enhanced plasticity, enabling tumor progression, therapeutic resistance, and distant metastatic spread. Numerous signaling pathways, including MAPK, PI3K, STAT3, Wnt, Hedgehog, and Notch, amongst others, play a critical role in maintaining cell plasticity in breast cancer. Understanding the cellular and molecular mechanisms that regulate breast cancer cell plasticity is essential for understanding the biology of breast cancer progression and for developing novel and more effective therapeutic strategies for targeting metastatic disease. In this review we summarize relevant literature on mechanisms associated with breast cancer plasticity, tumor progression, and drug resistance.
Collapse
Affiliation(s)
- Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Connor J. Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
31
|
Cut-Off Analysis of CTC Change under Systemic Therapy for Defining Early Therapy Response in Metastatic Breast Cancer. Cancers (Basel) 2020; 12:cancers12041055. [PMID: 32344685 PMCID: PMC7226373 DOI: 10.3390/cancers12041055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Detection of circulating tumor cells (CTC) can distinguish between aggressive and indolent metastatic disease in breast cancer patients and is thus considered an independent, negative prognostic factor. A clear decline in CTCs is observed in patients who respond to systemic therapy. Nevertheless, CTCs can decrease in patients experiencing disease progression during systemic therapy, too. This study aims to determine the differences between CTC decline in patients responding to therapy and those in whom disease is progressing. Therefore, CTC values were compared at the start and after one cycle of a new line of systemic therapy. In all, 108 initially CTC-positive patients (with ≥5 intact CTCs in 7.5 mL blood) were enrolled in this study and intact and apoptotic CTCs were measured via the CellSearch® system. A cut-off analysis was performed using Youden’s J statistics to differentiate between CTC change in the two groups. Here, 64 (59.3%) patients showed stable disease or partial response vs. 44 (40.7%) presenting disease progression. Median overall survival was 23 (range: 4–92) vs. 7 (2–43) months (p < 0.001). Median intact CTC count at enrollment was 15.0 (5–2760) vs. 30.5 (5–200000) cells (p = 0.39) and 2.5 (0–420) vs. 8.5 (0–15000) cells after one cycle of systemic therapy (p = 0.001). Median apoptotic CTC count at enrollment was 10.5 (0–1500) vs. 9 (0–800) cells (p = 0.475) and 1 (0–200) vs. 3 (0–250) cells after one cycle of systemic therapy (p = 0.01). A 50% reduction in baseline apoptotic CTC count represents the optimal cut-off to differentiate between therapy response and disease progression. An apoptotic CTC reduction of ≤10% is 74% specific for early disease progression.
Collapse
|
32
|
Shen L, Jia K, Bing T, Zhang Z, Zhen X, Liu X, Zhang N, Shangguan D. Detection of Circulating Tumor-Related Materials by Aptamer Capturing and Endogenous Enzyme-Signal Amplification. Anal Chem 2020; 92:5370-5378. [PMID: 32134248 DOI: 10.1021/acs.analchem.0c00051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Circulating tumor-related materials (CTRMs) shed from original or metastatic tumors, carry a lot of tumor information and are considered as important markers for cancer diagnosis and metastasis prognosis. Herein, we report a colorimetric detection strategy for CTRMs based on aptamer-based magnetic isolation and endogenous alkaline phosphatase (AP)-signal amplification. This strategy exhibited high sensitivity and selectivity toward the CTRMs that express AP heterodimers (the target of aptamer, a potential tumor marker). For clinical samples, this CTRM assay significantly discriminated colorectal cancer patients (n = 50) from healthy individuals (n = 39, p < 0.0001). The receiver operating characteristic (ROC) analysis indicated the sensitivity and specificity reached 92% and 82%, respectively, at the optimal cutoff point, the area under the curve of ROC reached 0.93, suggesting great potential for colorectal cancer diagnosis and therapeutic monitoring. Compared with CTC assays, this strategy is simple and has the potential for point-of-care testing.
Collapse
Affiliation(s)
- Luyao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keke Jia
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoxiao Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Moose DL, Krog BL, Kim TH, Zhao L, Williams-Perez S, Burke G, Rhodes L, Vanneste M, Breheny P, Milhem M, Stipp CS, Rowat AC, Henry MD. Cancer Cells Resist Mechanical Destruction in Circulation via RhoA/Actomyosin-Dependent Mechano-Adaptation. Cell Rep 2020; 30:3864-3874.e6. [PMID: 32187555 PMCID: PMC7219793 DOI: 10.1016/j.celrep.2020.02.080] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
During metastasis, cancer cells are exposed to potentially destructive hemodynamic forces including fluid shear stress (FSS) while en route to distant sites. However, prior work indicates that cancer cells are more resistant to brief pulses of high-level FSS in vitro relative to non-transformed epithelial cells. Herein, we identify a mechano-adaptive mechanism of FSS resistance in cancer cells. Our findings demonstrate that cancer cells activate RhoA in response to FSS, which protects them from FSS-induced plasma membrane damage. We show that cancer cells freshly isolated from mouse and human tumors are resistant to FSS, that formin and myosin II activity protects circulating tumor cells (CTCs) from destruction, and that short-term inhibition of myosin II delays metastasis in mouse models. Collectively, our data indicate that viable CTCs actively resist destruction by hemodynamic forces and are likely to be more mechanically robust than is commonly thought.
