1
|
Castro MP, Quinn J, Wasserman A, Awawda A, Cole ZD, Shapiro MA, Stuhlmiller TJ, Kesari S. Proton pump inhibitors are detrimental to overall survival of patients with glioblastoma: Results from a nationwide real-world evidence database. Neurooncol Pract 2024; 11:713-722. [PMID: 39554793 PMCID: PMC11567743 DOI: 10.1093/nop/npae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Background Proton pump inhibitors (PPIs) are often prescribed to manage corticosteroid-induced gastrointestinal toxicity during glioblastoma (GBM) treatment, but were recently identified as strong inducers of aldehyde dehydrogenase-1A1 (ALDH1A1). ALDH1A1 is a primary metabolic enzyme impacting the outcome of chemotherapy, including temozolomide. High expression of ALDH1A1 is associated with poor prognosis in multiple cancers, suggesting PPIs may have a negative impact on survival. Methods Real-world data on GBM patients was annotated from electronic medical records (EMR) according to the prospective observational study, XCELSIOR (NCT03793088). Patients with known IDH1/2 mutations were excluded. Causal effects on survival were analyzed using a multivariate, time-varying Cox Proportional Hazard (CPH) model with stratifications including MGMT methylation status, age, sex, duration of corticosteroid use, extent of resection, starting standard-of-care, and PPI use. Results EMR data from 554 GBM patients across 225 cancer centers was collected, with 72% of patients receiving care from academic medical centers. Patients treated with PPIs (51%) had numerically lower median overall survival (mOS) and 2-year OS rates in the total population and across most strata, with the greatest difference for MGMT-methylated patients (mOS 29.2 vs. 40.1 months). In a time-varying multivariate CPH analysis of the above strata, PPIs caused an adverse effect on survival (HR 1.67 [95% CI: 1.15-2.44], P = .007). Conclusions Evidence from a nationwide cancer registry has suggested PPIs have a negative impact on OS for GBM patients, particularly those with MGMT promoter methylation. This suggests PPIs should be avoided for prophylactic management of gastrointestinal toxicity in patients with GBM receiving chemoradiotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Santosh Kesari
- xCures Inc., Oakland, California, USA
- Pacific Neuroscience Institute, Providence Saint John’s Health Center, Santa Monica, California, USA
| |
Collapse
|
2
|
Alshammari QA, Alshammari SO, Alshammari A, Alfarhan M, Baali FH. Unraveling the mechanisms of glioblastoma’s resistance: investigating the influence of tumor suppressor p53 and non-coding RNAs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024. [DOI: 10.1007/s00210-024-03564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025]
|
3
|
Zhang X, Shao X, Bao Q, He L, Qi X. Integrated network pharmacology and experimental verification to reveal the role of Shezhi Huangling Decoction against glioma by inactivating PI3K/Akt-HIF1A axis. Heliyon 2024; 10:e34215. [PMID: 39092253 PMCID: PMC11292238 DOI: 10.1016/j.heliyon.2024.e34215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Shezhi Huangling Decoction (SHD) has been proven clinically effective in regulating metabolic and immune homeostasis in the treatment of glioma. The investigation aimed to deconstruct the active constituents and mechanisms of SHD. Effects of SHD on malignant characteristics of HS683 and KNS89 cells have been investigated by CCK-8, clone formation, flow cytometry, and Transwell assays. A mouse xenograft model was established to assess the effect of SHD or SHD + temozolomide (TMZ) in vivo. A total of 461 constituents were found from SHD in UPLC/Q-TOF-MS/MS analysis. Functional enrichment analysis showed that pathway in cancer, proteoglycans in cancer, regulation of epithelial cell proliferation, inflammation/immune, gliogenesis, brain development, cell adhesion, and autophagy could participate in the treatment of SHD. Additionally, 9 hub genes (AKT1, TP53, CTNNB1, STAT3, EGFR, VEGFA, PIK3CA, ERBB2, and HIF1A) were identified as hub genes. Moreover, we found that SHD may greatly reduce the migration and accelerate apoptosis of HS683 and KNS89 cells. Additionally, SHD coordinates TMZ to restrict tumor growth were found in the mice. Our results suggest that the malignant behaviors of glioma cells are suppressed by SHD and the mechanism may be closing on the inhibition of the PI3K/Akt-HIF1A axis. SHD may serve as a synergistic therapeutic choice for TMZ to suppress glioblastoma growth.
