1
|
Cao L, Tian W, Zhao Y, Song P, Zhao J, Wang C, Liu Y, Fang H, Liu X. Gene Mutations in Gastrointestinal Stromal Tumors: Advances in Treatment and Mechanism Research. Glob Med Genet 2024; 11:251-262. [PMID: 39176108 PMCID: PMC11341198 DOI: 10.1055/s-0044-1789204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Although gastrointestinal stromal tumors (GISTs) has been reported in patients of all ages, its diagnosis is more common in elders. The two most common types of mutation, receptor tyrosine kinase (KIT) and platelet-derived growth factor receptor a (PDGFRA) mutations, hold about 75 and 15% of GISTs cases, respectively. Tumors without KIT or PDGFRA mutations are known as wild type (WT)-GISTs, which takes up for 15% of all cases. WT-GISTs have other genetic alterations, including mutations of the succinate dehydrogenase and serine-threonine protein kinase BRAF and neurofibromatosis type 1. Other GISTs without any of the above genetic mutations are named "quadruple WT" GISTs. More types of rare mutations are being reported. These mutations or gene fusions were initially thought to be mutually exclusive in primary GISTs, but recently it has been reported that some of these rare mutations coexist with KIT or PDGFRA mutations. The treatment and management differ according to molecular subtypes of GISTs. Especially for patients with late-stage tumors, developing a personalized chemotherapy regimen based on mutation status is of great help to improve patient survival and quality of life. At present, imatinib mesylate is an effective first-line drug for the treatment of unresectable or metastatic recurrent GISTs, but how to overcome drug resistance is still an important clinical problem. The effectiveness of other drugs is being further evaluated. The progress in the study of relevant mechanisms also provides the possibility to develop new targets or new drugs.
Collapse
Affiliation(s)
- Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Wencong Tian
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Yongjie Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Peng Song
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Jia Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Chuntao Wang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Hong Fang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xingqiang Liu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Mühlenberg T, Falkenhorst J, Schulz T, Fletcher BS, Teuber A, Krzeciesa D, Klooster I, Lundberg M, Wilson L, Lategahn J, von Mehren M, Grunewald S, Tüns AI, Wardelmann E, Sicklick JK, Brahmi M, Serrano C, Schildhaus HU, Sievers S, Treckmann J, Heinrich MC, Raut CP, Ou WB, Marino-Enriquez A, George S, Rauh D, Fletcher JA, Bauer S. KIT ATP-Binding Pocket/Activation Loop Mutations in GI Stromal Tumor: Emerging Mechanisms of Kinase Inhibitor Escape. J Clin Oncol 2024; 42:1439-1449. [PMID: 38408285 PMCID: PMC11095889 DOI: 10.1200/jco.23.01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 02/28/2024] Open
Abstract
PURPOSE Imatinib resistance in GI stromal tumors (GISTs) is primarily caused by secondary KIT mutations, and clonal heterogeneity of these secondary mutations represents a major treatment obstacle. KIT inhibitors used after imatinib have clinical activity, albeit with limited benefit. Ripretinib is a potent inhibitor of secondary KIT mutations in the activation loop (AL). However, clinical benefit in fourth line remains limited and the molecular mechanisms of ripretinib resistance are largely unknown. PATIENTS AND METHODS Progressing lesions of 25 patients with GISTs refractory to ripretinib were sequenced for KIT resistance mutations. Resistant genotypes were validated and characterized using novel cell line models and in silico modeling. RESULTS GISTs progressing on ripretinib were enriched for secondary mutations in the ATP-binding pocket (AP), which frequently occur in cis with preexisting AL mutations, resulting in highly resistant AP/AL genotypes. AP/AL mutations were rarely observed in a cohort of progressing GIST samples from the preripretinib era but represented 50% of secondary KIT mutations in patients with tumors resistant to ripretinib. In GIST cell lines harboring secondary KIT AL mutations, the sole genomic escape mechanisms during ripretinib drug selection were AP/AL mutations. Ripretinib and sunitinib synergize against mixed clones with secondary AP or AL mutants but do not suppress clones with AP/AL genotypes. CONCLUSION Our findings underscore that KIT remains the central oncogenic driver even in late lines of GIST therapy. KIT-inhibitor combinations may suppress resistance because of secondary KIT mutations. However, the emergence of KIT AP/AL mutations after ripretinib treatment calls for new strategies in the development of next-generation KIT inhibitors.
