1
|
Yang X, Ren H, Xu Y, Peng X, Yu W, Shen Z. Combination of radiotherapy and targeted therapy for HER2-positive breast cancer brain metastases. Eur J Med Res 2023; 28:27. [PMID: 36642742 PMCID: PMC9841677 DOI: 10.1186/s40001-022-00894-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/09/2022] [Indexed: 01/17/2023] Open
Abstract
Radiotherapy and targeted therapy are essential treatments for patients with brain metastases from human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, the combination of radiotherapy and targeted therapy still needs to be investigated, and neurotoxicity induced by radiotherapy for brain metastases has also become an important issue of clinical concern. It remained unclear how to achieve the balance of efficacy and toxicity with the application of new radiotherapy techniques and new targeted therapy drugs. This article reviews the benefits and potential risk of combining radiotherapy and targeted therapy for HER2-positive breast cancer with brain metastases.
Collapse
Affiliation(s)
- Xiaojing Yang
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China ,grid.16821.3c0000 0004 0368 8293Department of Radiation Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanru Ren
- grid.8547.e0000 0001 0125 2443Department of Orthopedics, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yi Xu
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China
| | - Xue Peng
- grid.16821.3c0000 0004 0368 8293Department of Breast Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxi Yu
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China
| | - Zan Shen
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China
| |
Collapse
|
2
|
Natural Taxanes: From Plant Composition to Human Pharmacology and Toxicity. Int J Mol Sci 2022; 23:ijms232415619. [PMID: 36555256 PMCID: PMC9779243 DOI: 10.3390/ijms232415619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Biologically active taxanes, present in small- to medium-sized evergreen conifers of various Taxus species, are widely used for their antioxidant, antimicrobial and anti-inflammatory effects, but mostly for their antitumour effects used in the treatment of solid tumours of the breast, ovary, lung, bladder, prostate, oesophagus and melanoma. More of the substances found in Taxus plant extracts have medical potential. Therefore, at the beginning of this review, we describe the methods of isolation, identification and determination of taxanes in different plant parts. One of the most important taxanes is paclitaxel, for which we summarize the pharmacokinetic parameters of its different formulations. We also describe toxicological risks during clinical therapy such as hypersensitivity, neurotoxicity, gastrointestinal, cardiovascular, haematological, skin and renal toxicity and toxicity to the respiratory system. Since the effect of the drug-form PTX is enhanced by various Taxus spp. extracts, we summarize published clinical intoxications and all fatal poisonings for the Taxus baccata plant. This showed that, despite their significant use in anticancer treatment, attention should also be focused on the risk of fatal intoxication due to ingestion of extracts from these plants, which are commonly found in our surroundings.
Collapse
|
3
|
Keely SJ, Barrett KE. Intestinal secretory mechanisms and diarrhea. Am J Physiol Gastrointest Liver Physiol 2022; 322:G405-G420. [PMID: 35170355 PMCID: PMC8917926 DOI: 10.1152/ajpgi.00316.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/31/2023]
Abstract
One of the primary functions of the intestinal epithelium is to transport fluid and electrolytes to and from the luminal contents. Under normal circumstances, absorptive and secretory processes are tightly regulated such that absorption predominates, thereby enabling conservation of the large volumes of water that pass through the intestine each day. However, in conditions of secretory diarrhea, this balance becomes dysregulated, so that fluid secretion, driven primarily by Cl- secretion, overwhelms absorptive capacity, leading to increased loss of water in the stool. Secretory diarrheas are common and include those induced by pathogenic bacteria and viruses, allergens, and disruptions to bile acid homeostasis, or as a side effect of many drugs. Here, we review the cellular and molecular mechanisms by which Cl- and fluid secretion in the intestine are regulated, how these mechanisms become dysregulated in conditions of secretory diarrhea, currently available and emerging therapeutic approaches, and how new strategies to exploit intestinal secretory mechanisms are successfully being used in the treatment of constipation.
