1
|
Li K, Wang XQ, Liao ZL, Liu JY, Feng BH, Ren YC, Dai NN, Yu K, Yu H, Chen HJ, Mei H, Qin S. Wedelolactone inhibits ferroptosis and alleviates hyperoxia-induced acute lung injury via the Nrf2/HO-1 signaling pathway. Toxicol Sci 2024; 202:25-35. [PMID: 39110510 DOI: 10.1093/toxsci/kfae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Hyperoxia-induced acute lung injury (HALI) is a complication of oxygen therapy. Ferroptosis is a vital factor in HALI. This paper was anticipated to investigate the underlying mechanism of wedelolactone (WED) on ferroptosis in HALI. The current study used hyperoxia to injure two models, one HALI mouse model and one MLE-12 cell injury model. We found that WED treatment attenuated HALI by decreasing the lung injury score and lung wet/dry (W/D) weight ratio and alleviating pathomorphological changes. Then, the inflammatory reaction and apoptosis in HALI mice and hyperoxia-mediated MLE-12 cells were inhibited by WED treatment. Moreover, WED alleviated ferroptosis with less iron accumulation and reversed expression alterations of ferroptosis markers, including MDA, GSH, GPX4, SLC7A11, FTH1, and TFR1 in hyperoxia-induced MLE-12 cells in vitro and in vivo. Nrf2-KO mice and Nrf2 inhibitor (ML385) decreased WED's ability to protect against apoptosis, inflammatory response, and ferroptosis in hyperoxia-induced MLE-12 cells. Collectively, our data highlighted the alleviatory role of WED in HALI by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Kang Li
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiao-Qin Wang
- Department of Pediatric, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhen-Liang Liao
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jun-Ya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Bang-Hai Feng
- Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou 563000, P.R. China
| | - Ying-Cong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ni-Nan Dai
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kun Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hong Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hua-Jun Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Zhang X, Miao J, Song Y, Zhang J, Miao M. Review on effects and mechanisms of plant-derived natural products against breast cancer bone metastasis. Heliyon 2024; 10:e37894. [PMID: 39318810 PMCID: PMC11420494 DOI: 10.1016/j.heliyon.2024.e37894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bone metastasis is the prevalent form of metastasis in breast cancer, resulting in severe pain, pathological fractures, nerve compression, hypercalcemia, and other complications that significantly impair patients' quality of life. The infiltration and colonization of breast cancer (BC) cells in bone tissue disrupt the delicate balance between osteoblasts and osteoclasts within the bone microenvironment, initiating a vicious cycle of bone metastasis. Once bone metastasis occurs, conventional medical therapy with bone-modifying agents is commonly used to alleviate bone-related complications and improve patients' quality of life. However, the utilization of bone-modifying agents may cause severe drug-related adverse effects. Plant-derived natural products such as terpenoids, alkaloids, coumarins, and phenols have anti-tumor, anti-inflammatory, and anti-angiogenic pharmacological properties with minimal side effects. Certain natural products that exhibit both anti-breast cancer and anti-bone metastasis effects are potential therapeutic agents for breast cancer bone metastasis (BCBM). This article reviewed the effects of plant-derived natural products against BCBM and their mechanisms to provide a reference for the research and development of drugs related to BCBM.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiawen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
3
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Peinado RDS, Saivish MV, Menezes GDL, Fulco UL, da Silva RA, Korostov K, Eberle RJ, Melo PA, Nogueira ML, Pacca CC, Arni RK, Coronado MA. The search for an antiviral lead molecule to combat the neglected emerging Oropouche virus. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100238. [PMID: 38745914 PMCID: PMC11090880 DOI: 10.1016/j.crmicr.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Oropouche virus (OROV) is a member of the Peribunyaviridae family and the causative agent of a dengue-like febrile illness transmitted by mosquitoes. Although mild symptoms generally occur, complications such as encephalitis and meningitis may develop. A lack of proper diagnosis, makes it a potential candidate for new epidemics and outbreaks like other known arboviruses such as Dengue, Yellow Fever and Zika virus. The study of natural molecules as potential antiviral compounds is a promising alternative for antiviral therapies. Wedelolactone (WDL) has been demonstrated to inhibit some viral proteins and virus replication, making it useful to target a wide range of viruses. In this study, we report the in silico effects of WDL on the OROV N-terminal polymerase and its potential inhibitory effects on several steps of viral infection in mammalian cells in vitro, which revealed that WDL indeed acts as a potential inhibitor molecule against OROV infection.