Collapse
Affiliation(s)
- Thomas Mühlenberg
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Johanna Falkenhorst
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tom Schulz
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Benjamin S. Fletcher
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Alina Teuber
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Dawid Krzeciesa
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Isabella Klooster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Meijun Lundberg
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Lydia Wilson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jonas Lategahn
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Margaret von Mehren
- Department of Hematology and Oncology, Fox Chase Cancer Center, Temple Health System, University, Philadelphia, PA
| | - Susanne Grunewald
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Alicia Isabell Tüns
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Eva Wardelmann
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Jason K. Sicklick
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, San Diego, CA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, San Diego, CA
| | - Mehdi Brahmi
- Centre Leon Berard, Medical Oncology, Lyon, France
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Hans-Ulrich Schildhaus
- University Hospital Essen, Institute of Pathology, Essen, Germany
- Current affiliation: Discovery Life Sciences Biomarker Services & Institute of Pathology Nodhessen, Kassel, Germany
| | - Sonja Sievers
- Compound Management and Screening Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jürgen Treckmann
- University of Duisburg-Essen, Medical School, Department of Visceral and Transplantation Surgery, Essen, Germany
| | - Michael C. Heinrich
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, OR
| | - Chandrajit P. Raut
- Department of Surgery, Brigham and Women's Hospital, Boston, MA
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Wen-Bin Ou
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Adrian Marino-Enriquez
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Suzanne George
- Dana-Farber Cancer Institute, Medical Oncology, Boston, MA
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Sebastian Bauer
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
3
|
Li C, Wang Q, Jiang KW, Ye YJ. Hallmarks and novel insights for gastrointestinal stromal tumors: A bibliometric analysis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:107079. [PMID: 37826966 DOI: 10.1016/j.ejso.2023.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Due to the increasing recognition of gastrointestinal stromal tumor (GIST), novel insights have appeared in both preclinical and clinical research and begun to reshape the field. This study aims to map the research landscape through bibliometric analysis and provide a brief overview for the future of the GIST field. METHODS We searched the Web of Science Core Collection without publication data restrictions for GISTs and performed a bibliometric analysis with CiteSpace and VOSviewer software. RESULTS In sum, 5,911 of 13,776 records were included, and these studies were published in 948 journals and written by 24,965 authors from 4,633 institutions in 100 countries. Referring to published reviews and bibliometric analysis, we classified the future trends in four groups. In epidemiological study, precise incidence and clinicopathological features in different regions and races might become potential hotspots. Novel therapy, such as drugs, modified strategies, radioligand therapy, was persistent hotspots in GIST fields, and ctDNA-guided diagnosis, monitoring, and treatment might meet future clinical needs. The debate over serosa surgery vs. mucosa surgery will remain active for a long time in GIST surgery, and function reserve surgery, biology-based surgery will play an important role in future. Moreover, rare GIST type, like NF-1-associated GIST, Carney triads and SDH mutant GIST, need more studies in pathogenesis and genetic mutation to provide appropriate treatment for this orphan GIST patients. CONCLUSIONS Potential hotspots in future GIST trends might involve epidemiology, agents, resection therapy and rare type GIST, moreover, researchers could pay more attention in these four fields.
Collapse
Affiliation(s)
- Chen Li
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, China
| | - Quan Wang
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Ke-Wei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, China.
| | - Ying-Jiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
4
|
Mechahougui H, Michael M, Friedlaender A. Precision Oncology in Gastrointestinal Stromal Tumors. Curr Oncol 2023; 30:4648-4662. [PMID: 37232809 DOI: 10.3390/curroncol30050351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
GIST (gastrointestinal stromal tumors) represent 20% of sarcomatous tumors and 1-2% of primary gastrointestinal cancers. They have an excellent prognosis when localized and resectable, though their prognosis is poor in the metastatic setting, with limited options after the second line until recently. Four lines are now standard in KIT-mutated GIST and one in PDGFRA-mutated GIST. An exponential growth of new treatments is expected in this era of molecular diagnostic techniques and systematic sequencing. Currently, the main challenge remains the emergence of resistance linked to secondary mutations caused by selective pressure induced by TKIs. Repeating biopsies to tailor treatments might be a step in the right direction, and liquid biopsies at progression may offer a non-invasive alternative. New molecules with wider KIT inhibition are under investigation and could change the catalog and the sequence of existing treatments. Combination therapies may also be an approach to overcome current resistance mechanisms. Here, we review the current epidemiology and biology of GIST and discuss future management options, with an emphasis on genome-oriented therapies.
Collapse
Affiliation(s)
- Hiba Mechahougui
- Oncology Department, Geneva University Hospital, 1205 Geneva, Switzerland
| | | | - Alex Friedlaender
- Oncology Department, Geneva University Hospital, 1205 Geneva, Switzerland
- Clinique Générale Beaulieu, 1206 Geneva, Switzerland
| |
Collapse
|
5
|
Khosroyani HM, Klug LR, Heinrich MC. TKI Treatment Sequencing in Advanced Gastrointestinal Stromal Tumors. Drugs 2023; 83:55-73. [PMID: 36607590 PMCID: PMC10029090 DOI: 10.1007/s40265-022-01820-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/07/2023]
Abstract
Prior to the early 2000s, patients with advanced gastrointestinal stromal tumors (GIST) had very poor prognoses owing to a lack of effective therapies. The development of tyrosine kinase inhibitors at the turn of the century significantly improved the overall survival for patients with GIST. The resounding success of imatinib in the first clinical trial of a tyrosine kinase inhibitor to treat GIST led to its approval for first-line therapy for advanced GIST; this study was open to all comers and not restricted to any GIST subtype(s). The trials that led to the approvals of second-, third-, and fourth-line therapy for advanced GIST were also open to all patients with advanced/metastatic GIST. Only in retrospect do we realize the role that the molecular subtypes played in the results observed in these studies. In this review, we discuss the studies that led to the US Food and Drug Administration approval of imatinib (first line), sunitinib (second line), regorafenib (third line), and ripretinib (fourth line) for advanced KIT-mutant GIST. In addition, we review how information about GIST molecular subtypes has been used to accelerate the approval of other targeted therapies for non-KIT mutant GIST, leading to the approval of five additional drugs indicated for the treatment of specific GIST molecular subtypes. We also discuss how our understanding of the molecular subtypes will play a role in the next generation of therapeutic approaches for treating advanced GIST.
Collapse
Affiliation(s)
- Homma M Khosroyani
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Lillian R Klug
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Michael C Heinrich
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, R&D-19, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Falkenhorst J, Grunewald S, Krzeciesa D, Herold T, Ketzer J, Christoff M, Hamacher R, Kostbade K, Treckmann J, Köster J, Farzaliyev F, Fletcher BS, Dieckmann N, Kaths M, Mühlenberg T, Schildhaus HU, Bauer S. Plasma Sequencing for Patients with GIST-Limitations and Opportunities in an Academic Setting. Cancers (Basel) 2022; 14:5496. [PMID: 36428589 PMCID: PMC9688348 DOI: 10.3390/cancers14225496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Circulating tumor DNA (ctDNA) from circulating free DNA (cfDNA) in GIST is of interest for the detection of heterogeneous resistance mutations and treatment monitoring. However, methodologies for use in a local setting are not standardized and are error-prone and difficult to interpret. We established a workflow to evaluate routine tumor tissue NGS (Illumina-based next generation sequencing) panels and pipelines for ctDNA sequencing in an academic setting. Regular blood collection (Sarstedt) EDTA tubes were sufficient for direct processing whereas specialized tubes (STRECK) were better for transportation. Mutation detection rate was higher in automatically extracted (AE) than manually extracted (ME) samples. Sensitivity and specificity for specific mutation detection was higher using digital droplet (dd)PCR compared to NGS. In a retrospective analysis of NGS and clinical data (133 samples from 38 patients), cfDNA concentration correlated with tumor load and mutation detection. A clinical routine pipeline and a novel research pipeline yielded different results, but known and resistance-mediating mutations were detected by both and correlated with the resistance spectrum of TKIs used. In conclusion, NGS routine panel analysis was not sensitive and specific enough to replace solid biopsies in GIST. However, more precise methods (hybridization capture NGS, ddPCR) may comprise important research tools to investigate resistance. Future clinical trials need to compare methodology and protocols.