Collapse
Affiliation(s)
- Stephen J Keely
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Kim E Barrett
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, California
| |
Collapse
|
4
|
Hamdeh S, Micic D, Hanauer S. Review article: drug-induced small bowel injury. Aliment Pharmacol Ther 2021; 54:1370-1388. [PMID: 34668591 DOI: 10.1111/apt.16642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Drug-induced gastrointestinal injury has been increasingly reported, but its exact incidence is not known. The small and large intestines represent the most affected sites of injury, accounting for 20%-40% of all gastrointestinal side effects. AIM To provide an updated literature review detailing medications linked to the development of small bowel injury. METHODS We conducted a literature search on PubMed from its inception to May 1, 2021. We included English-language original studies, meta-analyses, systematic reviews, review articles and case reports. RESULTS Drug-induced enteropathy can range from asymptomatic histological changes resulting in a subtle, self-limited disease to a chronic inflammatory condition mimicking inflammatory bowel disease, or bowel perforation. Endoscopy can demonstrate erythema, mucosal friability, oedema, erosions, ulcers or strictures in severe cases. Histology may include mucosal erosions and ulcerations, focal active enteritis, villous atrophy, epithelial apoptosis or necrotising enteritis. A well-established association has been found with the use of nonsteroidal anti-inflammatory drugs, immunosuppressants, chemotherapeutic agents, antibiotics, immunotherapies, etanercept and olmesartan. Possible associations have been reported with other biologic agents, medications used for glycemic control, antihypertensives, cholinesterase inhibitors, potassium and iron supplements, with conflicting data regarding contraceptives/hormonal therapy and isotretinoin. CONCLUSION Physicians should be aware of the manifestations of drug-induced enteropathy as early recognition can lead to prompt discontinuation of the offending therapy and, therefore, a reduced risk of future complications.
Collapse
Affiliation(s)
- Shadi Hamdeh
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Motility, University of Kansas, Lawrence, KS, USA
| | - Dejan Micic
- Department of Internal Medicine, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, IL, USA
| | - Stephen Hanauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Hagiwara Y, Kumagai H, Ouwerkerk N, Gijzen L, Annida R, Bokkers M, van Vught R, Yoshinari K, Katakawa Y, Motonaga K, Tajiri T. A Novel In Vitro Membrane Permeability Methodology Using Three-dimensional Caco-2 Tubules in a Microphysiological System Which Better Mimics In Vivo Physiological Conditions. J Pharm Sci 2021; 111:214-224. [PMID: 34838780 DOI: 10.1016/j.xphs.2021.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
The aim of this study was to develop an in vitro drug permeability methodology which mimics the gastrointestinal environment more accurately than conventional 2D methodologies through a three-dimensional (3D) Caco-2 tubules using a microphysiological system. Such a system offers significant advantages, including accelerated cellular polarization and more accurate mimicry of the in vivo environment. This methodology was confirmed by measuring the permeability of propranolol as a model compound, and subsequently applied to those of solifenacin and bile acids for a comprehensive understanding of permeability for the drug product in the human gastrointestinal tract. To protect the Caco-2 tubules from bile acid toxicity, a mucus layer was applied on the surface of Caco-2 tubules and it enables to use simulated intestinal fluid. The assessment using propranolol reproduced results equivalent to those obtained from conventional methodology, while that using solifenacin indicated fluctuations in the permeability of solifenacin due to various factors, including interaction with bile acids. We therefore suggest that this model will serve as an alternative testing system for measuring drug absorption in an environment closely resembling that of the human gastrointestinal tract.
Collapse
Affiliation(s)
- Yuki Hagiwara
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Harumi Kumagai
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Niels Ouwerkerk
- European Analytical Research Laboratories, Astellas Pharma Europe B.V., Leiden 2333 BE, the Netherlands
| | - Linda Gijzen
- Mimetas B.V., Oegstgeest 2342 DH, the Netherlands
| | | | | | | | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yoshifumi Katakawa
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Kei Motonaga
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Tomokazu Tajiri
- Pharmaceutical Science and Technology Laboratories, Astellas Pharma Inc., Tsukuba, Ibaraki 300-2698, Japan.