Collapse
Affiliation(s)
- Rafaela dos Santos Peinado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP 15054-000, Brazil
| | - Marielena Vogel Saivish
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-100, Brazil
| | - Gabriela de Lima Menezes
- Bioinformatics Multidisciplinary Environment, Programa de Pós Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal 59078-400, RN, Brazil
| | - Umberto Laino Fulco
- Bioinformatics Multidisciplinary Environment, Programa de Pós Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal 59078-400, RN, Brazil
| | | | - Karolina Korostov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Raphael Josef Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, Düsseldorf 40225, Germany
| | - Paulo A. Melo
- Departamento de Farmacologia Básica e Clínica - ICB, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Maurício Lacerda Nogueira
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
- Sealy Center for Vector-Borne and Zoonotic Diseases, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Carolina Colombelli Pacca
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
| | - Raghuvir Krishnaswamy Arni
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP 15054-000, Brazil
| | - Mônika Aparecida Coronado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP 15054-000, Brazil
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
| |
Collapse
|
5
|
Chilakamarthi U, Mahadik NS, Bhattacharyya T, Gangadhar PS, Giribabu L, Banerjee R. Glucocorticoid receptor mediated sensitization of colon cancer to photodynamic therapy induced cell death. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112846. [PMID: 38237432 DOI: 10.1016/j.jphotobiol.2024.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024]
Abstract
Photodynamic therapy (PDT) is a clinically approved, non-invasive alternate cancer therapy. A synthetic glucocorticoid (GC), dexamethasone (Dex) has previously been demonstrated to sensitize cancer cells to chemotherapy. However, to the best of our knowledge, the sensitization effect of GCs on PDT has not yet been investigated. We hypothesized that glucocorticoid receptor (GR) targeting can selectively make cancer cells more sensitive to PDT treatment, as PDT induces hypoxia wherein GR-activity gets enhanced. In addition, Dex was reported to act against the PDT-induced cell survival pathways like HIF-1α, NRF2, NF-κB, STAT3 etc. Thus, both the treatments can complement each other and may result in increasing the effectiveness of combination therapy. Hence, in this study, we developed liposomal formulations of our previously reported PDT agent P-Nap, either alone (D1P-Nap) or in combination with Dex (D1XP-Nap) to elucidate the sensitization effect. Interestingly, our RT-PCR results in hypoxic conditions showed down-regulation of HIF-1α and over expression of GR-activated genes for glucose-6-phosphatase (G6Pase) and PEPCK enzymes, indicating prominent GR-transactivation. We also observed higher phototoxicity in CT26.WT cells treated with D1XP-Nap PDT under hypoxic conditions as compared to normoxic conditions. These effects were reversed when cells were pre-treated with RU486, a competitive inhibitor of GCs. Moreover, our in vivo findings of subcutaneous tumor model of Balb/C mice for colon cancer revealed a significant decrease in tumor volume as well as considerable enhancement in the survivability of PDT treated tumor-bearing mice when Dex was present in the formulation. A high Bax/Bcl-xL ratio, high p53 expression, enhanced E-cadherin expression and down-regulation of pro-tumorigenic transcription factors NF-κB and c-Myc were found in tumor lysates from mice treated with D1XP-Nap under PDT, indicating GR-mediated sensitization of the tumor to PDT-induced cell death and enhancement of life-span for tumor bearing mice.
Collapse
Affiliation(s)
- Ushasri Chilakamarthi
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Namita S Mahadik
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad 201002, U.P., India
| | - Tithi Bhattacharyya
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad 201002, U.P., India
| | - Palivela Siva Gangadhar
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad 201002, U.P., India; Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Lingamallu Giribabu
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad 201002, U.P., India; Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Rajkumar Banerjee
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad 201002, U.P., India.
| |
Collapse
|
6
|
Peinado RDS, Martins LG, Pacca CC, Saivish MV, Borsatto KC, Nogueira ML, Tasic L, Arni RK, Eberle RJ, Coronado MA. HR-MAS NMR Metabolomics Profile of Vero Cells under the Influence of Virus Infection and nsP2 Inhibitor: A Chikungunya Case Study. Int J Mol Sci 2024; 25:1414. [PMID: 38338694 PMCID: PMC10855909 DOI: 10.3390/ijms25031414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The arbovirus Chikungunya (CHIKV) is transmitted by Aedes mosquitoes in urban environments, and in humans, it triggers debilitating symptoms involving long-term complications, including arthritis and Guillain-Barré syndrome. The development of antiviral therapies is relevant, as no efficacious vaccine or drug has yet been approved for clinical application. As a detailed map of molecules underlying the viral infection can be obtained from the metabolome, we validated the metabolic signatures of Vero E6 cells prior to infection (CC), following CHIKV infection (CV) and also upon the inclusion of the nsP2 protease inhibitor wedelolactone (CWV), a coumestan which inhibits viral replication processes. The metabolome groups evidenced significant changes in the levels of lactate, myo-inositol, phosphocholine, glucose, betaine and a few specific amino acids. This study forms a preliminary basis for identifying metabolites through HR-MAS NMR (High Resolution Magic Angle Spinning Nuclear Magnetic Ressonance Spectroscopy) and proposing the affected metabolic pathways of cells following viral infection and upon incorporation of putative antiviral molecules.
Collapse
Affiliation(s)
- Rafaela dos S. Peinado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Lucas G. Martins
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083862, Brazil; (L.G.M.); (L.T.)
| | - Carolina C. Pacca
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Marielena V. Saivish
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Kelly C. Borsatto
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Maurício L. Nogueira
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Ljubica Tasic
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083862, Brazil; (L.G.M.); (L.T.)
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Raphael J. Eberle
- Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Mônika A. Coronado
- Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
7
|
Wang Z, Yan H, He F, Wang J, Zhang Y, Sun L, Hao C, Wang W. Inhibition of herpes simplex virus by wedelolactone via targeting viral envelope and cellular TBK1/IRF3 and SOCS1/STAT3 pathways. Int J Antimicrob Agents 2023; 62:107000. [PMID: 37838148 DOI: 10.1016/j.ijantimicag.2023.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/14/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVES Development of novel antiherpes simplex virus (HSV) agents with active mechanisms different from nucleoside analogues is of high importance. Herein, we investigated the anti-HSV activities and mechanisms of wedelolactone (WDL) both in vitro and in vivo. METHODS Cytopathic effect (CPE) inhibition assay, plaque assay, and western blot assay were used to evaluate the anti-HSV effects of WDL in vitro. The immunofluorescence assay, RT-PCR assay, plaque reduction assay, sandwich ELISA assay, syncytium formation assay, tanscriptome analysis and western blot assay were used to explore the anti-HSV mechanisms of WDL. The murine encephalitis and vaginal models of HSV infection were performed to evaluate the anti-HSV effects of WDL in vivo. RESULTS WDL possessed inhibitory effects against both HSV-1 and HSV-2 in different cells with low toxicity, superior to the effects of acyclovir. WDL can directly inactivate the HSV particle via destruction of viral envelope and block HSV replication process after virus adsorption, different from the mechanisms of acyclovir. WDL may influence the host genes and signaling pathways related to HSV infection and immune responses. WDL can mainly interfere with the TBK1/IRF3 and SOCS1/STAT3 pathways to reduce HSV infection and inflammatory responses. Importantly, WDL treatment markedly improved mice survival, attenuated inflammatory symptoms, and reduced the virus titres in both HSV-1 and HSV-2 infected mice. CONCLUSIONS Thus, the natural compound WDL has the potential to be developed into a novel anti-HSV agent targeting both viral envelope and cellular TBK1/IRF3 and SOCS1/STAT3 pathways.