Collapse
Affiliation(s)
- Johanna Falkenhorst
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Susanne Grunewald
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Dawid Krzeciesa
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Thomas Herold
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Institute of Pathology, University Medical Center Essen, 45147 Essen, Germany
| | - Julia Ketzer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Miriam Christoff
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Rainer Hamacher
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Karina Kostbade
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Jürgen Treckmann
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Department of Visceral Surgery, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Johannes Köster
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Algorithms for Reproducible Bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Farhad Farzaliyev
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Department of Visceral Surgery, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Benjamin Samulon Fletcher
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Nils Dieckmann
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Moritz Kaths
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Department of Visceral Surgery, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Thomas Mühlenberg
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Hans-Ulrich Schildhaus
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- Institute of Pathology, University Medical Center Essen, 45147 Essen, Germany
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
7
|
Unk M, Bombač A, Jezeršek Novaković B, Stegel V, Šetrajčič Dragoš V, Blatnik O, Klančar G, Novaković S. Correlation of treatment outcome in sanger/RT‑qPCR KIT/PDGFRA wild‑type metastatic gastrointestinal stromal tumors with next‑generation sequencing results: A single‑center report. Oncol Rep 2022; 48:167. [PMID: 35904169 PMCID: PMC9351002 DOI: 10.3892/or.2022.8382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
In patients with gastrointestinal stromal tumors (GIST), it has become mandatory to determine the driver mutation in order to predict the response to standard treatment with tyrosine kinase inhibitors (TKI). A total of 10–15% of all GIST lack activating mutations in KIT proto-oncogene, receptor tyrosine kinase (KIT)/platelet-derived growth factor receptor alpha (PDGFRA) and have been classified as KIT/PDGFRA wild-type (WT) GIST. They are characterized by poor response to TKI. From a group of 119 metastatic GIST patients, 17 patients with KIT/PDGFRA/BRAF WT GIST as determined by reverse transcription-quantitative (RT-q) PCR and Sanger sequencing were profiled by a targeted next-generation sequencing (NGS) approach and their treatment outcome was assessed. In the present study, 41.2% of patients as KIT/PDGFRA/BRAF WT GIST examined with RT-qPCR and Sanger sequencing were confirmed to be carriers of pathogenic KIT/PDGFRA mutations by NGS and were responsive to TKI. The percentage of genuinely KIT/PDGFRA WT GIST in the present study thereby dropped from the initial 14.3% detected with the RT-qPCR and Sanger sequencing to 7.6% after NGS. Their outcome was universally poor. The reliability of RT-qPCR and direct Sanger sequencing results in this setting is therefore insufficient and it is recommended that NGS becomes a requirement for treatment decision at least in KIT/PDGFRA/BRAF WT GIST as determined by RT-qPCR and Sanger sequencing.
Collapse
Affiliation(s)
- Mojca Unk
- Faculty of Medicine, University of Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Alenka Bombač
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | | | - Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Vita Šetrajčič Dragoš
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Olga Blatnik
- Department of Pathology, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Gašper Klančar
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI‑1000 Ljubljana, Slovenia
| | - Srdjan Novaković
- Faculty of Medicine, University of Ljubljana, SI‑1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Chauvistré H, Shannan B, Daignault-Mill SM, Ju RJ, Picard D, Egetemaier S, Váraljai R, Gibhardt CS, Sechi A, Kaschani F, Keminer O, Stehbens SJ, Liu Q, Yin X, Jeyakumar K, Vogel FCE, Krepler C, Rebecca VW, Kubat L, Lueong SS, Forster J, Horn S, Remke M, Ehrmann M, Paschen A, Becker JC, Helfrich I, Rauh D, Kaiser M, Gul S, Herlyn M, Bogeski I, Rodríguez-López JN, Haass NK, Schadendorf D, Roesch A. Persister state-directed transitioning and vulnerability in melanoma. Nat Commun 2022; 13:3055. [PMID: 35650266 PMCID: PMC9160289 DOI: 10.1038/s41467-022-30641-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2022] [Indexed: 12/30/2022] Open
Abstract
Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.
Collapse
Affiliation(s)
- Heike Chauvistré
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Batool Shannan
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Sheena M Daignault-Mill
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J Ju
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Picard
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Egetemaier
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Renáta Váraljai
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Antonio Sechi
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Oliver Keminer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Samantha J Stehbens
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Kirujan Jeyakumar
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Felix C E Vogel
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | - Linda Kubat
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, 45141, Essen, Germany
| | - Smiths S Lueong
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, 45122, Essen, Germany
| | - Jan Forster
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Department of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Susanne Horn
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Marc Remke
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Ehrmann
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
- Department of Microbiology, University of Duisburg-Essen, Universitätsstraße 2, 45117, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Jürgen C Becker
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, 45141, Essen, Germany
| | - Iris Helfrich
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Markus Kaiser
- Department of Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, 22525, Hamburg, Germany
| | | | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - José Neptuno Rodríguez-López
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany.