| |
Collapse
|
6
|
Barbieri MA, Sorbara EE, Cicala G, Santoro V, Cutroneo PM, Franchina T, Spina E. Adverse Drug Reactions with HER2-Positive Breast Cancer Treatment: An Analysis from the Italian Pharmacovigilance Database. Drugs Real World Outcomes 2021; 9:91-107. [PMID: 34528216 PMCID: PMC8844323 DOI: 10.1007/s40801-021-00278-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/15/2023] Open
Abstract
Background Anti-HER2 therapy has evolved in the last years and an important role in this transformation was that of monoclonal antibodies and tyrosine kinase inhibitors. Considering their extended use in clinical practice, some toxicity problems have been highlighted around these drugs. Objective To analyze the onset of adverse drug reactions (ADRs) related to the use of HER2-positive breast cancer treatments through a spontaneous reporting system (SRS) database. Methods All ADR reports having as suspected drug trastuzumab, pertuzumab, lapatinib, or trastuzumab emtansine (TDM-1), recorded into the Report Reazioni Avverse dei Medicinali (RAM) system database for national data and into the Italian SRS database for Sicilian data and collected from 2006 to 2020 have been evaluated. A descriptive analysis of basal demographic and drug-related characteristics was performed. A case-by-case methodology was conducted paying particular attention to the serious ADR reports collected in Sicily, focusing on type of seriousness, age, sex, concomitant drugs, comorbidities, time to onset (TTO), and time to resolution (TTR). Results Of the 3609 Italian reports, 65.6% were related to trastuzumab (n = 2367), followed by pertuzumab, TDM-1, and lapatinib. Almost all reports occurred in female patients (94.3%) and were most frequent in the age group 18–65 years (69.6%). A higher number of cases were related to general disorders and administration site conditions (n = 1079; 29.9%), gastrointestinal disorders (n = 1037; 28.7%), skin disorders (n = 821; 22.7%), and blood disorders (n = 599; 16.6%). Cases involving trastuzumab and pertuzumab mainly reported general disorders (n = 788; 33.3% and n = 194; 32.1%, respectively) while more than half of the reports associated with lapatinib were related to gastrointestinal (n = 184; 59.7%) and skin diseases (n = 146; 47.4%). Regarding TDM-1, 40% of reports had at least one ADR belonging to blood and lymphatic system disorders. The case-by-case assessment of Sicilian ADR reports showed that 40 cases were serious (33.3%), with a median TTO of 37 (6–97) days. Serious ADR reports mainly involved the onset of thrombocytopenia (n = 8; 20.0%), diarrhea (n = 6; 15.0%), asthenia and cardiac failure (both with n = 5; 12.5%), vomiting, hypersensitivity, and ejection fraction decreased (all with n = 4; 10.0%) and stomatitis (n = 3: 7.5%). Conclusion This study is fundamentally consistent with results from the literature. Given the serious clinical condition of breast cancer and taking into account the importance of preventing some clinically relevant ADRs related to the use of anti-HER2 therapy, further analyses are essential to better describe the safety profile of these target therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s40801-021-00278-z.
Collapse
Affiliation(s)
| | | | - Giuseppe Cicala
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenza Santoro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paola Maria Cutroneo
- Sicilian Regional Pharmacovigilance Centre, University Hospital of Messina, Messina, Italy
| | - Tindara Franchina
- Department of Adult and Developmental Human Pathology "Gaetano Barresi", University of Messina, Messina, Italy
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
7
|
Jhaveri K, Drago JZ, Shah PD, Wang R, Pareja F, Ratzon F, Iasonos A, Patil S, Rosen N, Fornier MN, Sklarin NT, Chandarlapaty S, Modi S. A Phase I Study of Alpelisib in Combination with Trastuzumab and LJM716 in Patients with PIK3CA-Mutated HER2-Positive Metastatic Breast Cancer. Clin Cancer Res 2021; 27:3867-3875. [PMID: 33947692 PMCID: PMC8282678 DOI: 10.1158/1078-0432.ccr-21-0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Activating mutations in PIK3CA promote resistance to HER2-targeted therapy in breast cancer; however, inhibition of PI3K alone leads to escape via feedback upregulation of HER3. Combined inhibition of HER2, HER3, and PI3K overcomes this mechanism preclinically. PATIENTS AND METHODS This phase I study investigated the MTD of alpelisib given in combination with trastuzumab and LJM716 (a HER3-targeted antibody) in patients with PIK3CA-mutant HER2-positive (HER2+) metastatic breast cancer (MBC) using the continual reassessment method. Secondary analyses included efficacy and exploratory correlative studies. RESULTS Ten patients were treated initially with daily alpelisib (arm A). Grade ≥3 adverse events seen in ≥2 patients included diarrhea (n = 6), hypokalemia (n = 3), abnormal liver enzymes (n = 3), hyperglycemia (n = 2), mucositis (n = 2), and elevated lipase (n = 2). The MTD of alpelisib in arm A was 250 mg daily. This prompted the opening of arm B in which 11 patients received intermittently dosed alpelisib. Grade ≥3 adverse events seen in ≥2 patients included diarrhea (n = 5), hypokalemia (n = 3), and hypomagnesemia (n = 2). The MTD of alpelisib in arm B was 350 mg given 4 days on, 3 days off. Among 17 patients assessed, 1 had a partial response, 14 had stable disease, and 2 had disease progression at best response. Five patients had stable disease for >30 weeks. mRNA profiling of pre- and on-treatment tissue demonstrated PIK3CA target engagement by alpelisib via induction of downstream signaling and feedback pathways. CONCLUSIONS Combination treatment with alpelisib, trastuzumab, and LJM716 was limited by gastrointestinal toxicity. Further efforts are warranted to target the PI3K pathway in HER2+ MBC.