Collapse
Affiliation(s)
- Devon L Moose
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin L Krog
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Gretchen Burke
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lillian Rhodes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marion Vanneste
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Patrick Breheny
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Mohammed Milhem
- Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Division of Hematology and Oncology, Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher S Stipp
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Cancer Biology Program, Biomedical Sciences, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA; Departments of Pathology, Urology and Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
34
|
Thanh Huong P, Gurshaney S, Thanh Binh N, Gia Pham A, Hoang Nguyen H, Thanh Nguyen X, Pham-The H, Tran PT, Truong Vu K, Xuan Duong N, Pelucchi C, La Vecchia C, Boffetta P, Nguyen HD, Luu HN. Emerging Role of Circulating Tumor Cells in Gastric Cancer. Cancers (Basel) 2020; 12:E695. [PMID: 32183503 PMCID: PMC7140068 DOI: 10.3390/cancers12030695] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
With over 1 million incidence cases and more than 780,000 deaths in 2018, gastric cancer (GC) was ranked as the 5th most common cancer and the 3rd leading cause of cancer deaths worldwide. Though several biomarkers, including carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9), and cancer antigen 72-4 (CA72-4), have been identified, their diagnostic accuracies were modest. Circulating tumor cells (CTCs), cells derived from tumors and present in body fluids, have recently emerged as promising biomarkers, diagnostically and prognostically, of cancers, including GC. In this review, we present the landscape of CTCs from migration, to the presence in circulation, biologic properties, and morphologic heterogeneities. We evaluated clinical implications of CTCs in GC patients, including diagnosis, prognosis, and therapeutic management, as well as their application in immunotherapy. On the one hand, major challenges in using CTCs in GC were analyzed, from the differences of cut-off values of CTC positivity, to techniques used for sampling, storage conditions, and CTC molecular markers, as well as the unavailability of relevant enrichment and detection techniques. On the other hand, we discussed future perspectives of using CTCs in GC management and research, including the use of circulating tumor microembolies; of CTC checkpoint blockade in immunotherapy; and of organoid models. Despite the fact that there are remaining challenges in techniques, CTCs have potential as novel biomarkers and/or a non-invasive method for diagnostics, prognostics, and treatment monitoring of GC, particularly in the era of precision medicine.
Collapse
Affiliation(s)
- Phung Thanh Huong
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi 10000, Vietnam;
| | - Sanjeev Gurshaney
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Nguyen Thanh Binh
- Department of Pharmaceutical Management and Economics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam;
| | - Anh Gia Pham
- Department of Surgical Oncology, Viet-Duc University Hospital, Hanoi 10000, Vietnam; (A.G.P.); (H.H.N.); (X.T.N.)
| | - Huy Hoang Nguyen
- Department of Surgical Oncology, Viet-Duc University Hospital, Hanoi 10000, Vietnam; (A.G.P.); (H.H.N.); (X.T.N.)
| | - Xuan Thanh Nguyen
- Department of Surgical Oncology, Viet-Duc University Hospital, Hanoi 10000, Vietnam; (A.G.P.); (H.H.N.); (X.T.N.)
| | - Hai Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi 10000, Vietnam; (H.P.-T.); (P.-T.T.)
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi 10000, Vietnam; (H.P.-T.); (P.-T.T.)
| | - Khanh Truong Vu
- Department of Gastroenterology, Bach Mai Hospital, Hanoi 10000, Vietnam;
| | | | - Claudio Pelucchi
- Department of Clinical, Sciences and Community Health, University of Milan, 20133 Milan, Italy; (C.P.); (C.L.V.)
| | - Carlo La Vecchia
- Department of Clinical, Sciences and Community Health, University of Milan, 20133 Milan, Italy; (C.P.); (C.L.V.)
| | - Paolo Boffetta
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Division of Hematology and Medical Oncology, New York, NY 10029, USA;
| | - Hung D. Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Hung N. Luu
- Department of Epidemiology, University of Pittsburg Graduate School of Public Health, Pittsburg, PA 15261, USA
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
35
|
Cieślikowski WA, Budna-Tukan J, Świerczewska M, Ida A, Hrab M, Jankowiak A, Mazel M, Nowicki M, Milecki P, Pantel K, Alix-Panabières C, Zabel M, Antczak A. Circulating Tumor Cells as a Marker of Disseminated Disease in Patients with Newly Diagnosed High-Risk Prostate Cancer. Cancers (Basel) 2020; 12:E160. [PMID: 31936460 PMCID: PMC7017349 DOI: 10.3390/cancers12010160] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate whether the enumeration of circulating tumor cells (CTCs) in blood can differentiate between true localized and metastatic prostate cancer. A cross-sectional study of 104 prostate cancer patients with newly diagnosed high-risk prostate cancer was conducted. In total, 19 patients presented metastatic disease and 85 were diagnosed with localized disease. Analyses included intergroup comparison of CTC counts, determined using the CellSearch® system, EPISPOT assay and GILUPI CellCollector®, and ROC analysis verifying the accuracy of CTC count as a maker of disseminated prostate cancer. The vast majority (94.7%) of patients with advanced-stage cancer tested positively for CTCs in at least one of the assays. However, significantly higher CTC counts were determined with the CellSearch® system compared to EPISPOT assay and GILUPI CellCollector®. Identification of ≥4 CTCs with the CellSearch® system was the most accurate predictor of metastatic disease (sensitivity 0.500; specificity 0.900; AUC (95% CI) 0.760 (0.613-0.908). Furthermore, we tried to create a model to enhance the specificity and sensitivity of metastatic prediction with CTC counts by incorporating patient's clinical data, including PSA serum levels, Gleason score and clinical stage. The composite biomarker panel achieved the following performance: sensitivity, 0.611; specificity, 0.971; AUC (95% CI), 0.901 (0.810-0.993). Thus, although the sensitivity of CTC detection needs to be further increased, our findings suggest that high CTC counts might contribute to the identification of high-risk prostate cancer patients with occult metastases at the time of diagnosis.