Collapse
Affiliation(s)
- Xiaobing Zhang
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Xian Shao
- Department of Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Qingquan Bao
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Lingyan He
- Department of Traditional Chinese Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
4
|
Kucinska M, Pospieszna J, Tang J, Lisiak N, Toton E, Rubis B, Murias M. The combination therapy using tyrosine kinase receptors inhibitors and repurposed drugs to target patient-derived glioblastoma stem cells. Biomed Pharmacother 2024; 176:116892. [PMID: 38876048 DOI: 10.1016/j.biopha.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
The lesson from many studies investigating the efficacy of targeted therapy in glioblastoma (GBM) showed that a future perspective should be focused on combining multiple target treatments. Our research aimed to assess the efficacy of drug combinations against glioblastoma stem cells (GSCs). Patient-derived cells U3042, U3009, and U3039 were obtained from the Human Glioblastoma Cell Culture resource. Additionally, the study was conducted on a GBM commercial U251 cell line. Gene expression analysis related to receptor tyrosine kinases (RTKs), stem cell markers and genes associated with significant molecular targets was performed, and selected proteins encoded by these genes were assessed using the immunofluorescence and flow cytometry methods. The cytotoxicity studies were preceded by analyzing the expression of specific proteins that serve as targets for selected drugs. The cytotoxicity study using the MTS assay was conducted to evaluate the effects of selected drugs/candidates in monotherapy and combinations. The most cytotoxic compounds for U3042 cells were Disulfiram combined with Copper gluconate (DSF/Cu), Dacomitinib, and Foretinib with IC50 values of 52.37 nM, 4.38 µM, and 4.54 µM after 24 h incubation, respectively. Interactions were assessed using SynergyFinder Plus software. The analysis enabled the identification of the most effective drug combinations against patient-derived GSCs. Our findings indicate that the most promising drug combinations are Dacomitinib and Foretinib, Dacomitinib and DSF/Cu, and Foretinib and AZD3759. Since most tested combinations have not been previously examined against glioblastoma stem-like cells, these results can shed new light on designing the therapeutic approach to target the GSC population.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| |
Collapse
|
5
|
Subaiea GM, Syed RU, Afsar S, Alhaidan TMS, Alzammay SA, Alrashidi AA, Alrowaili SF, Alshelaly DA, Alenezi AMSRA. Non-coding RNAs (ncRNAs) and multidrug resistance in glioblastoma: Therapeutic challenges and opportunities. Pathol Res Pract 2024; 253:155022. [PMID: 38086292 DOI: 10.1016/j.prp.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Non-coding RNAs (ncRNAs) have been recognized as pivotal regulators of transcriptional and post-transcriptional gene modulation, exerting a profound influence on a diverse array of biological and pathological cascades, including the intricate mechanisms underlying tumorigenesis and the acquisition of drug resistance in neoplastic cells. Glioblastoma (GBM), recognized as the foremost and most aggressive neoplasm originating in the brain, is distinguished by its formidable resistance to the cytotoxic effects of chemotherapeutic agents and ionizing radiation. Recent years have witnessed an escalating interest in comprehending the involvement of ncRNAs, particularly lncRNAs, in GBM chemoresistance. LncRNAs, a subclass of ncRNAs, have been demonstrated as dynamic modulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Disruption in the regulation of lncRNAs has been observed across various human malignancies, including GBM, and has been linked with developing multidrug resistance (MDR) against standard chemotherapeutic agents. The potential of targeting specific ncRNAs or their downstream effectors to surmount chemoresistance is also critically evaluated, specifically focusing on ongoing preclinical and clinical investigations exploring ncRNA-based therapeutic strategies for glioblastoma. Nonetheless, targeting lncRNAs for therapeutic objectives presents hurdles, including overcoming the blood-brain barrier and the brief lifespan of oligonucleotide RNA molecules. Understanding the complex relationship between ncRNAs and the chemoresistance characteristic in glioblastoma provides valuable insights into the fundamental molecular mechanisms. It opens the path for the progression of innovative and effective therapeutic approaches to counter the therapeutic challenges posed by this aggressive brain tumor. This comprehensive review highlights the complex functions of diverse ncRNAs, including miRNAs, circRNAs, and lncRNAs, in mediating glioblastoma's chemoresistance.