Collapse
Affiliation(s)
- Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Z Drago
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Payal Deepak Shah
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rui Wang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fresia Pareja
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fanni Ratzon
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexia Iasonos
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sujata Patil
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neal Rosen
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Shanu Modi
- Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
8
|
Al-Mahayri ZN, AlAhmad MM, Ali BR. Current opinion on the pharmacogenomics of paclitaxel-induced toxicity. Expert Opin Drug Metab Toxicol 2021; 17:785-801. [PMID: 34128748 DOI: 10.1080/17425255.2021.1943358] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Paclitaxel is a microtubule stabilizer that is currently one of the most utilized chemotherapeutic agents. Its efficacy in breast, uterine, lung and other neoplasms made its safety profile enhancement a subject of great interest. Neurotoxicity is the most common paclitaxel-associated toxicities. In addition, hypersensitivity reactions, hematological, gastrointestinal, and cardiac toxicities are all encountered.Areas covered: The current review explores paclitaxel-induced toxicities mechanisms and risk factors. Studies investigating these toxicities pharmacogenomic biomarkers are reviewed and summarized. There is a limited margin of consistency between the retrieved associations. Variants in genes related to neuro-sensitivity are the most promising candidates for future studies.Expert opinion: Genome-wide association studies highlighted multiple-candidate biomarkers relevant to neuro-sensitivity. Most of the identified paclitaxel-neurotoxicity candidate genes are derived from congenital neuropathy and diabetic-induced neurotoxicity pathways. Future studies should explore these sets of genes while considering the multifactorial nature of paclitaxel-induced neurotoxicity. In the absence of certain paclitaxel-toxicity biomarkers, future research should avoid earlier studies' caveats. Genes in paclitaxel's pharmacokinetic pathways could not provide consistent results in any of its associated toxicities. There is a need to dig deeper into toxicity-development mechanisms and personal vulnerability factors, rather than targeting only the genes suspected to affect drug exposure.
Collapse
Affiliation(s)
- Zeina N Al-Mahayri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammad M AlAhmad
- Department of Clinical Pharmacy, College of Pharmacy, Al-Ain University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
9
|
Gan HK, Millward M, Jalving M, Garrido-Laguna I, Lickliter JD, Schellens JHM, Lolkema MP, Van Herpen CLM, Hug B, Tang L, O'Connor-Semmes R, Gagnon R, Ellis C, Ganji G, Matheny C, Drilon A. A Phase I, First-in-Human Study of GSK2849330, an Anti-HER3 Monoclonal Antibody, in HER3-Expressing Solid Tumors. Oncologist 2021; 26:e1844-e1853. [PMID: 34132450 PMCID: PMC8488777 DOI: 10.1002/onco.13860] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND GSK2849330, an anti-HER3 monoclonal antibody that blocks HER3/Neuregulin 1 (NRG1) signaling in cancer cells, is engineered for enhanced antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. This phase I, first-in-human, open-label study assessed the safety, pharmacokinetics (PK), pharmacodynamics, and preliminary activity of GSK2849330 in patients with HER3-expressing advanced solid tumors. PATIENTS AND METHODS Patients with various tumor types were prospectively selected for HER3 expression by immunohistochemistry; a subset was also screened for NRG1 mRNA expression. In the dose-escalation phase, patients received GSK2849330 1.4-30 mg/kg every 2 weeks, or 3 mg/kg or 30 mg/kg weekly, intravenously (IV). In the dose-expansion phase, patients received 30 mg/kg GSK2849330 IV weekly. RESULTS Twenty-nine patients with HER3-expressing cancers, of whom two expressed NRG1, received GSK2849330 (dose escalation: n = 18, dose expansion: n = 11). GSK2849330 was well tolerated. No dose-limiting toxicities were observed. The highest dose, of 30 mg/kg weekly, expected to provide full target engagement, was selected for dose expansion. Treatment-emergent adverse events (AEs) were mostly grade 1 or 2. The most common AEs were diarrhea (66%), fatigue (62%), and decreased appetite (31%). Dose-proportional plasma exposures were achieved, with evidence of HER3 inhibition in paired tissue biopsies. Of 29 patients, only 1 confirmed partial response, lasting 19 months, was noted in a patient with CD74-NRG1-rearranged non-small cell lung cancer (NSCLC). CONCLUSION GSK2849330 demonstrated a favorable safety profile, dose-proportional PK, and evidence of target engagement, but limited antitumor activity in HER3-expressing cancers. The exceptional response seen in a patient with CD74-NRG1-rearranged NSCLC suggests further exploration in NRG1-fusion-positive cancers. IMPLICATIONS FOR PRACTICE This first-in-human study confirms that GSK2849330 is well tolerated. Importantly, across a variety of HER3-expressing advanced tumors, prospective selection by HER3/NRG1 expression alone was insufficient to identify patients who could benefit from treatment with this antibody-dependent cell-mediated cytotoxicity- and complement-dependent cytotoxicity-enhanced anti-HER3 antibody. The only confirmed durable response achieved was in a patient with CD74-NRG1-rearranged lung cancer. This highlights the potential utility of screening for NRG1 fusions prospectively across tumor types to enrich potential responders to anti-HER3 agents in ongoing trials.