Collapse
Affiliation(s)
- Zhaoqi Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Han Yan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Fujie He
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Jie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Lishan Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Cui Hao
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, PR China.
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
8
|
Ha NM, Hop NQ, Son NT. Wedelolactone: A molecule of interests. Fitoterapia 2023; 164:105355. [PMID: 36410612 DOI: 10.1016/j.fitote.2022.105355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The search for bioactive molecules from medicinal plants of the family Asteraceae has been one of the targets in various phytochemical and pharmacological investigations for many years. According to these studies, wedelolactone, a coumestan of the secondary metabolite type, is a key compound found in several Eclipta and Wedelia herbal plants. To date, numerous experimental studies with intention of highlighting its role in drug development programs were carried out, but an extensive review is not sufficient. OBJECTIVE The current review aims to fill the gaps in extensive knowledge about phytochemistry, synthesis, pharmacology, and pharmacokinetics of coumestan wedelolactone. MATERIALS AND METHODS The databases Google Scholar, Scopus, PubMed, Web of Science, Science Direct, Medline, and CNKI were used to compile the list of references. In order to find references, "wedelolactone" was considered separately or in combination with "phytochemistry", "synthesis", "pharmacology", and "pharmacokinetics." Since the 1950s, >100 publications have been collected and reviewed. RESULTS Wedelolactone is likely to be a characteristic metabolite of two genera Eclipta and Wedelia, the family Asteraceae, while it could be synthetically derived from mono-phenol derivatives, through Sonogashira and cross-coupling reactions. Numerous biomedical investigations on wedelolactone revealed that its pharmacological values included anticancer, antiinflammatory, antidiabetic, antiobesity, antimyotoxicity, antibacterial, antioxidant, antivirus, anti-aging, cardiovascular, serine protease inhibition, especially its protective health benefits to living organs such as liver, kidney, lung, neuron, eye, bone, and tooth. The combination of wedelolactone and potential agents is a preferential approach to improve its biomedical values. Pharmacokinetic study exhibited that wedelolactone was metabolized in rat plasma due to hydrolysis, open-ring lactone, methylation, demethylation, and glucuronidation. CONCLUSIONS Wedelolactone is a promising agent with the great pharmacological values. Molecular mechanisms of the actions of this compound at both in vitro and in vivo levels are now available. However, reports highlighting biosynthesis and structure-activity relationship are still not adequate. Moreover, chemo-preventive records utilizing nano-technological approaches to improve its bioavailability are needed since the solubility in the living body environment is still limited.
Collapse
Affiliation(s)
- Nguyen Manh Ha
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
9
|
Wang BJ, Huang SH, Kao CL, Muller CJF, Wang YP, Chang KH, Wen HC, Yeh CC, Shih LJ, Kao YH, Huang SP, Li CY, Chuu CP. Aspalathus linearis suppresses cell survival and proliferation of enzalutamide-resistant prostate cancer cells via inhibition of c-Myc and stability of androgen receptor. PLoS One 2022; 17:e0270803. [PMID: 35776912 PMCID: PMC9249401 DOI: 10.1371/journal.pone.0270803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Enzalutamide, a nonsteroidal antiandrogen, significantly prolonged the survival of patients with metastatic castration-resistant prostate cancer (CRPC). However, patients receiving enzalutamide frequently develop drug resistance. Rooibos (Aspalathus linearis) is a shrub-like leguminous fynbos plant endemic to the Cedarberg Mountains area in South Africa. We evaluated the possibility of using a pharmaceutical-grade green rooibos extract (GRT, containing 12.78% aspalathin) to suppress the proliferation and survival of enzalutamide-resistant prostate cancer (PCa) cells. Treatment with GRT dose-dependently suppressed the proliferation, survival, and colony formation of enzalutamide-resistant C4-2 MDV3100r cells and PC-3 cells. Non-cancerous human cells were more resistant to GRT treatment. GRT suppressed the expression of proteins involved in phosphoinositide 3-kinase (PI3K)-Akt signaling, androgen receptor (AR), phospho-AR (Ser81), cyclin-dependent kinase 1 (Cdk1), c-Myc and Bcl-2 but increased the expression of apoptotic proteins. Overexpression of c-Myc antagonized the suppressive effects of GRT, while knockdown of c-Myc increased the sensitivity of PCa cells to GRT treatment. Expression level of c-Myc correlated to resistance of PCa cells to GRT treatment. Additionally, immunofluorescence microscopy demonstrated that GRT reduced the abundance of AR proteins both in nucleus and cytoplasm. Treatment with cycloheximide revealed that GRT reduced the stability of AR. GRT suppressed protein expression of AR and AR’s downstream target prostate specific antigen (PSA) in C4-2 MDV3100r cells. Interestingly, we observed that AR proteins accumulate in nucleus and PSA expression is activated in the AR-positive enzalutamide-resistant PCa cells even in the absence of androgen. Our results suggested that GRT treatment suppressed the cell proliferation and survival of enzalutamide-resistant PCa cells via inhibition of c-Myc, induction of apoptosis, as well as the suppression of expression, signaling and stability of AR. GRT is a potential adjuvant therapeutic agent for enzalutamide-resistant PCa.