Collapse
Affiliation(s)
- Gehad Mohammed Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | | | - Seham Ahmed Alzammay
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
6
|
Kebir S, Ullrich V, Berger P, Dobersalske C, Langer S, Rauschenbach L, Trageser D, Till A, Lorbeer FK, Wieland A, Wilhelm-Buchstab T, Ahmad A, Fröhlich H, Cima I, Prasad S, Matschke J, Jendrossek V, Remke M, Grüner BM, Roesch A, Siveke JT, Herold-Mende C, Blau T, Keyvani K, van Landeghem FK, Pietsch T, Felsberg J, Reifenberger G, Weller M, Sure U, Brüstle O, Simon M, Glas M, Scheffler B. A Sequential Targeting Strategy Interrupts AKT-Driven Subclone-Mediated Progression in Glioblastoma. Clin Cancer Res 2023; 29:488-500. [PMID: 36239995 PMCID: PMC9843437 DOI: 10.1158/1078-0432.ccr-22-0611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/10/2022] [Accepted: 10/07/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE Therapy resistance and fatal disease progression in glioblastoma are thought to result from the dynamics of intra-tumor heterogeneity. This study aimed at identifying and molecularly targeting tumor cells that can survive, adapt, and subclonally expand under primary therapy. EXPERIMENTAL DESIGN To identify candidate markers and to experimentally access dynamics of subclonal progression in glioblastoma, we established a discovery cohort of paired vital cell samples obtained before and after primary therapy. We further used two independent validation cohorts of paired clinical tissues to test our findings. Follow-up preclinical treatment strategies were evaluated in patient-derived xenografts. RESULTS We describe, in clinical samples, an archetype of rare ALDH1A1+ tumor cells that enrich and acquire AKT-mediated drug resistance in response to standard-of-care temozolomide (TMZ). Importantly, we observe that drug resistance of ALDH1A1+ cells is not intrinsic, but rather an adaptive mechanism emerging exclusively after TMZ treatment. In patient cells and xenograft models of disease, we recapitulate the enrichment of ALDH1A1+ cells under the influence of TMZ. We demonstrate that their subclonal progression is AKT-driven and can be interfered with by well-timed sequential rather than simultaneous antitumor combination strategy. CONCLUSIONS Drug-resistant ALDH1A1+/pAKT+ subclones accumulate in patient tissues upon adaptation to TMZ therapy. These subclones may therefore represent a dynamic target in glioblastoma. Our study proposes the combination of TMZ and AKT inhibitors in a sequential treatment schedule as a rationale for future clinical investigation.