Collapse
Affiliation(s)
- Hui K Gan
- Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Medicine, Latrobe University School of Cancer Medicine, Melbourne, Victoria, Australia.,Department of Medicine, Melbourne University, Melbourne, Victoria, Australia
| | - Michael Millward
- Linear Clinical Research and University of Western Australia, Perth, Western Australia, Australia
| | - Mathilde Jalving
- Department of Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ignacio Garrido-Laguna
- Department of Internal Medicine, Oncology Division, University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | | | - Jan H M Schellens
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Carla L M Van Herpen
- Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands
| | - Bruce Hug
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Lihua Tang
- Independent Consultant, North Carolina, USA
| | - Robin O'Connor-Semmes
- Clinical Pharmacology, Modeling and Simulation, Parexel International, Durham, North Carolina, USA
| | | | | | | | | | - Alexander Drilon
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
10
|
Jagosky M, Tan AR. Combination of Pertuzumab and Trastuzumab in the Treatment of HER2-Positive Early Breast Cancer: A Review of the Emerging Clinical Data. BREAST CANCER-TARGETS AND THERAPY 2021; 13:393-407. [PMID: 34163239 PMCID: PMC8213954 DOI: 10.2147/bctt.s176514] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023]
Abstract
Human epidermal growth factor receptor type 2 (HER2) is a relevant and effective target in breast cancer. The development of monoclonal antibodies against HER2 has revolutionized the treatment of HER2-positive breast cancer. The humanized monoclonal antibody, trastuzumab, was the first in its class to be widely adopted. It was initially studied in the metastatic setting and then in the treatment of early-stage disease, demonstrating significant improvement in overall survival in both settings. The addition of pertuzumab further improved upon results achieved with trastuzumab and chemotherapy, specifically extending overall survival in patients with metastatic disease, lessening the risk of recurrence when used in the adjuvant setting, and improving pathologic complete response rate when utilized in the neoadjuvant setting. In this article, we review the studies that support the use of HER2-directed monoclonal antibodies in early-stage breast cancer both in the adjuvant and neoadjuvant settings and focus on the success of dual HER2-targeted therapy achieved with the combination of trastuzumab and pertuzumab. A newer way to administer these agents, specifically the subcutaneous formulation of pertuzumab and trastuzumab with recombinant human hyaluronidase, will also be discussed.
Collapse
Affiliation(s)
- Megan Jagosky
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Antoinette R Tan
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
11
|
Kim Y, Quach A, Das S, Barrett KE. Potentiation of calcium-activated chloride secretion and barrier dysfunction may underlie EGF receptor tyrosine kinase inhibitor-induced diarrhea. Physiol Rep 2021; 8:e14490. [PMID: 32652816 PMCID: PMC7354088 DOI: 10.14814/phy2.14490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFr TKIs) are first‐line therapies for various cancers, and cause dose‐limiting severe diarrhea in many patients. We hypothesized that diarrhea caused by EGFr TKIs might reflect actions on epithelial transport, barrier function, or both, which we tested using cell cultures including murine and human enteroid‐derived monolayers (EDMs), analyzed using electrophysiological and other relevant methods. EGFr TKIs (such as afatinib, erlotinib, and osimertinib) reversed the acute inhibitory effect of EGF on chloride secretion induced by carbachol (CCh) across T84 human colonic epithelial cells, which correlated with the diarrhea‐inducing effect of each agent clinically. EGFr TKIs also reduced transepithelial electrical resistance (TEER), whereas co‐treatment with CCh delayed the decrease in TEER compared with that of cells co‐treated with EGF. Furthermore, afatinib and erlotinib prevented EGF‐ or CCh‐induced EGFr phosphorylation. EGFr TKIs also suppressed phosphorylation of extracellular signal‐regulated kinase (Erk)1/2 in response to EGF, whereas they had weaker effects on CCh‐induced Erk1/2 phosphorylation. In human EDMs, EGF potentiated ion transport induced by CCh, whereas afatinib reversed this effect. The ability of EGFr TKIs to reverse the effects of EGF on calcium‐dependent chloride secretion could contribute to the diarrheal side effects of these agents, and their disruption of epithelial barrier dysfunction is likely also pathophysiologically significant. CCh‐activated Erk1/2 phosphorylation was relatively insensitive to EGFr TKIs and delayed the deleterious effects of EGFr TKIs on barrier function. These findings confirm and extend those of other authors, and may be relevant to designing strategies to overcome the diarrheal side effects of EGFr TKIs.