Collapse
Affiliation(s)
- Bi-Juan Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Shih-Han Huang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
- Department of Life Sciences, National Central University, Taoyuan City, Taiwan
| | - Cheng-Li Kao
- Division of Urology, Departments of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Division of Urology, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Christo J. F. Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Ya-Pei Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Kai-Hsiung Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Hui-Chin Wen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Chien-Chih Yeh
- Department of Education and Medical Research, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Jane Shih
- Department of Education and Medical Research, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Taoyuan City, Taiwan
| | - Shu-Pin Huang
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
- Department of Life Sciences, National Central University, Taoyuan City, Taiwan
- PhD Program for Aging and Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Kang YM, Kim HM, Lee H, Lee DS, An HJ. Anti-inflammatory effects of Eclipta prostrata Linné on house dust mite-induced atopic dermatitis in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115233. [PMID: 35346812 DOI: 10.1016/j.jep.2022.115233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atopic dermatitis (AD) is a kind of inflammation on the skin following with swollen, itchy, dryness and cracked skin. Though the exact cause of AD is unknown, there are evidence that people with AD have a compromised skin barrier along with inflammation. Eclipta prostrata Linné is a traditional herbal medicinal plant, has been used for the diabetes, obesity, jaundice, and inflammation. We supposed E. prostrata L. has an anti-inflammatory effect on the skin. AIM OF THE STUDY We aimed to assess the effect of E. prostrata L. EtOH extract (EP) and elucidate the associated molecular mechanisms. MATERIALS AND METHODS The effect of EP and the molecular mechanisms were eluciated in house dust mite (HDM)-induced AD mice model and TNF-α/IFN-γ-stimulated HaCaT keratinocytes by histological analysis, enzyme-linked immunosorbent assay, quantitative real time polymerase chain reaction, and Western blot. RESULTS The results revealed that EP improved the progression of AD symptoms, decreasing epidermis/dermis thickness, infiltrated immune cells, and restored the skin barrier dysfunction and imbalanced immune response. EP suppressed the expressions of T helper (Th)1, Th2, Th17 cytokines, phosphorylation of extracellular signal-regulated kinase/signal transducer and activator of transcription 1 in skin of HDM-induced AD mice as well as inhibition the translocation of nuclear factor-κB in HaCaT keratinocytes. CONCLUSIONS Collectively, EP improved the allergic inflammation of the skin through recovery the skin barrier, and regulation the immune balance. These results suggest EP may have therapeutic potential as an anti-atopic agent.
Collapse
Affiliation(s)
- Yun-Mi Kang
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea.
| | - Hye-Min Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea.
| | - Hwan Lee
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea.
| | - Dong-Sung Lee
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
11
|
Sohel M, Sultana H, Sultana T, Mamun AA, Amin MN, Hossain MA, Ali MC, Aktar S, Sultana A, Rahim ZB, Mitra S, Dash R. Chemotherapeutics activities of dietary phytoestrogens against prostate cancer: From observational to clinical studies. Curr Pharm Des 2022; 28:1561-1580. [PMID: 35652403 DOI: 10.2174/1381612828666220601153426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Prostate cancer remains one of the most frequent and deadliest malignancies in males, where the rate of disease progression is closely associated with the type of dietary intake, specifically Western-style diet. Indeed intake of the Asian diet, which contains abundant phytoestrogens, is inversely correlated with a higher risk of prostate cancer, suggesting a chemoprotective effect of phytoestrogen against cancer progression. Although the role of phytoestrogens in cancer treatment was well documented, their impact on prostate cancer is not well understood. Therefore, the present review discusses the possible chemopreventive effect of phytoestrogens, emphasizing their efficacy at the different stages of carcinogenesis. Furthermore, phytoestrogens provide a cytoprotective effect in conventional chemotherapy and enhance chemosensitivity to tumor cells, which have also been discussed. This compilation provides a solid basis for future research on phytoestrogens as a promising avenue for anticancer drug development and also recommends these beneficiary compounds in the daily diet to manage and prevent prostate cancer.