Collapse
Affiliation(s)
- Sied Kebir
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK Partner Site, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK)
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Vivien Ullrich
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK Partner Site, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK)
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Pia Berger
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK Partner Site, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK)
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Celia Dobersalske
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK Partner Site, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK)
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sarah Langer
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK Partner Site, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK)
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Laurèl Rauschenbach
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK Partner Site, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK)
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Daniel Trageser
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany
| | - Andreas Till
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Franziska K. Lorbeer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Anja Wieland
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | | | - Ashar Ahmad
- Bonn-Aachen International Center for IT (B-IT), University of Bonn, Bonn, Germany
| | - Holger Fröhlich
- Bonn-Aachen International Center for IT (B-IT), University of Bonn, Bonn, Germany
- Department of Bioinformatics, Fraunhofer SCAI, Schloss Birlinghoven, Sankt Augustin, Germany
| | - Igor Cima
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK Partner Site, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK)
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Shruthi Prasad
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK Partner Site, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK)
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Marc Remke
- German Cancer Consortium (DKTK)
- Pediatric Neuro-Oncogenomics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Barbara M. Grüner
- German Cancer Consortium (DKTK)
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Alexander Roesch
- German Cancer Consortium (DKTK)
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Jens T. Siveke
- German Cancer Consortium (DKTK)
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Tobias Blau
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | | | - Torsten Pietsch
- Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Guido Reifenberger
- German Cancer Consortium (DKTK)
- Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Ulrich Sure
- German Cancer Consortium (DKTK)
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany
| | - Matthias Simon
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
- Department of Neurosurgery, Bethel Clinic, University of Bielefeld Medical Center, OWL, Bielefeld, Germany
| | - Martin Glas
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK Partner Site, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK)
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Björn Scheffler
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK Partner Site, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK)
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
- Corresponding Author: Björn Scheffler, Professor for Translational Oncology, DKFZ-Division of Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, WTZ-F, UG 01.041, Essen D-45147, Germany. Phone: 49 (0)201-723-8130; Fax: 49 (0)201-723-6752; E-mail:
| |
Collapse
|
7
|
Kizilbash SH. Why has targeting EGFR aberrations in glioblastoma therapy had limited success? Expert Rev Anticancer Ther 2022; 22:1261-1263. [PMID: 36367033 DOI: 10.1080/14737140.2022.2146581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Lee H, Kim D, Youn B. Targeting Oncogenic Rewiring of Lipid Metabolism for Glioblastoma Treatment. Int J Mol Sci 2022; 23:ijms232213818. [PMID: 36430293 PMCID: PMC9698497 DOI: 10.3390/ijms232213818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor. Despite increasing research on GBM treatment, the overall survival rate has not significantly improved over the last two decades. Although recent studies have focused on aberrant metabolism in GBM, there have been few advances in clinical application. Thus, it is important to understand the systemic metabolism to eradicate GBM. Together with the Warburg effect, lipid metabolism has emerged as necessary for GBM progression. GBM cells utilize lipid metabolism to acquire energy, membrane components, and signaling molecules for proliferation, survival, and response to the tumor microenvironment. In this review, we discuss fundamental cholesterol, fatty acid, and sphingolipid metabolism in the brain and the distinct metabolic alterations in GBM. In addition, we summarize various studies on the regulation of factors involved in lipid metabolism in GBM therapy. Focusing on the rewiring of lipid metabolism will be an alternative and effective therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Dahye Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2264
| |
Collapse
|
9
|
Wu G, Hao Q, Liu B, Zhou J, Fan C, Liu R. Network pharmacology-based screening of the active ingredients and mechanisms of evodiae fructus anti-glioblastoma multiforme. Medicine (Baltimore) 2022; 101:e30853. [PMID: 36181021 PMCID: PMC9524918 DOI: 10.1097/md.0000000000030853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Evodiae fructus has been shown to have anti-glioblastoma multiforme (GBM) effects. However, its anti-GBM active components and mechanism remain unclear. In this study, the active components of evodiae fructus were screened by network pharmacology to explore the possible molecular mechanism of resistance to GBM. MATERIALS AND METHODS The main active ingredients of evodiae fructus were derived from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Batch-traditional Chinese medicine (TCM). TCMSP and Swiss absorption, distribution, metabolism and elimination (ADME) predict genetic targets for ingredients that meet pharmacological criteria. GBM-related targets were obtained from DisGeNet, GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and TCGA. A Venn diagram was used to obtain the common targets of evodiae fructus and GBM. Protein-protein interaction (PPI) networks and component-disease target networks were constructed using Cytoscape 3.8.1 software for visualization. GBM gene differential expression was visualized by VolcaNoseR, and potential targets were enriched by Gene Ontology (GO) function and annotated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway by SRplot. Molecular docking verification was conducted using AutoDock Vina software. RESULTS According to the screening conditions, 24 active components and 80 drug targets were obtained. The PPI network contains 80 proteins. The molecular docking verification showed the molecular docking affinity of the core active compounds in evodiae fructus with CASP3, JUN, EGFR, and AKT1. CONCLUSIONS This study preliminarily identified the various molecular targets and multiple pathways of evodiae fructus against GBM.