Collapse
Affiliation(s)
- Younjoo Kim
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Division of Gastroenterology, Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Andrew Quach
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Kim E Barrett
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Nicolas A, Schavemaker F, Kosim K, Kurek D, Haarmans M, Bulst M, Lee K, Wegner S, Hankemeier T, Joore J, Domansky K, Lanz HL, Vulto P, Trietsch SJ. High throughput transepithelial electrical resistance (TEER) measurements on perfused membrane-free epithelia. LAB ON A CHIP 2021; 21:1676-1685. [PMID: 33861225 DOI: 10.1039/d0lc00770f] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Assessment of epithelial barrier function is critically important for studying healthy and diseased biological models. Here we introduce an instrument that measures transepithelial electrical resistance (TEER) of perfused epithelial tubes in the microfluidic OrganoPlate platform. The tubules are grown in microfluidic channels directly against an extracellular matrix, obviating the need for artificial filter membranes. We present TEER measurements on Caco-2 intestinal and renal proximal tubule epithelium. Forty tubules on one single plate were interrogated in less than a minute. We show that TEER measurement is significantly more sensitive than a fluorescent reporter leakage assay in response to staurosporine. We demonstrate a 40-channel time-lapse data acquisition over a 25 hour time period under flow conditions. We furthermore observed a 50% reduction in Caco-2 TEER values following exposure to a cocktail of inflammatory cytokines. To our best knowledge, this is the first instrument of its kind that allows routine TEER studies in perfused organ-on-a-chip systems without interference by artificial filter membranes. We believe the apparatus will contribute to accelerating routine adoption of perfused organ-on-a-chip systems in academic research and in industrial drug development.
Collapse
Affiliation(s)
- A Nicolas
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands. and Division of Analytical Biosciences, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - F Schavemaker
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - K Kosim
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - D Kurek
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - M Haarmans
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - M Bulst
- Sciospec GmbH, Leipziger Str. 43b, 04828 Bennewitz, Germany
| | - K Lee
- Sciospec GmbH, Leipziger Str. 43b, 04828 Bennewitz, Germany
| | - S Wegner
- Sciospec GmbH, Leipziger Str. 43b, 04828 Bennewitz, Germany
| | - T Hankemeier
- Division of Analytical Biosciences, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - J Joore
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - K Domansky
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - H L Lanz
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - P Vulto
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - S J Trietsch
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| |
Collapse
|
13
|
Gijzen L, Yousef Yengej FA, Schutgens F, Vormann MK, Ammerlaan CME, Nicolas A, Kurek D, Vulto P, Rookmaaker MB, Lanz HL, Verhaar MC, Clevers H. Culture and analysis of kidney tubuloids and perfused tubuloid cells-on-a-chip. Nat Protoc 2021; 16:2023-2050. [PMID: 33674788 DOI: 10.1038/s41596-020-00479-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
Advanced in vitro kidney models are of great importance to the study of renal physiology and disease. Kidney tubuloids can be established from primary cells derived from adult kidney tissue or urine. Tubuloids are three-dimensional multicellular structures that recapitulate tubular function and have been used to study infectious, malignant, metabolic, and genetic diseases. For tubuloids to more closely represent the in vivo kidney, they can be integrated into an organ-on-a-chip system that has a more physiological tubular architecture and allows flow and interaction with vasculature or epithelial and mesenchymal cells from other organs. Here, we describe a detailed protocol for establishing tubuloid cultures from tissue and urine (1-3 weeks), as well as for generating and characterizing tubuloid cell-derived three-dimensional tubular structures in a perfused microfluidic multi-chip platform (7 d). The combination of the two systems yields a powerful in vitro tool that better recapitulates the complexity of the kidney tubule with donor-specific properties.