Collapse
Affiliation(s)
- Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh.,Pratyasha Health Biomedical Research Center, Dhaka-1230. Bangladesh
| | - Habiba Sultana
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Tayeba Sultana
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Abdullah Al Mamun
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka-1230. Bangladesh.,Pratyasha Health Biomedical Research Center, Dhaka-1230. Bangladesh
| | - Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Md Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suraiya Aktar
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
| | - Armin Sultana
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Zahed Bin Rahim
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
12
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
13
|
Zhang J, Wang X, Chen Q, Liu J, Zhou W, Wu J. (E)-β-Trifluoromethyl vinylsulfones as antitumor agents: Synthesis and biological evaluations. Eur J Med Chem 2022; 232:114197. [DOI: 10.1016/j.ejmech.2022.114197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 12/28/2022]
|
14
|
Chauhan S, Mandliya T, Jain D, Joshi A, Lal Khatik C, Singh A, Upadhyay SK, Jain R. Early selective strategies for higher yielding bio-economic Indian Ginseng based on genotypic study through metabolic and molecular markers. Saudi J Biol Sci 2022; 29:3051-3061. [PMID: 35531148 PMCID: PMC9073062 DOI: 10.1016/j.sjbs.2022.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/09/2023] Open
|
15
|
Fan R, Sui J, Dong X, Jing B, Gao Z. Wedelolactone alleviates acute pancreatitis and associated lung injury via GPX4 mediated suppression of pyroptosis and ferroptosis. Free Radic Biol Med 2021; 173:29-40. [PMID: 34246777 DOI: 10.1016/j.freeradbiomed.2021.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory disorder associated with multiple organ failure. Pyroptosis and ferroptosis are two newly recognized cell death, and whether pyroptosis and ferroptosis are involved in AP remain largely elusive. The nature compound Wedelolactone (Wed) exhibits strong anti-inflammatory and antioxidant activities, the present study aims to investigate the effect of Wed on AP and unravel whether Wed could protect against AP and relevant lung injury against pyroptosis and ferroptosis. Our results showed that the pyroptosis inhibitor disulfiram or ferroptosis inhibitor ferrostatin-1 significantly alleviated AP and associated lung injury in the taurocholate or caerulein-induced murine AP model. Administration with Wed ameliorated AP and lung injury as evidenced by improved pathological injuries, reduced serum pancreatic digestive enzymes, and proinflammatory cytokines. The in vivo and in vitro data demonstrated that Wed broadly inhibited caspase1/caspase11 activation, reduced mature interleukin-1β (IL-1β) and N-terminal domain of gasdermin D (GSDMD-N) level. The oxidative stress and lipid peroxidation were also suppressed along with the up-regulation of the ferroptosis antagonism marker glutathione peroxidase-4 (GPX4) in Wed treatment group. Wed promoted the transcriptional activity and the selenium sensitivity of GPX4. Moreover, the protective effects of Wed in caerulein-stimulated pancreatic acinar cells were markedly abrogated by the down-regulation of GPX4. Collectively, our data suggest that pyroptosis and ferroptosis play crucial roles in AP. Wed mitigated AP and associated lung injury via GPX4 mediated suppression of pyroptosis and ferroptosis.
Collapse
Affiliation(s)
- Rong Fan
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Jidong Sui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Xuepeng Dong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Biao Jing
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Zhenming Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China.
| |
Collapse
|
16
|
Lopes N, Pacheco MB, Soares-Fernandes D, Correia MP, Camilo V, Henrique R, Jerónimo C. Hydralazine and Enzalutamide: Synergistic Partners against Prostate Cancer. Biomedicines 2021; 9:biomedicines9080976. [PMID: 34440180 PMCID: PMC8391120 DOI: 10.3390/biomedicines9080976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancers frequently develop resistance to androgen-deprivation therapy with serious implications for patient survival. Considering their importance in this type of neoplasia, epigenetic modifications have drawn attention as alternative treatment strategies. The aim of this study was to assess the antitumoral effects of the combination of hydralazine, a DNA methylation inhibitor, with enzalutamide, an antagonist of the androgen receptor, in prostate cancer cell lines. Several biological parameters, such as cell viability, proliferation, DNA damage, and apoptosis, as well as clonogenic and invasive potential, were evaluated. The individual treatments with hydralazine and enzalutamide exerted growth-inhibitory effects in prostate cancer cells and their combined treatment displayed synergistic effects. The combination of these two drugs was very effective in decreasing malignant features of prostate cancer and may become an alternative therapeutic option for prostate cancer patient management.
Collapse
Affiliation(s)
- Nair Lopes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Mariana Brütt Pacheco
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Diana Soares-Fernandes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000; Fax: +351-225-084-047
| |
Collapse
|
17
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
18
|
Haque A, Brazeau D, Amin AR. Perspectives on natural compounds in chemoprevention and treatment of cancer: an update with new promising compounds. Eur J Cancer 2021; 149:165-183. [PMID: 33865202 PMCID: PMC8113151 DOI: 10.1016/j.ejca.2021.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second deadliest disease worldwide. Although recent advances applying precision treatments with targeted (molecular and immune) agents are promising, the histological and molecular heterogeneity of cancer cells and huge mutational burdens (intrinsic or acquired after therapy) leading to drug resistance and treatment failure are posing continuous challenges. These recent advances do not negate the need for alternative approaches such as chemoprevention, the pharmacological approach to reverse, suppress or prevent the initial phases of carcinogenesis or the progression of premalignant cells to invasive disease by using non-toxic agents. Although data are limited, the success of several clinical trials in preventing cancer in high-risk populations suggests that chemoprevention is a rational, appealing and viable strategy to prevent carcinogenesis. Particularly among higher-risk groups, the use of safe, non-toxic agents is the utmost consideration because these individuals have not yet developed invasive disease. Natural dietary compounds present in fruits, vegetables and spices are especially attractive for chemoprevention and treatment because of their easy availability, high margin of safety, relatively low cost and widespread human consumption. Hundreds of such compounds have been widely investigated for chemoprevention and treatment in the last few decades. Previously, we reviewed the most widely studied natural compounds and their molecular mechanisms, which were highly exploited by the cancer research community. In the time since our initial review, many promising new compounds have been identified. In this review, we critically review these promising new natural compounds, their molecular targets and mechanisms of anticancer activity that may create novel opportunities for further design and conduct of preclinical and clinical studies.