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
9
|
Targeting the translational machinery in gastrointestinal stromal tumors (GIST): a new therapeutic vulnerability. Sci Rep 2022; 12:8275. [PMID: 35585158 PMCID: PMC9117308 DOI: 10.1038/s41598-022-12000-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
Although KIT-mutant GISTs can be effectively treated with tyrosine kinase inhibitors (TKIs), many patients develop resistance to imatinib mesylate (IM) as well as the FDA-approved later-line agents sunitinib, regorafenib and ripretinib. Resistance mechanisms mainly involve secondary mutations in the KIT receptor tyrosine kinase gene indicating continued dependency on the KIT signaling pathway. The fact that the type of secondary mutation confers either sensitivity or resistance towards TKIs and the notion that secondary mutations exhibit intra- and intertumoral heterogeneity complicates the optimal choice of treatment in the imatinib-resistant setting. Therefore, new strategies that target KIT independently of its underlying mutations are urgently needed. Homoharringtonine (HHT) is a first-in-class inhibitor of protein biosynthesis and is FDA-approved for the treatment of chronic myeloid leukemia (CML) that is resistant to at least two TKIs. HHT has also shown activity in KIT-mutant mastocytosis models, which are intrinsically resistant to imatinib and most other TKIs. We hypothesized that HHT could be effective in GIST through downregulation of KIT expression and subsequent decrease of KIT activation and downstream signaling. Testing several GIST cell line models, HHT led to a significant reduction in nascent protein synthesis and was highly effective in the nanomolar range in IM-sensitive and IM-resistant GIST cell lines. HHT treatment resulted in a rapid and complete abolishment of KIT expression and activation, while KIT mRNA levels were minimally affected. The response to HHT involved induction of apoptosis as well as cell cycle arrest. The antitumor activity of HHT was confirmed in a GIST xenograft model. Taken together, inhibition of protein biosynthesis is a promising strategy to overcome TKI resistance in GIST.
Collapse
|
10
|
Schaefer IM, DeMatteo RP, Serrano C. The GIST of Advances in Treatment of Advanced Gastrointestinal Stromal Tumor. Am Soc Clin Oncol Educ Book 2022; 42:1-15. [PMID: 35522913 DOI: 10.1200/edbk_351231] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common malignant neoplasm of mesenchymal origin and a compelling clinical and biologic model for the rational development of molecularly targeted agents. This is because the majority of GISTs are driven by gain-of-function mutations in KIT or PDGFRA receptor tyrosine kinases. Specific GIST mutations circumscribe well-defined molecular subgroups that must be determined during the diagnostic work-up to guide clinical management, including therapeutic decisions. Surgery is the cornerstone treatment in localized disease and can also be clinically relevant in the metastatic setting. The correct combination and sequence of targeted agents and surgical procedures improves outcomes for patients with GIST and should be discussed individually within multidisciplinary expert teams. All currently approved agents for the treatment of GIST are based on orally available tyrosine kinase inhibitors targeting KIT and PDGFRA oncogenic activation. Although first-line imatinib achieves remarkable prolonged disease control, the benefit of subsequent lines of treatment is more modest. Novel therapeutic strategies focus on overcoming the heterogeneity of KIT or PDGFRA secondary mutations and providing more potent inhibition of specific challenging mutations. This article reviews the current understanding and treatment of GIST, with an emphasis on recent advances.
Collapse
Affiliation(s)
- Inga-Marie Schaefer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - César Serrano
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
11
|
Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol 2022; 19:328-341. [PMID: 35217782 PMCID: PMC11488293 DOI: 10.1038/s41571-022-00606-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
When gastrointestinal stromal tumour (GIST), the most common form of sarcoma, was first recognized as a distinct pathological entity in the 1990s, patients with advanced-stage disease had a very poor prognosis owing to a lack of effective medical therapies. The discovery of KIT mutations as the first and most prevalent drivers of GIST and the subsequent development of the first KIT tyrosine kinase inhibitor (TKI), imatinib, revolutionized the treatment of patients with this disease. We can now identify the driver mutation in 99% of patients with GIST via molecular diagnostic testing, and therapies have been developed to treat many, but not all, molecular subtypes of the disease. At present, seven drugs are approved by the FDA for the treatment of advanced-stage GIST (imatinib, sunitinib, regorafenib, ripretinib, avapritinib, larotrectinib and entrectinib), all of which are TKIs. Although these agents can be very effective for treating certain GIST subtypes, challenges remain and new therapeutic approaches are needed. In this Review, we discuss the molecular subtypes of GIST and the evolution of current treatments, as well as their therapeutic limitations. We also highlight emerging therapeutic approaches that might overcome clinical challenges through novel strategies predicated on the biological features of the distinct GIST molecular subtypes.