Collapse
Affiliation(s)
- Wojciech A. Cieślikowski
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Agnieszka Ida
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| | - Michał Hrab
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| | - Agnieszka Jankowiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Martine Mazel
- Laboratory of Rare Human Circulating Cells, University Medical Center, 34093 Montpellier CEDEX 5, France; (M.M.); (C.A.-P.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Piotr Milecki
- Department of Electroradiology, Poznan University of Medical Sciences, 61-868 Poznan, Poland;
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center, 34093 Montpellier CEDEX 5, France; (M.M.); (C.A.-P.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Division of Anatomy and Histology, University of ZielonaGóra, 65-046 ZielonaGóra, Poland
| | - Andrzej Antczak
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| |
Collapse
|
36
|
Lim SB, Lim CT, Lim WT. Single-Cell Analysis of Circulating Tumor Cells: Why Heterogeneity Matters. Cancers (Basel) 2019; 11:cancers11101595. [PMID: 31635038 PMCID: PMC6826423 DOI: 10.3390/cancers11101595] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Unlike bulk-cell analysis, single-cell approaches have the advantage of assessing cellular heterogeneity that governs key aspects of tumor biology. Yet, their applications to circulating tumor cells (CTCs) are relatively limited, due mainly to the technical challenges resulting from extreme rarity of CTCs. Nevertheless, recent advances in microfluidics and immunoaffinity enrichment technologies along with sequencing platforms have fueled studies aiming to enrich, isolate, and sequence whole genomes of CTCs with high fidelity across various malignancies. Here, we review recent single-cell CTC (scCTC) sequencing efforts, and the integrated workflows, that have successfully characterized patient-derived CTCs. We examine how these studies uncover DNA alterations occurring at multiple molecular levels ranging from point mutations to chromosomal rearrangements from a single CTC, and discuss their cellular heterogeneity and clinical consequences. Finally, we highlight emerging strategies to address key challenges currently limiting the translation of these findings to clinical practice.
Collapse
Affiliation(s)
- Su Bin Lim
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Chwee Teck Lim
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore.
| | - Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.
- Office of Academic and Clinical Development, Duke-NUS Medical School, Singapore 169857, Singapore.
- IMCB NCC MPI Singapore Oncogenome Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore.
| |
Collapse
|
37
|
Kallergi G, Tsintari V, Sfakianakis S, Bei E, Lagoudaki E, Koutsopoulos A, Zacharopoulou N, Alkahtani S, Alarifi S, Stournaras C, Zervakis M, Georgoulias V. The prognostic value of JUNB-positive CTCs in metastatic breast cancer: from bioinformatics to phenotypic characterization. Breast Cancer Res 2019; 21:86. [PMID: 31370904 PMCID: PMC6676640 DOI: 10.1186/s13058-019-1166-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Background Circulating tumor cells (CTCs) are important for metastatic dissemination of cancer. They can provide useful information, regarding biological features and tumor heterogeneity; however, their detection and characterization are difficult due to their limited number in the bloodstream and their mesenchymal characteristics. Therefore, new biomarkers are needed to address these questions. Methods Bioinformatics functional enrichment analysis revealed a subgroup of 24 genes, potentially overexpressed in CTCs. Among these genes, the chemokine receptor CXCR4 plays a central role. After prioritization according to the CXCR4 corresponding pathways, five molecules (JUNB, YWHAB, TYROBP, NFYA, and PRDX1) were selected for further analysis in biological samples. The SKBR3, MDA-MB231, and MCF7 cell lines, as well as PBMCs from normal (n = 10) blood donors, were used as controls to define the expression pattern of all the examined molecules. Consequently, 100 previously untreated metastatic breast cancer (mBC) patients (n = 100) were analyzed using the following combinations of antibodies: CK (cytokeratin)/CXCR4/JUNB, CK/NFYA/ΥWHΑΒ (14-3-3), and CK/TYROBP/PRDX1. A threshold value for every molecule was considered the mean expression in normal PBMCs. Results Quantification of CXCR4 revealed overexpression of the receptor in SKBR3 and in CTCs, following the subsequent scale (SKBR3>CTCs>Hela>MCF7>MDA-MB231). JUNB was also overexpressed in CTCs (SKBR3>CTCs>MCF7>MDA-MB231>Hela). According to the defined threshold for each molecule, CXCR4-positive CTCs were identified in 90% of the patients with detectable tumor cells in their blood. In addition, 65%, 75%, 14.3%, and 12.5% of the patients harbored JUNB-, TYROBP-, NFYA-, and PRDX-positive CTCs, respectively. Conversely, none of the patients revealed YWHAB-positive CTCs. Interestingly, JUNB expression in CTCs was phenotypically and statistically enhanced compared to patients’ blood cells (p = 0.002) providing a possible new biomarker for CTCs. Furthermore, the detection of JUNB-positive CTCs in patients was associated with poorer PFS (p = 0.015) and OS (p = 0.002). Moreover, JUNB staining of 11 primary and 4 metastatic tumors from the same cohort of patients revealed a dramatic increase of JUNB expression in metastasis. Conclusions CXCR4, JUNB, and TYROBP were overexpressed in CTCs, but only the expression of JUNB was associated with poor prognosis, providing a new biomarker and a potential therapeutic target for the elimination of CTCs. Electronic supplementary material The online version of this article (10.1186/s13058-019-1166-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Galatea Kallergi
- Laboratory of Τumor Cell Βiology, Medical School, University of Crete, Heraklion, Greece. .,Department of Biochemistry, Medical School, University of Crete, Voutes, 70013, Heraklion, Crete, Greece. .,Hellenic Oncology Research Group (HORG), Athens, Greece.