Collapse
Affiliation(s)
- Abedul Haque
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Arm R Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
19
|
Tu Y, Yang Y, Li Y, He C. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res 2021; 169:105615. [PMID: 33872808 DOI: 10.1016/j.phrs.2021.105615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Naturally occurring coumestans are known as a collection of plant-derived polycyclic aromatic secondary metabolites which are characterized by the presence of an oxygen heterocyclic four-ring system comprising a coumarin moiety and a benzofuran moiety sharing a C˭C bond. Recently, there is an increasing attention in excavating the medicinal potential of coumestans, particularly coumestrol, wedelolactone, psoralidin and glycyrol, in a variety of diseases. This review is a comprehensive inventory of the chemical structures of coumestans isolated from various plant sources during the period of 1956-2020, together with their reported biological activities. 120 molecules were collected and further classified as coumestans containing core skeleton, dimethylpyranocoumestans, furanocoumestans, O-glycosylated coumestans and others, which showed a wide range of pharmacological activities including estrogenic, anti-cancer, anti-inflammatory, anti-osteoporotic, organ protective, neuroprotective, anti-diabetic and anti-obesity, antimicrobial, immunosuppressive, antioxidant and skin-protective activities. Furthermore, this review focuses on the counteraction of coumestans against bone diseases and organ damages, and the involved molecular mechanisms, which could provide important information to better understand the medicinal values of these compounds. This review is intended to be instructive for the rational design and development of less toxic and more effective drugs with a coumestan scaffold.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
20
|
Sharma S, Trivedi S, Pandey T, Ranjan S, Trivedi M, Pandey R. Wedelolactone Mitigates Parkinsonism Via Alleviating Oxidative Stress and Mitochondrial Dysfunction Through NRF2/SKN-1. Mol Neurobiol 2020; 58:65-77. [PMID: 32894501 DOI: 10.1007/s12035-020-02080-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Parkinsonism is an age-associated neurodegenerative disorder characterized by aggregation of α-synuclein (α-syn) protein in the substantia nigra region, degeneration of dopaminergic neurons, and deregulated lipid metabolism. Currently, only symptomatic relief has been provided by FDA-approved therapeutic approaches for Parkinson's disease (PD). The present study aims to evaluate the potential of wedelolactone (WDL), a natural occurring coumestan found in Eclipta alba to mitigate the parkinsonism in Caenorhabditis elegans disease model. In the present studies, supplementation with 37.5 μM WDL exhibited a reduction in the level of α-syn in an age-dependent manner (22% at day 5, p < 0.05; and 16% at day 10, p < 0.001, n = 30), along with improvement in neuronal health through basal movement, and elevated the dopamine levels evident through 1-nonanol repulsion results in wild-type and diseased worms. Moreover, WDL augmented the mitochondrial health in wild-type, PD-diseased, and mev-1 mutant worms that establish the inherent activity of WDL in the alleviation of oxidative stress. Furthermore, WDL supplementation significantly decreases the neutral lipid and triglyceride level and also alleviates protein carbonyl level in PD disease condition. The overall investigation will provide a pioneer to the future insights of PD research related to plant-based drugs. qPCR studies after WDL supplementation revealed alteration of genes involved in the regulation of various stress-responsive (sod-5, gst-4, skn-1), α-syn-suppressing (lrk-1, ymel-1, lagr-1, grk-1), and mitochondrial (pink-1) genes. All together, these findings support that the WDL is a promising candidate to combat age-related multi-factorial PD pathology associated with protein misfolding and accumulation. The results provide sufficient information in the development of therapeutic medicines from natural products for improving the health.
Collapse
Affiliation(s)
- Shruti Sharma
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Shalini Trivedi
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Taruna Pandey
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Sachin Ranjan
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Mashu Trivedi
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Pandey
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India.
| |
Collapse
|
21
|
Svrlanska A, Ruhland A, Marschall M, Reuter N, Stamminger T. Wedelolactone inhibits human cytomegalovirus replication by targeting distinct steps of the viral replication cycle. Antiviral Res 2019; 174:104677. [PMID: 31836420 DOI: 10.1016/j.antiviral.2019.104677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Wedelolactone (WDL) is a coumestan present in the plants Eclipta prostrata and Wedelia calendulacea which are used for treatment of a multitude of health problems in traditional medicine. It has previously been shown that WDL exerts antiviral activity against human immunodeficiency virus and hepatitis C virus. In this study, we investigated the effect of WDL on lytic human cytomegalovirus (HCMV) infection. We demonstrate a strong interference with HCMV replication as analyzed in multi-round replication settings. A more detailed analysis of the underlying mechanisms revealed that WDL acts at two distinct steps of the viral replication cycle. During immediate early (IE) times, we observe an inhibition of IE1/IE2 expression. Although WDL was reported to interfere with NF-κB signaling our results suggest the existence of additional mechanisms that impede viral IE expression. During later time points of infection, WDL induced a disruption of the interaction between EZH2 and EED, components of the virus-supportive polycomb repressive complex 2 (PRC2). Thereby, the stability of the PRC2 complex as well as the related complex PRC1 was disturbed leading to diminished viral DNA synthesis. Taken together, we identify WDL as a potent agent against HCMV which interferes at two distinct steps of viral replication.