Collapse
Affiliation(s)
- Lillian R Klug
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Homma M Khosroyani
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jason D Kent
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael C Heinrich
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
12
|
New Tyrosine Kinase Inhibitors for the Treatment of Gastrointestinal Stromal Tumors. Curr Oncol Rep 2022; 24:151-159. [DOI: 10.1007/s11912-021-01165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2021] [Indexed: 11/03/2022]
|
13
|
Bauer S, Heinrich MC, George S, Zalcberg JR, Serrano C, Gelderblom H, Jones RL, Attia S, D'Amato G, Chi P, Reichardt P, Meade J, Su Y, Ruiz-Soto R, Blay JY, von Mehren M, Schöffski P. Clinical Activity of Ripretinib in Patients with Advanced Gastrointestinal Stromal Tumor Harboring Heterogeneous KIT/PDGFRA Mutations in the Phase III INVICTUS Study. Clin Cancer Res 2021; 27:6333-6342. [PMID: 34503977 PMCID: PMC9401492 DOI: 10.1158/1078-0432.ccr-21-1864] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Most patients with gastrointestinal stromal tumor (GIST) have activating mutations in KIT/PDGFRA and are initially responsive to tyrosine kinase inhibitors (TKI). The acquisition of secondary mutations leads to refractory/relapsed disease. This study reports the results of an analysis from the phase III INVICTUS study (NCT03353753) characterizing the genomic heterogeneity of tumors from patients with advanced GIST and evaluating ripretinib efficacy across KIT/PDGFRA mutation subgroups. PATIENTS AND METHODS Tumor tissue and liquid biopsy samples that captured circulating tumor DNA were collected prior to study enrollment and sequenced using next-generation sequencing. Subgroups were determined by KIT/PDGFRA mutations and correlation of clinical outcomes and KIT/PDGFRA mutational status was assessed. RESULTS Overall, 129 patients enrolled (ripretinib 150 mg once daily, n = 85; placebo, n = 44). The most common primary mutation subgroup detected by combined tissue and liquid biopsies were in KIT exon 11 (ripretinib, 61.2%; placebo, 77.3%) and KIT exon 9 (ripretinib, 18.8%; placebo, 15.9%). Patients receiving ripretinib demonstrated progression-free survival (PFS) benefit versus placebo regardless of mutation status (HR 0.16) and in all assessed subgroups in Kaplan-Meier PFS analysis (exon 11, P < 0.0001; exon 9, P = 0.0023; exon 13, P < 0.0001; exon 17, P < 0.0001). Among patients with wild-type KIT/PDGFRA by tumor tissue, PFS ranged from 2 to 23 months for ripretinib versus 0.9 to 10.1 months for placebo. CONCLUSIONS Ripretinib provided clinically meaningful activity across mutation subgroups in patients with advanced GIST, demonstrating that ripretinib inhibits a broad range of KIT/PDGFRA mutations in patients with advanced GIST who were previously treated with three or more TKIs.
Collapse
Affiliation(s)
- Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Michael C Heinrich
- VA Portland Veterans Health Care System, Portland, Oregon
- OHSU Knight Cancer Institute, Portland, Oregon
| | | | - John R Zalcberg
- Monash University School of Public Health and Preventive Medicine and Alfred Health, Melbourne, Victoria, Australia
| | - César Serrano
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Robin L Jones
- Royal Marsden and Institute of Cancer Research, London, United Kingdom
| | | | - Gina D'Amato
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida
| | - Ping Chi
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter Reichardt
- Sarcoma Center Berlin-Brandenburg, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Julie Meade
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Ying Su
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | | | | | | | - Patrick Schöffski
- University Hospitals Leuven, Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Zalcberg JR, Heinrich MC, George S, Bauer S, Schöffski P, Serrano C, Gelderblom H, Jones RL, Attia S, D'Amato G, Chi P, Reichardt P, Somaiah N, Meade J, Reichert V, Shi K, Sherman ML, Ruiz-Soto R, von Mehren M, Blay JY. Clinical Benefit of Ripretinib Dose Escalation After Disease Progression in Advanced Gastrointestinal Stromal Tumor: An Analysis of the INVICTUS Study. Oncologist 2021; 26:e2053-e2060. [PMID: 34313371 PMCID: PMC8571742 DOI: 10.1002/onco.13917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Ripretinib 150 mg once daily (QD) is indicated for advanced gastrointestinal stromal tumors (GISTs) as at least fourth‐line therapy. In INVICTUS, ripretinib intrapatient dose escalation (IPDE) to 150 mg b.i.d. was allowed after progressive disease (PD) on 150 mg QD by blinded independent central review using modified RECIST 1.1. We report the efficacy and safety of ripretinib IPDE to 150 mg b.i.d. after PD among patients randomized to ripretinib 150 mg QD in the INVICTUS study. Materials and Methods Tumor imaging was performed every 28‐day cycle for the first four cycles in the ripretinib 150 mg QD period and then every other cycle, including the 150 mg b.i.d. period. Among the ripretinib IPDE patients, progression‐free survival (PFS)1 was the time from randomization until PD; PFS2 was the time from the first dose of ripretinib 150 mg b.i.d. to PD or death. Results Among 43 ripretinib IPDE patients, median PFS1 was 4.6 months (95% confidence interval [CI], 2.7–6.4) and median PFS2 was 3.7 months (95% CI, 3.1–5.3). Median overall survival was 18.4 months (95% CI, 14.5–not estimable). Ripretinib 150 mg b.i.d. (median duration of treatment 3.7 months) was well tolerated with new or worsening grade 3–4 treatment‐emergent adverse events (TEAEs) of anemia in six (14%) and abdominal pain in three (7%) patients. Ripretinib 150 mg b.i.d. was discontinued because of TEAEs in seven (16%) patients. Conclusion Ripretinib 150 mg b.i.d. after PD on 150 mg QD may provide additional clinically meaningful benefit with an acceptable safety profile in patients with at least fourth‐line GISTs. Implications for Practice Of the 85 patients with advanced gastrointestinal stromal tumor having received at least three prior anticancer therapies randomized to ripretinib 150 mg once daily (QD) in the phase III INVICTUS study, 43 underwent ripretinib intrapatient dose escalation (IPDE) to 150 mg b.i.d. after progressive disease (PD). Median progression‐free survival was 4.6 months before and 3.7 months after ripretinib IPDE. The safety profile of ripretinib 150 mg b.i.d. was acceptable. These findings indicate ripretinib IPDE to 150 mg b.i.d. may provide additional clinical benefit in patients with PD on ripretinib 150 mg QD, for whom limited treatment options exist. This article presents further results from the INVICTUS study, focusing on patients who received ripretinib 150 mg QD who received intrapatient dose escalation to 150 mg b.i.d. after progressive disease.