| | - Vasileia Tsintari
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital, Tübingen, Germany
| | - Stelios Sfakianakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology, Heraklion, Greece
| | - Ekaterini Bei
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece
| | - Eleni Lagoudaki
- Department of Pathology, University General Hospital of Heraklion, Heraklion, Crete, Greece
| | | | - Nefeli Zacharopoulou
- Department of Biochemistry, Medical School, University of Crete, Voutes, 70013, Heraklion, Crete, Greece
| | - Saad Alkahtani
- Department of Biochemistry, Medical School, University of Crete, Voutes, 70013, Heraklion, Crete, Greece.,Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Biochemistry, Medical School, University of Crete, Voutes, 70013, Heraklion, Crete, Greece.,Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Christos Stournaras
- Department of Biochemistry, Medical School, University of Crete, Voutes, 70013, Heraklion, Crete, Greece
| | - Michalis Zervakis
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece
| | - Vassilis Georgoulias
- Laboratory of Τumor Cell Βiology, Medical School, University of Crete, Heraklion, Greece.,Hellenic Oncology Research Group (HORG), Athens, Greece
| |
Collapse
|
38
|
Worrede A, Meucci O, Fatatis A. Limiting tumor seeding as a therapeutic approach for metastatic disease. Pharmacol Ther 2019; 199:117-128. [PMID: 30877019 PMCID: PMC6571062 DOI: 10.1016/j.pharmthera.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022]
Abstract
Here we propose that therapeutic targeting of circulating tumor cells (CTCs), which are widely understood to be the seeds of metastasis, would represent an effective strategy towards limiting numerical expansion of secondary lesions and containing overall tumor burden in cancer patients. However, the molecular mediators of tumor seeding have not been well characterized. This is in part due to the limited number of pre-clinical in vivo approaches that appropriately interrogate the mechanisms by which cancer cells home to arresting organs. It is critical that we continue to investigate the mediators of tumor seeding as it is evident that the ability of CTCs to colonize in distant sites is what drives disease progression even after the primary tumor has been ablated by local modalities. In addition to slowing disease progression, containing metastatic spread by impeding tumor cell seeding may also provide a clinical benefit by increasing the duration of the residence of CTCs in systemic circulation thereby increasing their exposure to pharmacological agents commonly used in the treatment of patients such as chemotherapy and immunotherapies. In this review we will examine the current state of knowledge about the mechanisms of tumor cells seeding as well as explore how targeting this stage of metastatic spreading may provide therapeutic benefit to patients with advanced disease.
Collapse
Affiliation(s)
- Asurayya Worrede
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15(th) Street, Philadelphia, PA, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15(th) Street, Philadelphia, PA, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15(th) Street, Philadelphia, PA, USA; Program in Prostate Cancer, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Messaritakis I, Nikolaou M, Koinis F, Politaki E, Koutsopoulos A, Lagoudaki E, Vetsika EK, Georgoulias V, Kotsakis A. Characterization of DLL3-positive circulating tumor cells (CTCs) in patients with small cell lung cancer (SCLC) and evaluation of their clinical relevance during front-line treatment. Lung Cancer 2019; 135:33-39. [PMID: 31447000 DOI: 10.1016/j.lungcan.2019.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/11/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The aim of the study was to characterize and evaluate the presence of DLL3-positive Circulating Tumor Cells (CTCs) in SCLC patients receiving front-line chemotherapy and assess their clinical relevance. MATERIALS AND METHODS Peripheral blood was obtained from treatment-naïve patients with SCLC (n = 108 patients), after one etoposide/platinum cycle (n = 68 patients) and on disease progression (n = 48 patients). Immunofluorescence staining using antibodies against the DLL3, cytokeratins (CK), CD45 and vimentin (Vim) was used for the detection and characterization of CTCs. RESULTS Before treatment, 74.1% of patients had detectable DLL3+/CD45- CTCs. One-treatment cycle significantly decreased both the detection rate (p < 0.001) and the absolute number (p < 0.001) of DLL3+/CD45- CTCs. Triple immunofluorescence staining using anti-CK, anti-Vim and anti-DLL3 antibodies revealed an important CTC heterogeneity since DLL3 could be detected in Vim+, Vim-, CK+ and CK- CTCs. On disease progression, both the detection rate and the absolute number of DLL3+/CD45- CTCs were significantly increased compared to post-1st cycle values (p < 0.001 and p = 0.002, respectively). In addition, 22.7% of patients had detectable DLL3+/CD45- cells which could not be captured by the CellSearch assay. In multivariate analysis, the detection of DLL3+/CD45- CTCs at baseline was significantly associated with decreased progression-free survival (HR = 10.8; p = 0.005) whereas their detection on disease progression was associated with decreased overall survival (HR: 28.2; p = 0.016). CONCLUSIONS These findings demonstrate an important heterogeneity of CTCs, based on the expression of CK, Vim and DLL3, in patients with SCLC and the changes of DLL3+/CD45- CTCs during treatment seem to be a dynamic biomarker associated with patients' clinical outcome.
Collapse
Affiliation(s)
| | - Michalis Nikolaou
- Department of Internal Medicine, Medical Oncology Unit, "Marika Iliadi" Hospital of Athens, Greece
| | - Fillipos Koinis
- Department of Medical Oncology, University General Hospital of Larissa, Thessaly, Greece
| | - Eleni Politaki
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Greece
| | | | - Eleni Lagoudaki
- Department of Pathology, University General Hospital of Heraklion, Greece
| | - Eleni-Kyriaki Vetsika
- Department of Medical Oncology, University General Hospital of Larissa, Thessaly, Greece
| | - Vassilis Georgoulias
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Greece; First Department of Medical Oncology, IASO General Hospital of Athens, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, Thessaly, Greece.