Collapse
Affiliation(s)
- Gang Wu
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Qingpei Hao
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Bo Liu
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Jingru Zhou
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Cungang Fan
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, China
- *Correspondence: Ruen Liu, Department of Neurosurgery, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, China (e-mail: )
| |
Collapse
|
10
|
Lipid peroxidation in brain tumors. Neurochem Int 2021; 149:105118. [PMID: 34197897 DOI: 10.1016/j.neuint.2021.105118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
There is a lot of evidence showing that lipid peroxidation plays very important role in development of various diseases, including neurodegenerative diseases and brain tumors. Lipid peroxidation is achieved by two main pathways, by enzymatic or by non-enzymatic oxidation, respectively. In this paper, we focus on non-enzymatic, self-catalyzed chain reaction of poly-unsaturated fatty acid (PUFA) peroxidation generating reactive aldehydes, notably 4-hydroxynonenal (4-HNE), which acts as second messenger of free radicals and as growth regulating factor. It might originate from astrocytes as well as from blood vessels, even within the blood-brain barrier (BBB), which is in case of brain tumors transformed into the blood-brain-tumor barrier (BBTB). The functionality of the BBB is strongly affected by 4-HNE because it forms relatively stable protein adducts thus allowing the persistence and the spread of lipid peroxidation, as revealed by immunohistochemical findings. Because 4-HNE can act as a regulator of vital functions of normal and of malignant cells acting in the cell type- and concentration-dependent manners, the bioactivities of this product of lipid peroxidation be should further studied to reveal if it acts as a co-factor of carcinogenesis or as natural factor of defense against primary brain tumors and metastatic cancer.
Collapse
|
11
|
Mazzio E, Badisa R, Mack N, Cassim S, Zdralevic M, Pouyssegur J, Soliman KFA. Whole-transcriptome Analysis of Fully Viable Energy Efficient Glycolytic-null Cancer Cells Established by Double Genetic Knockout of Lactate Dehydrogenase A/B or Glucose-6-Phosphate Isomerase. Cancer Genomics Proteomics 2021; 17:469-497. [PMID: 32859627 DOI: 10.21873/cgp.20205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Nearly all mammalian tumors of diverse tissues are believed to be dependent on fermentative glycolysis, marked by elevated production of lactic acid and expression of glycolytic enzymes, most notably lactic acid dehydrogenase (LDH). Therefore, there has been significant interest in developing chemotherapy drugs that selectively target various isoforms of the LDH enzyme. However, considerable questions remain as to the consequences of biological ablation of LDH or upstream targeting of the glycolytic pathway. MATERIALS AND METHODS In this study, we explore the biochemical and whole transcriptomic effects of CRISPR-Cas9 gene knockout (KO) of lactate dehydrogenases A and B [LDHA/B double KO (DKO)] and glucose-6-phosphate isomerase (GPI KO) in the human colon cancer cell line LS174T, using Affymetrix 2.1 ST arrays. RESULTS The metabolic biochemical profiles corroborate that relative to wild type (WT), LDHA/B DKO produced no lactic acid, (GPI KO) produced minimal lactic acid and both KOs displayed higher mitochondrial respiration, and minimal use of glucose with no loss of cell viability. These findings show a high biochemical energy efficiency as measured by ATP in glycolysis-null cells. Next, transcriptomic analysis conducted on 48,226 mRNA transcripts reflect 273 differentially expressed genes (DEGS) in the GPI KO clone set, 193 DEGS in the LDHA/B DKO clone set with 47 DEGs common to both KO clones. Glycolytic-null cells reflect up-regulation in gene transcripts typically associated with nutrient deprivation / fasting and possible use of fats for energy: thioredoxin interacting protein (TXNIP), mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), PPARγ coactivator 1α (PGC-1α), and acetyl-CoA acyltransferase 2 (ACAA2). Other changes in non-ergometric transcripts in both KOs show losses in "stemness", WNT signaling pathway, chemo/radiation resistance, retinoic acid synthesis, drug detoxification, androgen/estrogen activation, and extracellular matrix reprogramming genes. CONCLUSION These findings demonstrate that: 1) The "Warburg effect" is dispensable, 2) loss of the LDHAB gene is not only inconsequential to viability but fosters greater mitochondrial energy, and 3) drugs that target LDHA/B are likely to be ineffective without a plausible combination second drug target.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Ramesh Badisa