Collapse
Affiliation(s)
| | - Fjodor A Yousef Yengej
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frans Schutgens
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Carola M E Ammerlaan
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
14
|
R Ferreira A, Ferreira S, Lambertini M, Maurer C, Martel S, Costa L, Ponde N, de Azambuja E. Association between pertuzumab-associated diarrhoea and rash and survival outcomes in patients with HER2-positive metastatic breast cancer: Exploratory analysis from the CLEOPATRA trial. Eur J Cancer 2021; 144:351-359. [PMID: 33388492 DOI: 10.1016/j.ejca.2020.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Skin rash and diarrhoea are known side-effects of pertuzumab. Studies with other anti-HER2 agents suggested that adverse events correlate with patient outcomes. In this exploratory cohort of patients with metastatic HER2-positive breast cancer included in the CLEOPATRA trial we evaluated the value of rash and diarrhoea as prognostic markers and as predictors of pertuzumab benefit. METHODS This is a retrospective analysis of the multicenter, prospective, randomised CLEOPATRA trial. We defined two analytic cohorts: cohort 1 (C1) included patients from treatment initiation, and cohort 2 (C2) included patients after discontinuation of docetaxel. A landmark analysis was introduced to deal with immortal-time bias. Study endpoints were progression-free survival (PFS) and overall survival (OS). Univariable and multivariable Cox proportional hazards models were used. RESULTS Of the 808 patients and after application of the landmark analysis, C1 and C2 included 777 and 518 patients, respectively. In C1, rash occurred in 271 patients (34.9%) and diarrhoea in 470 (60.5%). Rash was prognostic for PFS and OS (C1: adjusted hazard ratio [aHR] = 0.66 [95% CI = 0.48-0.91], p = 0.010]; C2: aHR 0.52 [95% CI = 0.30-0.89], p = 0.018) in both cohorts, while diarrhoea was only prognostic for PFS in cohort 2 (aHR = 0.65 [95% CI = 0.46-0.91], p = 0.011). Rash and diarrhoea were not predictive of pertuzumab benefit (in terms of PFS/OS) in the two cohorts. CONCLUSIONS In patients treated with pertuzumab, trastuzumab, and docetaxel, rash is prognostic whenever it occurs during treatment, while diarrhoea only has prognostic value when occurring after docetaxel discontinuation. However, neither rash nor diarrhoea predict pertuzumab benefit.
Collapse
Affiliation(s)
- Arlindo R Ferreira
- Institut Jules Bordet, L'Université Libre de Bruxelles (U.L.B), Belgium; Hospital de Santa Maria and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Portugal
| | - Sofia Ferreira
- Institut Jules Bordet, L'Université Libre de Bruxelles (U.L.B), Belgium; Instituto Português de Oncologia de Lisboa Francisco Gentil, Portugal
| | - Matteo Lambertini
- Institut Jules Bordet, L'Université Libre de Bruxelles (U.L.B), Belgium; IRCCS Ospedale Policlinico San Martino, Genova, Italy; University of Genova, Genova, Italy
| | - Christian Maurer
- Institut Jules Bordet, L'Université Libre de Bruxelles (U.L.B), Belgium; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and University of Cologne, Germany
| | - Samuel Martel
- Institut Jules Bordet, L'Université Libre de Bruxelles (U.L.B), Belgium; CISSS Montérégie-centre/Hôpital Charles-Lemoyne, Canada
| | - Luis Costa
- Hospital de Santa Maria and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Noam Ponde
- Institut Jules Bordet, L'Université Libre de Bruxelles (U.L.B), Belgium; AC Carmargo Cancer Center, São Paulo, Brazil
| | | |
Collapse
|
15
|
Gijzen L, Marescotti D, Raineri E, Nicolas A, Lanz HL, Guerrera D, van Vught R, Joore J, Vulto P, Peitsch MC, Hoeng J, Lo Sasso G, Kurek D. An Intestine-on-a-Chip Model of Plug-and-Play Modularity to Study Inflammatory Processes. SLAS Technol 2020; 25:585-597. [PMID: 32576063 PMCID: PMC7684793 DOI: 10.1177/2472630320924999] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022]
Abstract
Development of efficient drugs and therapies for the treatment of inflammatory conditions in the intestine is often hampered by the lack of reliable, robust, and high-throughput in vitro and in vivo models. Current models generally fail to recapitulate key aspects of the intestine, resulting in low translatability to the human situation. Here, an immunocompetent 3D perfused intestine-on-a-chip platform was developed and characterized for studying intestinal inflammation. Forty independent polarized 3D perfused epithelial tubular structures were grown from cells of mixed epithelial origin, including enterocytes (Caco-2) and goblet cells (HT29-MTX-E12). Immune cells THP-1 and MUTZ-3, which can be activated, were added to the system and assessed for cytokine release. Intestinal inflammation was mimicked through exposure to tumor necrosis factor-α (TNFα) and interleukin (IL)-1β. The effects were quantified by measuring transepithelial electrical resistance (TEER) and proinflammatory cytokine secretion on the apical and basal sides. Cytokines induced an inflammatory state in the culture, as demonstrated by the impaired barrier function and increased IL-8 secretion. Exposure to the known anti-inflammatory drug TPCA-1 prevented the inflammatory state. The model provides biological modularity for key aspects of intestinal inflammation, making use of well-established cell lines. This allows robust assays that can be tailored in complexity to serve all preclinical stages in the drug discovery and development process.