| |
Collapse
|
40
|
Lim B, Murthy RK, Lee J, Jackson SA, Iwase T, Davis DW, Willey JS, Wu J, Shen Y, Tripathy D, Alvarez R, Ibrahim NK, Brewster AM, Barcenas CH, Brown PH, Giordano SH, Moulder SL, Booser DJ, Moscow JA, Piekarz R, Valero V, Ueno NT. A phase Ib study of entinostat plus lapatinib with or without trastuzumab in patients with HER2-positive metastatic breast cancer that progressed during trastuzumab treatment. Br J Cancer 2019; 120:1105-1112. [PMID: 31097774 PMCID: PMC6738035 DOI: 10.1038/s41416-019-0473-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human epidermal growth factor 2 (HER2) is an effective therapeutic target in breast cancer; however, resistance to anti-HER2 agents such as trastuzumab and lapatinib develops. In a preclinical model, an HDAC inhibitor epigenetically reversed the resistance of cancer cells to trastuzumab and showed synergistic efficacy with lapatinib in inhibiting growth of trastuzumab-resistant HER2-positive (HER2+) breast cancer. METHODS A phase 1b, dose escalation study was performed to assess maximum tolerated dose, safety/toxicity, clinical efficacy and explored pharmacodynamic biomarkers of response to entinostat combined with lapatinib with or without trastuzumab. RESULTS The combination was safe. The MTD was lapatinib, 1000 mg daily; entinostat, 12 mg every other week; trastuzumab, 8 mg/kg followed by 6 mg/kg every 3 weeks. Adverse events included diarrhoea (89%), neutropenia (31%), and thrombocytopenia (23%). Neutropenia, thrombocytopenia and hypokalaemia were noted. Pharmacodynamic assessment did not yield conclusive results. Among 35 patients with evaluable response, PR was observed in 3 patients and CR in 3 patients, 1 maintained SD for over 6 months. DISCUSSION This study identified the MTD of the entinostat, lapatinib, and trastuzumab combination that provided acceptable tolerability and anti-tumour activity in heavily pre-treated patients with HER2+ metastatic breast cancer, supporting a confirmatory trial.
Collapse
Affiliation(s)
- Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi K Murthy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jangsoon Lee
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Summer A Jackson
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Methodist Hospital, Houston, TX, USA
| | - Toshiaki Iwase
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jie S Willey
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jimin Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abenaa M Brewster
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos H Barcenas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Powel H Brown
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon H Giordano
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J Booser
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey A Moscow
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD, USA
| | - Richard Piekarz
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
41
|
Lianidou E, Pantel K. Liquid biopsies. Genes Chromosomes Cancer 2019; 58:219-232. [PMID: 30382599 DOI: 10.1002/gcc.22695] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy is based on minimally invasive blood tests and has a high potential to significantly change the therapeutic strategy in cancer patients, providing an extremely powerful and reliable noninvasive clinical tool for the individual molecular profiling of patients in real time. Liquid biopsy approaches include the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs) that are shed from primary tumors and their metastatic sites into peripheral blood. The major advantage of liquid biopsy analysis is that it is minimally invasive, and can be serially repeated, thus allowing extracting information from the tumor in real time. Moreover, the identification of predictive biomarkers in peripheral blood that can monitor response to therapy in real time holds a very strong potential for novel approaches in the therapeutic management of cancer patients. In this review, we summarize recent knowledge on CTCs and ctDNA and discuss future trends in the field.
Collapse
Affiliation(s)
- Evi Lianidou
- Analysis of Circulating Tumor Cells Laboratory, Department of Chemistry, University of Athens, Athens, Greece
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
Abstract
Circulating tumor cells (CTCs) play a central role in tumor dissemination and metastases, which are ultimately responsible for most cancer deaths. Technologies that allow for identification and enumeration of rare CTC from cancer patients' blood have already established CTC as an important clinical biomarker for cancer diagnosis and prognosis. Indeed, current efforts to robustly characterize CTC as well as the associated cells of the tumor microenvironment such as circulating cancer associated fibroblasts (cCAF), are poised to unmask key insights into the metastatic process. Ultimately, the clinical utility of CTC will be fully realized once CTC can be reliably cultured and proliferated as a biospecimen for precision management of cancer patients, and for discovery of novel therapeutics. In this review, we highlight the latest CTC capture and analyses technologies, and discuss in vitro strategies for culturing and propagating CTC.
Collapse
Affiliation(s)
- Ashutosh Agarwal
- Assistant Professor, Department of Biomedical Engineering, Department of Pathology & Laboratory Medicine, University of Miami
| | - Marija Balic
- Associate Professor, Division of Oncology, Department of Internal Medicine, Research Unit Circulating Tumor Cells and Cancer Stem Cells, Medical University of Graz, Austria
| | - Dorraya El-Ashry
- Associate Professor, Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Richard J. Cote
- Professor and Joseph R. Coulter Jr. Chair, Department of Pathology & Laboratory Medicine, Director, John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), University of Miami Miller School of Medicine
| |
Collapse
|
43
|
Molecular Subtype Conversion between Primary and Metastatic Breast Cancer Corresponding to the Dynamics of Apoptotic and Intact Circulating Tumor Cells. Cancers (Basel) 2019; 11:cancers11030342. [PMID: 30862027 PMCID: PMC6468370 DOI: 10.3390/cancers11030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of circulating tumor cells (CTCs), detected as a form of liquid biopsy is associated with poor survival in both early and metastatic breast cancer. Monitoring tumor biology based on intrinsic subtypes delivers treatment-relevant information on the heterogeneity or biomarker conversion between primary and metastatic tumors. This study aimed to correlate the change of the apoptotic and intact CTC counts with mRNA-assessed intrinsic subtype change. Thirty-four breast cancer patients with available triplets of primary tumors, distant metastasis biopsies and data on intact and apoptotic CTC dynamics were included in the analysis. The intrinsic subtype was determined per RT-qPCR quantification of the gene expression ESR1, PGR, ERBB2 and MKI67. Both luminal (p = 0.038) and triple negative (p = 0.035) patients showed a significant downregulation of apoptotic CTCs. Repeated biopsies of distant metastatic sites, as well as determining a potential shift of the intrinsic subtype, combined with data on intact and apoptotic CTC dynamics from liquid biopsies might help personalize systemic therapy and generate additional surrogate markers for successful systemic therapy.