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Nzinga Mack
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Shamir Cassim
- Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco
| | - Masa Zdralevic
- University Côte d'Azur, IRCAN, CNRS, Centre A. Lacassagne, Nice, France
| | - Jacques Pouyssegur
- Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco .,University Côte d'Azur, IRCAN, CNRS, Centre A. Lacassagne, Nice, France
| | - Karam F A Soliman
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
12
|
Wan J, Guo AA, King P, Guo S, Saafir T, Jiang Y, Liu M. TRPM7 Induces Tumorigenesis and Stemness Through Notch Activation in Glioma. Front Pharmacol 2020; 11:590723. [PMID: 33381038 PMCID: PMC7768084 DOI: 10.3389/fphar.2020.590723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 01/29/2023] Open
Abstract
We have reported that transient receptor potential melastatin-related 7 (TRPM7) regulates glioma stem cells (GSC) growth and proliferation through Notch, STAT3-ALDH1, and CD133 signaling pathways. In this study, we determined the major contributor(s) to TRPM7 mediated glioma stemness by further deciphering each individual Notch signaling. We first determined whether TRPM7 is an oncotarget in glioblastoma multiforme (GBM) using the Oncomine database. Next, we determined whether TRPM7 silencing by siRNA TRPM7 (siTRPM7) induces cell growth arrest or apoptosis to reduce glioma cell proliferation using cell cycle analysis and annexin V staining assay. We then examined the correlations between the expression of TRPM7 and Notch signaling activity as well as the expression of GSC markers CD133 and ALDH1 in GBM by downregulating TRPM7 through siTRPM7 or upregulating TRPM7 through overexpression of human TRPM7 (M7-wt). To distinguish the different function of channel and kinase domain of TRPM7, we further determined how the α-kinase-dead mutants of TRPM7 (α-kinase domain deleted/M7-DK and K1648R point mutation/M7-KR) affect Notch activities and CD133 and ALDH1 expression. Lastly, we determined the changes in TRPM7-mediated regulation of glioma cell growth/proliferation, cell cycle, and apoptosis by targeting Notch1. The Oncomine data revealed a significant increase in TRPM7 mRNA expression in anaplastic astrocytoma, diffuse astrocytoma, and GBM patients compared to that in normal brain tissues. TRPM7 silencing reduced glioma cell growth by inhibiting cell entry into S and G2/M phases and promoting cell apoptosis. TRPM7 expression in GBM cells was found to be positively correlated with Notch1 signaling activity and CD133 and ALDH1 expression; briefly, downregulation of TRPM7 by siTRPM7 decreased Notch1 signaling whereas upregulation of TRPM7 increased Notch1 signaling. Interestingly, kinase-inactive mutants (M7-DK and M7-KR) resulted in reduced activation of Notch1 signaling and decreased expression of CD133 and ALDH1 compared to that of wtTRPM7. Finally, targeting Notch1 effectively suppressed TRPM7-induced growth and proliferation of glioma cells through cell G1/S arrest and apoptotic induction. TRPM7 is responsible for sustained Notch1 signaling activation, enhanced expression of GSC markers CD133 and ALDH1, and regulation of glioma stemness, which contributes to malignant glioma cell growth and invasion.
Collapse
Affiliation(s)
- Jingwei Wan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssa Aihui Guo
- University of South Carolina SOM Greenville, Greenville, SC, United States
| | - Pendelton King
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shanchun Guo
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Talib Saafir
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,*Correspondence: Mingli Liu,
| |
Collapse
|
13
|
Molinaro AM, Phillips JJ. EGFR amplification status for clinical trial inclusion: where do we draw the line? Neuro Oncol 2019; 21:1215-1216. [PMID: 31504815 DOI: 10.1093/neuonc/noz146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Annette M Molinaro
- Departments of Neurological Surgery and Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Joanna J Phillips
- Departments of Neurological Surgery and Pathology, University of California, San Francisco, California
| |
Collapse
|