Collapse
Affiliation(s)
- Adriana Svrlanska
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Ruhland
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Reuter
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Stamminger
- Institute for Virology, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
22
|
Zhang J, Qu Z, Yao H, Sun L, Harata-Lee Y, Cui J, Aung TN, Liu X, You R, Wang W, Hai L, Adelson DL, Lin L. An effective drug sensitizing agent increases gefitinib treatment by down regulating PI3K/Akt/mTOR pathway and up regulating autophagy in non-small cell lung cancer. Biomed Pharmacother 2019; 118:109169. [PMID: 31310954 DOI: 10.1016/j.biopha.2019.109169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Gefitinib is one of commonly used first-line treatment options for patients with positive EGFR mutation in non-small cell lung cancer (NSCLC). However, most patients with gefitinib treatment relapse over time due to the loss of drug sensitivity. Compound Kushen injection (CKI) has been used to treat lung cancer, including EGFR-mutated NSCLC. In this report, we examined the anti-cancer and drug sensitivity increased activities of CKI in gefitinib less sensitive NSCLC cell lines H1650 and H1975. Bioinformatics analysis was applied to uncover gene regulation and molecular mechanisms of CKI. Our results indicated that when associating with gefitinib in a dose-dependent fashion, CKI demonstrated the ability to inhibit the proliferation and to increase the sensitivity to gefitinib treatment in gefitinib less sensitive cell lines. This could be the results of down regulation of the PI3K/Akt/mTOR pathway and up regulation of autophagy, which were identified as the potential primary targets of CKI to increase gefitinib treatment effect.
Collapse
Affiliation(s)
- Jue Zhang
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Zhipeng Qu
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hong Yao
- Foshan hospital of TCM, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, PR China
| | - Lingling Sun
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Yuka Harata-Lee
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jian Cui
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Thazin Nwe Aung
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Xiaomin Liu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Rongli You
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Wei Wang
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lina Hai
- Zhendong Pharmaceutical Research Institute Co., Ltd., Beijing, PR China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China
| | - David L Adelson
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Lizhu Lin
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
23
|
Chen Q, Wu X, Gao X, Song H, Zhu X. Development and Validation of an Ultra-Performance Liquid Chromatography Method for the Determination of Wedelolactone in Rat Plasma and its Application in a Pharmacokinetic Study. Molecules 2019; 24:molecules24040762. [PMID: 30791539 PMCID: PMC6413069 DOI: 10.3390/molecules24040762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 01/16/2023] Open
Abstract
Wedelolactone is a coumarin ether with significant hepatoprotective effects. However, there are few pharmacokinetic studies of wedelolactone, which will affect the studies of its efficacy and potential toxicity. In this study, a selective ultra-performance liquid chromatography (UPLC) method was developed to confirm the pharmacokinetic parameters of wedelolactone in rat plasma. The chromatographic separation was carried out on a Kromasil C18 UPLC column (250 × 4.6 mm; 5.0 μm) by gradient mobile phase of methanol-water containing 0.5% acetic acid (v/v). Perfect linearity was obtained and the samples were stable under different conditions. The intra-day and inter-day precisions (relative standard deviation, %) were within 3.81% and accuracies (relative error, %) ranged from -4.01% to 7.12%. The extraction recoveries in rat plasma ranged from 95.98% to 108.93%. This rapid method was successfully applied in the pharmacokinetic study of wedelolactone in rat plasma. Following the oral administration of 5.00 mg/kg wedelolactone, the wedelolactone was rapidly absorbed. Pharmacokinetic parameters were used to quantitatively describe the dynamic changes of wedelolactone in vivo, providing a theoretical basis for pharmacological research on drugs and preclinical medication. The study of wedelolactone can provide a theoretical basis and quick analysis for the study of other traditional Chinese medicine. This may lead to breakthroughs in the pharmacokinetic study of complex Chinese medicines.
Collapse
Affiliation(s)
- Qing Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361002, China.
| | - Xiaoxue Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361002, China.
| | - Xuemin Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361002, China.
| | - Hua Song
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361002, China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361002, China.
| |
Collapse
|
24
|
Huang C, Liao X, Jin H, Xie F, Zheng F, Li J, Zhou C, Jiang G, Wu XR, Huang C. MEG3, as a Competing Endogenous RNA, Binds with miR-27a to Promote PHLPP2 Protein Translation and Impairs Bladder Cancer Invasion. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:51-62. [PMID: 30826633 PMCID: PMC6396102 DOI: 10.1016/j.omtn.2019.01.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 11/15/2022]
Abstract
Muscle-invasive and metastatic bladder cancer have an extremely poor 5-year survival rate of 5%. In comparison, all other bladder cancers (BCs) have a 5-year survival rate of 77%. This striking contrast indicates that one of the therapeutic kernels for bladder cancer is to elucidate the molecular mechanisms underlying its invasiveness and metastasis. In the current study, we demonstrated that maternally expressed gene 3 (MEG3) is significantly downregulated in human invasive bladder cancers in comparison to non-invasive bladder cancers, and that ectopic expression of MEG3 dramatically inhibits the invasiveness of human bladder cancer cells. Consistently, ectopic expression of MEG3 also attenuates metastatic ability of T24T cells, a cell line derived from T24 cells, in the lungs of nude mice. Our mechanistic studies reveal that MEG3, as a ceRNA, inhibits the invasiveness of human bladder cancer cells via negative regulation of c-Myc by competing with PHLPP2 mRNA for miR-27a. These findings not only provide a novel insight into understanding the mechanisms behind the MEG3 inhibition of bladder cancer cell invasion, but also reveal the potential for use of MEG3 as a tool for the prevention and therapy of invasive bladder cancer.