Collapse
Affiliation(s)
- John R Zalcberg
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.,Department of Medical Oncology, The Alfred Hospital, Melbourne, Australia
| | - Michael C Heinrich
- Portland VA Healthcare System and OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, Essen, Germany
| | - Patrick Schöffski
- University Hospitals Leuven, Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - César Serrano
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Robin L Jones
- Royal Marsden and Institute of Cancer Research, London, United Kingdom
| | | | - Gina D'Amato
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Ping Chi
- Memorial Sloan Kettering Cancer Center & Weill Cornell Medicine, New York, New York, USA
| | - Peter Reichardt
- Sarcoma Center, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Neeta Somaiah
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julie Meade
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts, USA
| | | | - Kelvin Shi
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts, USA
| | | | | | | | - Jean-Yves Blay
- Centre Léon Bérard & Université Claude Bernard, Lyon, France
| |
Collapse
|
15
|
Bauer S, George S, von Mehren M, Heinrich MC. Early and Next-Generation KIT/PDGFRA Kinase Inhibitors and the Future of Treatment for Advanced Gastrointestinal Stromal Tumor. Front Oncol 2021; 11:672500. [PMID: 34322383 PMCID: PMC8313277 DOI: 10.3389/fonc.2021.672500] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
The majority of gastrointestinal stromal tumors (GIST) harbor an activating mutation in either the KIT or PDGFRA receptor tyrosine kinases. Approval of imatinib, a KIT/PDGFRA tyrosine kinase inhibitor (TKI), meaningfully improved the treatment of advanced GIST. Other TKIs subsequently gained approval: sunitinib as a second-line therapy and regorafenib as a third-line therapy. However, resistance to each agent occurs in almost all patients over time, typically due to secondary kinase mutations. A major limitation of these 3 approved therapies is that they target the inactive conformation of KIT/PDGFRA; thus, their efficacy is blunted against secondary mutations in the kinase activation loop. Neither sunitinib nor regorafenib inhibit the full spectrum of KIT resistance mutations, and resistance is further complicated by extensive clonal heterogeneity, even within single patients. To combat these limitations, next-generation TKIs were developed and clinically tested, leading to 2 new USA FDA drug approvals in 2020. Ripretinib, a broad-spectrum KIT/PDGFRA inhibitor, was recently approved for the treatment of adult patients with advanced GIST who have received prior treatment with 3 or more kinase inhibitors, including imatinib. Avapritinib, a type I kinase inhibitor that targets active conformation, was approved for the treatment of adults with unresectable or metastatic GIST harboring a PDGFRA exon 18 mutation, including PDGFRA D842V mutations. In this review, we will discuss how resistance mutations have driven the need for newer treatment options for GIST and compare the original GIST TKIs with the next-generation KIT/PDGFRA kinase inhibitors, ripretinib and avapritinib, with a focus on their mechanisms of action.
Collapse
Affiliation(s)
- Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Margaret von Mehren
- Department of Hematology and Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Michael C. Heinrich
- Department of Medicine, Portland VA Health Care System and OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
16
|
Gupta A, Singh J, García-Valverde A, Serrano C, Flynn DL, Smith BD. Ripretinib and MEK Inhibitors Synergize to Induce Apoptosis in Preclinical Models of GIST and Systemic Mastocytosis. Mol Cancer Ther 2021; 20:1234-1245. [PMID: 33947686 DOI: 10.1158/1535-7163.mct-20-0824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
The majority of gastrointestinal stromal tumors (GIST) harbor constitutively activating mutations in KIT tyrosine kinase. Imatinib, sunitinib, and regorafenib are available as first-, second-, and third-line targeted therapies, respectively, for metastatic or unresectable KIT-driven GIST. Treatment of patients with GIST with KIT kinase inhibitors generally leads to a partial response or stable disease but most patients eventually progress by developing secondary resistance mutations in KIT. Tumor heterogeneity for secondary resistant KIT mutations within the same patient adds further complexity to GIST treatment. Several other mechanisms converge and reactivate the MAPK pathway upon KIT/PDGFRA-targeted inhibition, generating treatment adaptation and impairing cytotoxicity. To address the multiple potential pathways of drug resistance in GIST, the KIT/PDGFRA inhibitor ripretinib was combined with MEK inhibitors in cell lines and mouse models. Ripretinib potently inhibits a broad spectrum of primary and drug-resistant KIT/PDGFRA mutants and is approved by the FDA for the treatment of adult patients with advanced GIST who have received previous treatment with 3 or more kinase inhibitors, including imatinib. Here we show that ripretinib treatment in combination with MEK inhibitors is effective at inducing and enhancing the apoptotic response and preventing growth of resistant colonies in both imatinib-sensitive and -resistant GIST cell lines, even after long-term removal of drugs. The effect was also observed in systemic mastocytosis (SM) cells, wherein the primary drug-resistant KIT D816V is the driver mutation. Our results show that the combination of KIT and MEK inhibition has the potential to induce cytocidal responses in GIST and SM cells.
Collapse
Affiliation(s)
- Anu Gupta
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Jarnail Singh
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Alfonso García-Valverde
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Bryan D Smith
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts.
| |
Collapse
|
17
|
Abstract
Gastrointestinal stromal tumours (GIST) have an incidence of ~1.2 per 105 individuals per year in most countries. Around 80% of GIST have varying molecular changes, predominantly mutually exclusive activating KIT or PDGFRA mutations, but other, rare subtypes also exist. Localized GIST are curable, and surgery is their standard treatment. Risk factors for relapse are tumour size, mitotic index, non-gastric site and tumour rupture. Patients with GIST with KIT or PDGFRA mutations sensitive to the tyrosine kinase inhibitor (TKI) imatinib that are at high risk of relapse have improved survival with adjuvant imatinib treatment. In advanced disease, median overall survival has improved from 18 months to >70 months since the introduction of TKIs. The role of surgery in the advanced setting remains unclear. Resistance to TKIs arise mainly from subclonal selection of cells with resistance mutations in KIT or PDGFRA when they are the primary drivers. Advanced resistant GIST respond to second-line sunitinib and third-line regorafenib, as well as to the new broad-spectrum TKI ripretinib. Rare molecular forms of GIST with alterations involving NF1, SDH genes, BRAF or NTRK genes generally show primary resistance to standard TKIs, but some respond to specific inhibitors of the activated genes. Despite major advances, many questions in both advanced and localized disease remain unanswered.