Collapse
Affiliation(s)
| | | | | | | | | | - Diego Guerrera
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | | | | | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | | |
Collapse
|
16
|
Gjorevski N, Avignon B, Gérard R, Cabon L, Roth AB, Bscheider M, Moisan A. Neutrophilic infiltration in organ-on-a-chip model of tissue inflammation. LAB ON A CHIP 2020; 20:3365-3374. [PMID: 32761043 DOI: 10.1039/d0lc00417k] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The multiphasic etiology of tissue inflammation and the fundamental immunological differences between species render inflammatory pathologies difficult to recapitulate in animal models, and account for the paucity of therapies that are successfully translated from rodents to humans. Here, we present a human-relevant organ-on-a-chip platform for experimental inflammatory diseases. We created an immunocompetent in vitro gut model by incorporating intestinal epithelial and immune cells into microfluidic chambers that permit cell movement across an extracellular matrix (ECM) and fluidic channels. This is the first model that integrates a mucosal barrier, a three-dimensional ECM, resident and infiltrating immune cells, and simulates a functional crosstalk that ultimately triggers cellular processes representative of inflammation. Under homeostatic conditions, enterocytes form a tight epithelium and subepithelial macrophages are non-activated. Introduction of pro-inflammatory mediators triggers macrophage activation and inflammation-induced intestinal barrier leakiness. Neutrophils in a parallel, matrix-separated non-epithelial channel are attracted by such a pro-inflammatory microenvironment and migrate through the extracellular matrix, further exacerbating tissue inflammation and damage. With this model, we provide the foundations to recapitulate and investigate the onset of tissue inflammation in a controlled, human-relevant system.
Collapse
Affiliation(s)
- Nikolce Gjorevski
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
17
|
Naumovska E, Aalderink G, Wong Valencia C, Kosim K, Nicolas A, Brown S, Vulto P, Erdmann KS, Kurek D. Direct On-Chip Differentiation of Intestinal Tubules from Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21144964. [PMID: 32674311 PMCID: PMC7404294 DOI: 10.3390/ijms21144964] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Intestinal organoids have emerged as the new paradigm for modelling the healthy and diseased intestine with patient-relevant properties. In this study, we show directed differentiation of induced pluripotent stem cells towards intestinal-like phenotype within a microfluidic device. iPSCs are cultured against a gel in microfluidic chips of the OrganoPlate, in which they undergo stepwise differentiation. Cells form a tubular structure, lose their stem cell markers and start expressing mature intestinal markers, including markers for Paneth cells, enterocytes and neuroendocrine cells. Tubes develop barrier properties as confirmed by transepithelial electrical resistance (TEER). Lastly, we show that tubules respond to pro-inflammatory cytokine triggers. The whole procedure for differentiation lasts 14 days, making it an efficient process to make patient-specific organoid tubules. We anticipate the usage of the platform for disease modelling and drug candidate screening.
Collapse
Affiliation(s)
- Elena Naumovska
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Germaine Aalderink
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Christian Wong Valencia
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Kinga Kosim
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Arnaud Nicolas
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Stephen Brown
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Paul Vulto
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Kai S. Erdmann
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
- Correspondence: (K.S.E.); (D.K.)
| | - Dorota Kurek
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Correspondence: (K.S.E.); (D.K.)
| |
Collapse
|