Collapse
|
44
|
Nolan J, Nedosekin DA, Galanzha EI, Zharov VP. Detection of Apoptotic Circulating Tumor Cells Using in vivo Fluorescence Flow Cytometry. Cytometry A 2018; 95:664-671. [PMID: 30508273 DOI: 10.1002/cyto.a.23642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/09/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Abstract
Most cancer patients die from metastatic disease as a result of a circulating tumor cell (CTC) spreading from a primary tumor through the blood circulation to distant organs. Many studies have demonstrated the tremendous potential of using CTC counts as prognostic markers of metastatic development and therapeutic efficacy. However, it is only the viable CTCs capable of surviving in the blood circulation that can create distant metastasis. To date, little progress has been made in understanding what proportion of CTCs is viable and what proportion is in an apoptotic state. Here, we introduce a novel approach toward in situ characterization of CTC apoptosis status using a multicolor in vivo flow cytometry platform with fluorescent detection for the real-time identification and enumeration of such cells directly in blood flow. The proof of concept was demonstrated with two-color fluorescence flow cytometry (FFC) using breast cancer cells MDA-MB-231 expressing green fluorescein protein (GFP), staurosporine as an activator of apoptosis, Annexin-V apoptotic kit with orange dye color, and a mouse model. The future application of this new platform for real-time monitoring of antitumor drug efficiency is discussed. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Jacqueline Nolan
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Dmitry A Nedosekin
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Ekaterina I Galanzha
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Vladimir P Zharov
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| |
Collapse
|
45
|
Paoletti C, Schiavon G, Dolce EM, Darga EP, Carr TH, Geradts J, Hoch M, Klinowska T, Lindemann J, Marshall G, Morgan S, Patel P, Rowlands V, Sathiyayogan N, Aung K, Hamilton E, Patel M, Armstrong A, Jhaveri K, Im SA, Iqbal N, Butt F, Dive C, Harrington EA, Barrett JC, Baird R, Hayes DF. Circulating Biomarkers and Resistance to Endocrine Therapy in Metastatic Breast Cancers: Correlative Results from AZD9496 Oral SERD Phase I Trial. Clin Cancer Res 2018; 24:5860-5872. [PMID: 30082476 DOI: 10.1158/1078-0432.ccr-18-1569] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Common resistance mechanisms to endocrine therapy (ET) in estrogen receptor (ER)-positive metastatic breast cancers include, among others, ER loss and acquired activating mutations in the ligand-binding domain of the ER gene (ESR1LBDm). ESR1 mutational mediated resistance may be overcome by selective ER degraders (SERD). During the first-in-human study of oral SERD AZD9496, early changes in circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) were explored as potential noninvasive tools, alongside paired tumor biopsies, to assess pharmacodynamics and early efficacy. EXPERIMENTAL DESIGN CTC were enumerated/phenotyped for ER and Ki67 using CellSearch in serial blood draws. ctDNA was assessed for the most common ESR1LBDm by droplet digital PCR (BioRad). RESULTS Before starting AZD9496, 11 of 43 (25%) patients had ≥5 CTC/7.5 mL whole blood (WB), none of whom underwent reduction to <5 CTC/7.5 mL WB on C1D15. Five of 11 patients had baseline CTC-ER+, two of whom had CTC-ER+ reduction. CTC-Ki67 status did not change appreciably. Patients with ≥5 CTC/7.5 mL WB before treatment had worse progression-free survival (PFS) than patients with <5 CTC (P = 0.0003). Fourteen of 45 (31%) patients had ESR1LBDm + ctDNA at baseline, five of whom had ≥2 unique mutations. Baseline ESR1LBDm status was not prognostic. Patients with persistently elevated CTC and/or ESR1LBDm + ctDNA at C1D15 had worse PFS than patients who did not (P = 0.0007). CONCLUSIONS Elevated CTC at baseline was a strong prognostic factor in this cohort. Early on-treatment changes were observed in CTC-ER+ and ESR1LBDm + ctDNA, but not in overall CTC number. Integrating multiple biomarkers in prospective trials may improve outcome prediction and ET resistance mechanisms' identification over a single biomarker.
Collapse
Affiliation(s)
- Costanza Paoletti
- University of Michigan Rogel Cancer Center and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Gaia Schiavon
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Emily M Dolce
- University of Michigan Rogel Cancer Center and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Elizabeth P Darga
- University of Michigan Rogel Cancer Center and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - T Hedley Carr
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Joseph Geradts
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Matthias Hoch
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Gayle Marshall
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Shethah Morgan
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Parul Patel
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Vicky Rowlands
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | | | - Kimberly Aung
- University of Michigan Rogel Cancer Center and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Erika Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Manish Patel
- Sarah Cannon Research Institute/Florida Cancer Specialists, Sarasota, Florida
| | - Anne Armstrong
- The Christie NHS Foundation Trust and the University of Manchester, Manchester, United Kingdom
| | - Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nadia Iqbal
- Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Fouziah Butt
- Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | | | - J Carl Barrett
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Richard Baird
- Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
46
|
Papadaki MA, Stoupis G, Theodoropoulos PA, Mavroudis D, Georgoulias V, Agelaki S. Circulating Tumor Cells with Stemness and Epithelial-to-Mesenchymal Transition Features Are Chemoresistant and Predictive of Poor Outcome in Metastatic Breast Cancer. Mol Cancer Ther 2018; 18:437-447. [PMID: 30401696 DOI: 10.1158/1535-7163.mct-18-0584] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/28/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022]
Abstract
Circulating tumor cells (CTCs) bearing phenotypes related to cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) have been identified in breast cancer; however, their clinical significance is not clear. In the current study, we investigated the prognostic relevance of single CSC+/partial-EMT+ CTCs in patients with metastatic breast cancer and the effect of first-line chemotherapy on their incidence. For this purpose, triple immunofluorescence against cytokeratin, ALDH1, and TWIST1 was performed in peripheral blood mononuclear cell (PBMC) cytospins from 130 patients before and after first-line chemotherapy. CSC+/partial-EMT+ CTCs were characterized as cells co-expressing cytokeratin, high levels of ALDH1, and nuclear TWIST1. CSC+/partial-EMT+ CTCs were evident in 27.7% of patients at baseline and were correlated to lung metastases (P = 0.010) and decreased progression-free survival [PFS; median 10.2 (8.9-11.6) vs. 13.5 (11.3-15.7) months; P = 0.024]. Their detection was an independent factor predicting for increased risk of relapse [multivariate analysis; HR (95% confidence interval (CI)): 1.785 (1.171-2.720); P = 0.007]. In HER-2-negative patients, CSC+/partial-EMT+ CTCs were additionally associated with reduced overall survival (OS) [median 39 (26.2-51.9) vs. 51 (15.7-86.4) months; P = 0.020] and increased risk of death [multivariate analysis; HR (95% CI): 2.228 (1.066-4.655); P = 0.033]. Chemotherapy resulted in a significant increase in the incidence of CSC+/partial-EMT+ CTCs (mean CTC% per patient: 59.4% post vs. 39.5% pre; P = 0.018), which was subsequently confirmed only in HER2-negative patients (P = 0.040) and in non-responders at the end of treatment (P = 0.020). In conclusion, CSC+/partial-EMT+ CTCs represent a chemoresistant subpopulation, which independently predicts for unfavorable outcome in metastatic breast cancer. Efficient targeting of these CTCs could potentially increase patient survival.