Collapse
Affiliation(s)
- Jean-Yves Blay
- Department of Medicine, Centre Leon Berard, UNICANCER & University Lyon I, Lyon, France.
| | - Yoon-Koo Kang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Toshiroo Nishida
- Surgery Department, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | | |
Collapse
|
18
|
Pilco-Janeta DF, García-Valverde A, Gomez-Peregrina D, Serrano C. Emerging drugs for the treatment of gastrointestinal stromal tumors. Expert Opin Emerg Drugs 2021; 26:53-62. [PMID: 33645383 DOI: 10.1080/14728214.2021.1896704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Oncogenic activation of KIT or PDGFRA receptor tyrosine kinases is the crucial event in gastrointestinal stromal tumor (GIST) biology. Seminal works during the past two decades have underscored, first, the continuous relevance of KIT/PDGFRA oncogenic signaling after progression to targeted inhibition; second, the heterogeneity of KIT/PDGFRA acquired mutations, that cannot be efficiently suppressed by any given tyrosine kinase inhibitor (TKI); and third, the presence of specific mutants highly resistant to all approved therapies. AREAS COVERED This review discusses treatment options in advanced/metastatic GIST, including a detailed dissection of ripretinib and avapritinib, the two novel small molecule inhibitors approved by the Food and Drug Administration in 2020. EXPERT OPINION The three only therapeutic options since 2012 for metastatic GIST patients were imatinib, sunitinib, and regorafenib. Although imatinib was highly effective in treatment-naïve GIST, the benefit of second- and third-line sunitinib and regorafenib was modest, thus emphasizing the medical need for new treatment options. Ripretinib, a switch control inhibitor with broad anti-KIT/PDGFRA activity, has been approved as ≥4th line in GIST after progression to all standard therapies. Avapritinib, a type I TKI highly specific against the multi-resistant PDGFRA D842V mutation, is approved in this specific subset of GIST patients.
Collapse
Affiliation(s)
- Daniel F Pilco-Janeta
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Alfonso García-Valverde
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - David Gomez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
19
|
Grunewald S, Klug LR, Mühlenberg T, Lategahn J, Falkenhorst J, Town A, Ehrt C, Wardelmann E, Hartmann W, Schildhaus HU, Treckmann J, Fletcher JA, Jung S, Czodrowski P, Miller S, Schmidt-Kittler O, Rauh D, Heinrich MC, Bauer S. Resistance to Avapritinib in PDGFRA-Driven GIST Is Caused by Secondary Mutations in the PDGFRA Kinase Domain. Cancer Discov 2021; 11:108-125. [PMID: 32972961 DOI: 10.1158/2159-8290.cd-20-0487] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/21/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Gastrointestinal stromal tumors (GIST) harboring activating mutations of PDGFRA respond to imatinib, with the notable exception of the most common mutation, D842V. Avapritinib is a novel, potent KIT/PDGFRA inhibitor with substantial clinical activity in patients with the D842V genotype. To date, only a minority of PDGFRA-mutant patients treated with avapritinib have developed secondary resistance. Tumor and plasma biopsies in 6 of 7 patients with PDGFRA primary mutations who progressed on avapritinib or imatinib had secondary resistance mutations within PDGFRA exons 13, 14, and 15 that interfere with avapritinib binding. Secondary PDGFRA mutations causing V658A, N659K, Y676C, and G680R substitutions were found in 2 or more patients each, representing recurrent mechanisms of PDGFRA GIST drug resistance. Notably, most PDGFRA-mutant GISTs refractory to avapritinib remain dependent on the PDGFRA oncogenic signal. Inhibitors that target PDGFRA protein stability or inhibition of PDGFRA-dependent signaling pathways may overcome avapritinib resistance. SIGNIFICANCE: Here, we provide the first description of avapritinib resistance mechanisms in PDGFRA-mutant GIST.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Susanne Grunewald
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lillian R Klug
- Portland VA Health Care System, Portland, Oregon; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon; and Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Thomas Mühlenberg
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jonas Lategahn
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Johanna Falkenhorst
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ajia Town
- Portland VA Health Care System, Portland, Oregon; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon; and Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Christiane Ehrt
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University of Münster Medical Center, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University of Münster Medical Center, Münster, Germany
| | | | - Juergen Treckmann
- Department of Visceral Surgery, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sascha Jung
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Paul Czodrowski
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | | | | | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Michael C Heinrich
- Portland VA Health Care System, Portland, Oregon; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon; and Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany.