Collapse
Affiliation(s)
- Chao Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Liao
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Honglei Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fei Xie
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fuxing Zheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Chenfan Zhou
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, NY 10016, USA
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA; Department of Urology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
25
|
Luo Q, Ding J, Zhu L, Chen F, Xu L. Hepatoprotective Effect of Wedelolactone against Concanavalin A-Induced Liver Injury in Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:819-833. [PMID: 29737211 DOI: 10.1142/s0192415x1850043x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eclipta prostrata L. is a traditional Chinese herbal medicine that has been used in the treatment of liver diseases. However, its biological mechanisms remain elusive. The current study aimed to investigate the hepatoprotective effect of wedelolactone, a major coumarin ingredient of Eclipta prostrata L., on immune-mediated liver injury. Using the well-established animal model of Concanavalin A (ConA)-induced hepatitis (CIH), we found that pretreatment of mice with wedelolactone markedly reduced both the serum levels of transaminases and the severity of liver damage. We further investigated the mechanisms of the protective effect of wedelolactone. In mice treated with wedelolactone prior to the induction of CIH, increases of serum concentrations of tumor necrosis factor (TNF)-[Formula: see text], interferon (IFN)-[Formula: see text], and interleukin (IL)-6 were dramatically attenuated. Additionally, expressions of the interferon-inducible chemokine (C-X-C motif) ligand 10 gene CXCL10 and intercellular adhesion molecule 1 gene ICAM1 were lower in livers of the treated mice. Moreover, wedelolactone-treated CIH mice exhibited reduced leukocyte infiltration and T-cell activation in liver. Furthermore, wedelolactone suppressed the activity of nuclear factor-kappa B (NF-[Formula: see text]B), a critical transcriptional factor of the above-mentioned inflammatory cytokines by limiting the phosphorylation of I kappa B alpha (I[Formula: see text]B[Formula: see text] and p65. In conclusion, these findings demonstrate the inhibitory potential of wedelolactone in immune-mediated liver injury in vivo, and show that this protection is associated with modulation of the NF-[Formula: see text]B signaling pathway.
Collapse
Affiliation(s)
- Qingqiong Luo
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jieying Ding
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Liping Zhu
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Fuxiang Chen
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Lili Xu
- † Division of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
26
|
Kučírková T, Stiborek M, Dúcka M, Navrátilová J, Bogdanović Pristov J, Popović-Bijelić A, Vojvodić S, Preisler J, Kanický V, Šmarda J, Spasojević I, Beneš P. Anti-cancer effects of wedelolactone: interactions with copper and subcellular localization. Metallomics 2018; 10:1524-1531. [DOI: 10.1039/c8mt00191j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wedelactone forms a 2 : 1 coordination complex with Cu2+ in cancer cells to exert cytotoxic effects.
Collapse
|
27
|
A standardized herbal extract mitigates tumor inflammation and augments chemotherapy effect of docetaxel in prostate cancer. Sci Rep 2017; 7:15624. [PMID: 29142311 PMCID: PMC5688072 DOI: 10.1038/s41598-017-15934-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/03/2017] [Indexed: 01/28/2023] Open
Abstract
Activation of the NFκB pathway is often associated with advanced cancer and has thus been regarded as a rational therapeutic target. Wedelia chinensis is rich in luteolin, apigenin, and wedelolactone that act synergistically to suppress androgen receptor activity in prostate cancer. Interestingly, our evaluation of a standardized Wedelia chinensis herbal extract (WCE) concluded its efficacy on hormone-refractory prostate cancer through systemic mechanisms. Oral administration of WCE significantly attenuated tumor growth and metastasis in orthotopic PC-3 and DU145 xenografts. Genome-wide transcriptome analysis of these tumors revealed that WCE suppressed the expression of IKKα/β phosphorylation and downstream cytokines/chemokines, e.g., IL6, CXCL1, and CXCL8. Through restraining the cytokines expression, WCE reduced tumor-elicited infiltration of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) and endothelial cells into the tumors, therefore inhibiting angiogenesis, tumor growth, and metastasis. In MDSCs, WCE also reduced STAT3 activation, downregulated S100A8 expression and prevented their expansion. Use of WCE in combination with docetaxel significantly suppressed docetaxel-induced NFκB activation, boosted the therapeutic effect and reduced the systemic toxicity caused by docetaxel monotherapy. These data suggest that a standardized preparation of Wedelia chinensis extract improved prostate cancer therapy through immunomodulation and has potential application as an adjuvant agent for castration-resistant prostate cancer.
Collapse
|
28
|
Wedelolactone Acts as Proteasome Inhibitor in Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18040729. [PMID: 28353647 PMCID: PMC5412315 DOI: 10.3390/ijms18040729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/20/2017] [Accepted: 03/25/2017] [Indexed: 11/17/2022] Open
Abstract
Wedelolactone is a multi-target natural plant coumestan exhibiting cytotoxicity towards cancer cells. Although several molecular targets of wedelolactone have been recognized, the molecular mechanism of its cytotoxicity has not yet been elucidated. In this study, we show that wedelolactone acts as an inhibitor of chymotrypsin-like, trypsin-like, and caspase-like activities of proteasome in breast cancer cells. The proteasome inhibitory effect of wedelolactone was documented by (i) reduced cleavage of fluorogenic proteasome substrates; (ii) accumulation of polyubiquitinated proteins and proteins with rapid turnover in tumor cells; and (iii) molecular docking of wedelolactone into the active sites of proteasome catalytic subunits. Inhibition of proteasome by wedelolactone was independent on its ability to induce reactive oxygen species production by redox cycling with copper ions, suggesting that wedelolactone acts as copper-independent proteasome inhibitor. We conclude that the cytotoxicity of wedelolactone to breast cancer cells is partially mediated by targeting proteasomal protein degradation pathway. Understanding the structural basis for inhibitory mode of wedelolactone might help to open up new avenues for design of novel compounds efficiently inhibiting cancer cells.
Collapse
|