Collapse
Affiliation(s)
- Maria A Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Crete, Greece
| | - Giannis Stoupis
- Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| | | | - Dimitris Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Crete, Greece.,Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| | - Vassilis Georgoulias
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Crete, Greece.,Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Crete, Greece. .,Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| |
Collapse
|
47
|
Sustained prognostic impact of circulating tumor cell status and kinetics upon further progression of metastatic breast cancer. Breast Cancer Res Treat 2018; 173:155-165. [PMID: 30276763 DOI: 10.1007/s10549-018-4972-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/15/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Serial longitudinal enumeration of circulating tumor cells (CTCs) has shown its prognostic value on progression-free survival and overall survival (OS) in patients with stage IV breast cancer. This study prospectively evaluated the role of CTCs as a prognostic marker during further progression of metastatic breast cancer (MBC). METHODS Among 476 MBC patients recruited between 2010 and 2015, the 103 patients with a known CTC status at baseline (CTCBL) and within 4 weeks of tumor progression (CTCPD) were included. Progressive disease (PD) was defined according to the Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1). Using the CellSearch method, < 5 and ≥ 5 CTCs per 7.5 ml blood were determined as negative and positive, respectively. A shift in CTC status from baseline to progression ([Formula: see text] to [Formula: see text] and vice versa) was considered as alternating KineticsBL-PD. RESULTS Median follow-up was 29.9 [21.2, 40.0] months. CTCPD positivity (37%, n = 38) was associated with a significantly shorter OS than CTCPD negativity (8.0 [5.1, 10.9] vs 22.6 [15.3, 39.8] months; P < 0.001). Alternating KineticsBL-PD was observed in 24% of the patients. This significantly changed the OS prediction of [Formula: see text] patients ([Formula: see text] vs [Formula: see text], 11.4 [9.7, not available (NA)] vs. 7.6 [4.4, 11.5] months; P = 0.044) and [Formula: see text] patients ([Formula: see text] vs. [Formula: see text], 8.4 [4.0, NA] vs. 22.6 [18.9, NA] months, respectively; P < 0.001). Prediction of survival was significantly improved (P = 0.002) by adding CTCPD status to clinicopathological characteristics and CTCBL status. CONCLUSIONS CTC status upon further disease progression is a prognostic factor that could significantly improve well-established models. Thus, it represents a potential additional instrument supporting treatment decision.
Collapse
|
48
|
Pizon M, Schott DS, Pachmann U, Pachmann K. B7-H3 on circulating epithelial tumor cells correlates with the proliferation marker, Ki-67, and may be associated with the aggressiveness of tumors in breast cancer patients. Int J Oncol 2018; 53:2289-2299. [PMID: 30226585 DOI: 10.3892/ijo.2018.4551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/01/2018] [Indexed: 11/06/2022] Open
Abstract
Circulating epithelial tumor cells (CETCs) in peripheral blood are a prerequisite for the development of metastases. B7-H3 is an important immune checkpoint member of the B7 family and inhibits T-cell mediated antitumor immunity. Its expression is associated with a negative prognosis and a poor clinical outcome. Based on the clinical success of inhibitory immune checkpoint blockade, monoclonal antibodies (mAbs) against B7-H3 appear to be a promising therapeutic strategy. The proliferation biomarker, Ki-67, is used as a prognostic factor for breast cancer and reflects the proliferative potential of the tumor. In order to better understand the role of B7-H3 and Ki-67 in cancer development, in this study, we used a real-time biopsy for determining both biomarkers on CETCs in breast cancer patients. Blood from 50 patients suffering from breast cancer was analyzed for CETCs and the expression of B7-H3 and Ki-67 using the maintrac® method. B7-H3 expression on CETCs was found in 82% of the patients. The frequency of B7-H3- and Ki-67‑positive CETCs was significantly higher in patients who had received radiation therapy compared to patients who had not received irradiation. B7-H3‑positive CETCs seemed to be more aggressive as the percentage of B7-H3‑positive CETCs correlated with the percentage of cells positive for the proliferation marker, Ki-67 (r=0.72 P<0.001). A significant association between the Ki-67 and B7-H3 expression level on the CETCs and nodal status was observed. On the whole, the findings of this study indicate that breast cancer patients have detectable CETCs with a high frequency of B7-H3 expression regardless of the stage of the disease. B7-H3 seems to be an important factor in immune evasion and may thus be a promising target for anticancer therapies. Radiation may lead to an upregulation of B7-H3 expression on CETCs, which could be a possible mechanism of acquired radio-resistance.