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
20
|
Blay JY, Serrano C, Heinrich MC, Zalcberg J, Bauer S, Gelderblom H, Schöffski P, Jones RL, Attia S, D'Amato G, Chi P, Reichardt P, Meade J, Shi K, Ruiz-Soto R, George S, von Mehren M. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2020; 21:923-934. [PMID: 32511981 PMCID: PMC8383051 DOI: 10.1016/s1470-2045(20)30168-6] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Resistance to approved inhibitors of KIT proto-oncogene, receptor tyrosine kinase (KIT), and platelet-derived growth factor receptor α (PDGFRA) is a clinical challenge for patients with advanced gastrointestinal stromal tumours. We compared the efficacy and safety of ripretinib, a switch-control tyrosine kinase inhibitor active against a broad spectrum of KIT and PDGFRA mutations, with placebo in patients with previously treated, advanced gastrointestinal stromal tumours. METHODS In this double-blind, randomised, placebo-controlled, phase 3 study, we enrolled adult patients in 29 specialised hospitals in 12 countries. We included patients aged 18 years or older who had advanced gastrointestinal stromal tumours with progression on at least imatinib, sunitinib, and regorafenib or documented intolerance to any of these treatments despite dose modifications, and who had an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2. Eligible patients were randomly assigned (2:1) to receive either oral ripretinib 150 mg once daily (ripretenib group) or placebo once daily (placebo group). Randomisation was done via an interactive response system using randomly permuted block sizes of six and stratified according to number of previous therapies and ECOG performance status. Patients, investigators, research staff, and the sponsor study team were masked to a patient's treatment allocation until the blinded independent central review (BICR) showed progressive disease for the patient. The primary endpoint was progression-free survival, assessed by BICR. The primary analysis was done in the intention-to-treat population and safety was assessed in patients who received at least one dose of study drug. Patients randomly assigned to placebo were permitted to cross over to ripretinib 150 mg at the time of disease progression. The INVICTUS study is registered with ClinicalTrials.gov, number NCT03353753, and with WHO International Clinical Trials Registry Platform, number EUCTR2017-002446-76-ES; follow-up is ongoing. FINDINGS Between Feb 27, 2018, and Nov 16, 2018, 129 of 154 assessed patients were randomly assigned to receive either ripretinib (n=85) or placebo (n=44). At data cutoff (May 31, 2019), at a median follow-up of 6·3 months (IQR 3·2-8·2) in the ripretinib group and 1·6 months (1·1-2·7) in the placebo group, 51 patients in the ripretinib group and 37 in the placebo group had had progression-free survival events. In the double-blind period, median progression-free survival was 6·3 months (95% CI 4·6-6·9) with ripretinib compared with 1·0 months (0·9-1·7) with placebo (hazard ratio 0·15, 95% CI 0·09-0·25; p<0·0001). The most common (>2%) grade 3 or 4 treatment-related treatment-emergent adverse events in the ripretinib group (n=85) included lipase increase (four [5%]), hypertension (three [4%]), fatigue (two [2%]), and hypophosphataemia (two (2%]); in the placebo group (n=43), the most common (>2%) grade 3 or 4 treatment-related treatment-emergent adverse events were anaemia (three [7%]), fatigue (one [2%]), diarrhoea (one [2%]), decreased appetite (one [2%]), dehydration (one [2%]), hyperkalaemia (one [2%]), acute kidney injury (one [2%]), and pulmonary oedema (one [2%]). Treatment-related serious adverse events were reported in eight (9%) of 85 patients who received ripretinib and three (7%) of 43 patients who received placebo. Treatment-related deaths occurred in one patient in the placebo group (septic shock and pulmonary oedema) and one patient in the ripretinib group (cause of death unknown; the patient died during sleep). INTERPRETATION Ripretinib significantly improved median progression-free survival compared with placebo and had an acceptable safety profile in patients with advanced gastrointestinal stromal tumours who were resistant to approved treatments. FUNDING Deciphera Pharmaceuticals.
Collapse
Affiliation(s)
- Jean-Yves Blay
- Department of Medicine, Centre Léon Bérard, Lyon, France; Headquarters, Unicancer, Paris, France; LYRICAN, Lyon, France; Faculte Lyon Est, Université Claude Bernard, Lyon, France.
| | - César Serrano
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Michael C Heinrich
- Department of Medicine, Portland VA Health Care System, Portland, OR, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - John Zalcberg
- Department of Epidemiology and Preventative Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia
| | - Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany; German Consortium for Translational Cancer Research (DKTK), Partner Site Essen, Germany
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick Schöffski
- Leuven Cancer Institute and Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK; Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Steven Attia
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Gina D'Amato
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, USA
| | - Ping Chi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Peter Reichardt
- Department of Oncology, Helios Klinikum Berlin-Buch, Berlin, Germany
| | | | - Kelvin Shi
- Deciphera Pharmaceuticals, Waltham, MA, USA
| | | | - Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Margaret von Mehren
- Department of Hematology and Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
21
|
Serrano C, George S. Gastrointestinal Stromal Tumor: Challenges and Opportunities for a New Decade. Clin Cancer Res 2020; 26:5078-5085. [PMID: 32601076 DOI: 10.1158/1078-0432.ccr-20-1706] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/26/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Gastrointestinal stromal tumor (GIST) provides a paradigm to evaluate new molecularly targeted therapies and to identify structural and functional mechanisms for drug response and resistance. Drug development in GIST has successfully exploited the high reliance on KIT/PDGFRA oncogenic signaling as a therapeutic vulnerability. The recent arrival of avapritinib and ripretinib to the GIST arena has aimed to further improve on precision kinase inhibition and address tumor heterogeneity in imatinib-resistant GIST. The two main clinical challenges for the forthcoming years entail tumor eradication in patients with early-stage GIST, and maximization of tumor response in late-stage disease. To succeed, we will need to better understand the mechanisms behind adaptation to KIT inhibition and apoptosis evasion, tumor evolution after successive lines of treatment, and to explore clinically novel creative therapeutic strategies, with the overarching goal to tackle the intrinsic oncogenic complexity while minimizing adverse events.
Collapse
Affiliation(s)
- César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain. .,Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Suzanne George
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
22
|
Abstract
OPINION STATEMENT The treatment of advanced GIST is rapidly evolving with the development of novel molecular compounds such as avapritinib and ripretinib, but also promising results have been achieved with cabozantinib in a phase II trial. The availability of over five lines of treatment for patients with advanced GIST is likely to completely shift the current second-line and third-line treatment options, and will also potentially enable a personalised approach to treatment. Imatinib will most likely remain as the first-line treatment of choice for the vast majority of GIST patients. However, for GIST patients with tumours harbouring a D842V mutation in PDGFRA exon 18, avapritinib has shown efficacy and will become first-line therapy for this molecular subgroup. For second- and third-line treatment, results are awaited of a number of clinical trials. However, second-line and further treatment could potentially be tailored depending on secondary mutations found in imatinib-resistant GISTs. As secondary resistance to TKIs remains the biggest challenge in the treatment of GIST and despite negative results with alternating regimens in phase II, combination treatments should be further evaluated to tackle this issue. Moreover, the favourable safety profiles observed with avapritinib and ripretinib suggest that combination treatments are feasible, for instance, combining two TKIs or a TKI with drugs targeting downstream signalling pathways, such as PI3K inhibitors or MEK inhibitors. Finally, in line with further personalisation of treatment in GIST, a multidisciplinary approach is essential, and local treatment options, such as RFA, resection in case of unifocal progression, and radiotherapy, should be considered.
Collapse
|