Collapse
Affiliation(s)
- Monika Pizon
- Transfusion Center Bayreuth, D-95448 Bayreuth, Germany
| | | | | | | |
Collapse
|
49
|
Messaritakis I, Nikolaou M, Politaki E, Koinis F, Lagoudaki E, Koutsopoulos A, Georgoulia N, Georgoulias V, Kotsakis A. Bcl-2 expression in circulating tumor cells (CTCs) of patients with small cell lung cancer (SCLC) receiving front-line treatment. Lung Cancer 2018; 124:270-278. [PMID: 30268472 DOI: 10.1016/j.lungcan.2018.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/16/2018] [Accepted: 08/26/2018] [Indexed: 11/17/2022]
Abstract
INTRODUCTION To investigate the presence of Bcl-2+CTCs in chemotherapy-naïve SCLC patients and their clinical relevance during front-line treatment. METHODS Peripheral blood was obtained from 66 consecutive-patients before chemotherapy administration, after one-cycle and at relapse. CTCs were detected by CellSearch and immunofluorescence using anti-Bcl-2, anti-M30, anti-cytokeratins(CK), anti-CD45 and anti-vimentin(Vim) antibodies. RESULTS Before treatment, CTCs were detected in 62.1% and 72.7% of patients using the CellSearch and immunofluorescence (Bcl-2+/CD45-), respectively. One-treatment cycle significantly decreased both CTCs' detection rate(p < 0.001) and their absolute number (p < 0.001). On relapse, both the number of positive-patients and the absolute number of CTC subpopulations were significantly increased, compared to post-1st cycle (CellSearch: p = 0.002 and immunofluorescence: p < 0.001). Immunofluorescence revealed an important CTC heterogeneity (Bcl2+/Vim+, Bcl2+/Vim-, Bcl2+/CK+, Bcl2+/CK- and Bcl2+/M30- CTCs). Moreover, 50.0% of patients without detectable CTCs by CellSearch had detectable Bcl-2+/CD45- cells. Multivariate analysis revealed a significant association between Bcl-2+/CD45-cells at baseline and PFS (HR = 4.5;p = 0.005) and OS (HR: 4.3; p = 0.001). Bcl-2+/CD45-cells after one-treatment cycle were significantly associated with shorter OS (HR: 13.9; p = 0.007). CONCLUSIONS These results demonstrate an important phenotypic CTCs heterogeneity based on the co-expression of Bcl-2, CK, Vim and M30 in SCLC patients. The changes of Bcl-2+/CD45- CTCs during treatment seem to be a dynamic biomarker associated with treatment efficacy and patients' clinical outcome.
Collapse
Affiliation(s)
| | - Michail Nikolaou
- Department of Internal Medicine, Hipokration General Hospital of Athens, Greece
| | - Eleni Politaki
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Greece
| | - Fillipos Koinis
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Greece
| | - Eleni Lagoudaki
- Department of Pathology, University General Hospital of Heraklion, Greece
| | | | - Nefeli Georgoulia
- First Department of Medical Oncology, IASO General Hospital of Athens, Greece
| | - Vassilis Georgoulias
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Greece; First Department of Medical Oncology, IASO General Hospital of Athens, Greece.
| | - Athanasios Kotsakis
- Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Greece; Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| |
Collapse
|
50
|
Kallergi G, Aggouraki D, Zacharopoulou N, Stournaras C, Georgoulias V, Martin SS. Evaluation of α-tubulin, detyrosinated α-tubulin, and vimentin in CTCs: identification of the interaction between CTCs and blood cells through cytoskeletal elements. Breast Cancer Res 2018; 20:67. [PMID: 29976237 PMCID: PMC6034292 DOI: 10.1186/s13058-018-0993-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/25/2018] [Indexed: 01/16/2023] Open
Abstract
Background Circulating tumor cells (CTCs) are the major players in the metastatic process. A potential mechanism of cell migration and invasion is the formation of microtentacles in tumor cells. These structures are supported by α-tubulin (TUB), detyrosinated α-tubulin (GLU), and vimentin (VIM). In the current study, we evaluated the expression of those cytoskeletal proteins in CTCs. Methods Forty patients with breast cancer (BC) (16 early and 24 metastatic) were enrolled in the study. CTCs were isolated using the ISET platform and stained with the following combinations of antibodies: pancytokeratin (CK)/VIM/TUB and CK/VIM/GLU. Samples were analyzed with the ARIOL platform and confocal laser scanning microscopy. Results Fluorescence quantification revealed that the ratios CK/TUB, CK/VIM, and CK/GLU were statistically increased in MCF7 compared with more aggressive cell lines (SKBR3 and MDA-MB-231). In addition, all of these ratios were statistically increased in MCF7 cells compared with metastatic BC patients’ CTCs (p = 0.0001, p = 0.0001, and p = 0.003, respectively). Interestingly, intercellular connections among CTCs and between CTCs and blood cells through cytoskeleton bridges were revealed, whereas microtentacles were increased in patients with CTC clusters. These intercellular connections were supported by TUB, VIM, and GLU. Quantification of the examined molecules revealed that the median intensity of TUB, GLU, and VIM was significantly increased in patients with metastatic BC compared with those with early disease (TUB, 62.27 vs 11.5, p = 0.0001; GLU, 6.99 vs 5.29, p = 0.029; and VIM, 8.24 vs 5.38, p = 0.0001, respectively). Conclusions CTCs from patients with BC aggregate to each other and to blood cells through cytoskeletal protrusions, supported by VIM, TUB, and GLU. Quantification of these molecules could potentially identify CTCs related to more aggressive disease. Electronic supplementary material The online version of this article (10.1186/s13058-018-0993-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- G Kallergi
- Laboratory of Τumor Cell Biology, School of Medicine, University of Crete, Heraklion, Greece. .,Department of Biochemistry, University of Crete, Greece Medical School, Heraklion, Greece.
| | - D Aggouraki
- Laboratory of Τumor Cell Biology, School of Medicine, University of Crete, Heraklion, Greece
| | - N Zacharopoulou
- Department of Biochemistry, University of Crete, Greece Medical School, Heraklion, Greece
| | - C Stournaras
- Department of Biochemistry, University of Crete, Greece Medical School, Heraklion, Greece
| | - V Georgoulias
- Laboratory of Τumor Cell Biology, School of Medicine, University of Crete, Heraklion, Greece
| | - S S Martin
- Department of Physiology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, USA
| |
Collapse
|