1
|
Zhidkova EM, Oleynik ES, Mikhina EA, Stepanycheva DV, Grigoreva DD, Grebenkina LE, Gordeev KV, Savina ED, Matveev AV, Yakubovskaya MG, Lesovaya EA. Synthesis and Anti-Cancer Activity In Vitro of Synephrine Derivatives. Biomolecules 2024; 15:2. [PMID: 39858397 PMCID: PMC11762542 DOI: 10.3390/biom15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Glucocorticoids (GCs) are routinely used to treat hematological malignancies; however, long-term treatment with GCs can lead to atrophic and metabolic adverse effects. Selective glucocorticoid receptor agonists (SEGRAs) with reduced side effects may act as a superior alternative to GCs. More than 30 SEGRAs have been described so far, yet none of them reached clinical trials for anti-cancer treatment. In the present work, we propose a novel approach to increase the number of potential SEGRAs by obtaining derivatives of synephrine, a molecule of natural origin. We synthesized 26 novel compounds from the class of synephrine derivatives and characterized them by HRMS, and 1H and 13C NMR. We evaluated in vitro anti-cancer effects in leukemia K562 and lymphoma Granta cells using the MTT assay and studied their potential affinity for the glucocorticoid receptor (GR) in silico using the molecular docking approach. The novel derivative 1-[4-(benzyloxy)phenyl]-2-(hexylamino)ethanol (10S-E2) with the highest GR affinity in silico exhibited cytotoxic activity against K562 and Granta cells after 24 h of treatment at the concentration of approximately 13 µM which correlated with its highest MolDock Score. The other compound with high GR affinity, 2-(hexylamino)-1-(4-nitrophenyl)ethanol (13S-G2), demonstrated cytotoxicity in both cell lines at concentrations of 50-70 µM. Overall, our results may provide a solid rationale for developing and further investigating synephrine derivatives as SEGRAs with anti-cancer activity.
Collapse
Affiliation(s)
- Ekaterina M. Zhidkova
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center for Oncology, Kashirskoe Shosse 24-15, Moscow 115478, Russia; (E.M.Z.); (D.V.S.); (D.D.G.); (M.G.Y.)
| | - Evgeniya S. Oleynik
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Prospekt, Moscow 119571, Russia; (E.S.O.); (E.A.M.); (L.E.G.); (E.D.S.); (A.V.M.)
| | - Ekaterina A. Mikhina
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Prospekt, Moscow 119571, Russia; (E.S.O.); (E.A.M.); (L.E.G.); (E.D.S.); (A.V.M.)
| | - Daria V. Stepanycheva
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center for Oncology, Kashirskoe Shosse 24-15, Moscow 115478, Russia; (E.M.Z.); (D.V.S.); (D.D.G.); (M.G.Y.)
| | - Diana D. Grigoreva
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center for Oncology, Kashirskoe Shosse 24-15, Moscow 115478, Russia; (E.M.Z.); (D.V.S.); (D.D.G.); (M.G.Y.)
| | - Lyubov E. Grebenkina
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Prospekt, Moscow 119571, Russia; (E.S.O.); (E.A.M.); (L.E.G.); (E.D.S.); (A.V.M.)
| | - Kirill V. Gordeev
- Faculty of Pharmacy, Kuban State Medical University, Ministry of Health of Russia, 4 Mitrofan Sedin Str., Krasnodar 350063, Russia;
| | - Ekaterina D. Savina
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Prospekt, Moscow 119571, Russia; (E.S.O.); (E.A.M.); (L.E.G.); (E.D.S.); (A.V.M.)
| | - Andrey V. Matveev
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Prospekt, Moscow 119571, Russia; (E.S.O.); (E.A.M.); (L.E.G.); (E.D.S.); (A.V.M.)
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center for Oncology, Kashirskoe Shosse 24-15, Moscow 115478, Russia; (E.M.Z.); (D.V.S.); (D.D.G.); (M.G.Y.)
- Institute of Medicine, Peoples’ Friendship University of Russia, Miklukho-Maklaya St. 6, Moscow 117198, Russia
| | - Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center for Oncology, Kashirskoe Shosse 24-15, Moscow 115478, Russia; (E.M.Z.); (D.V.S.); (D.D.G.); (M.G.Y.)
- Institute of Medicine, Peoples’ Friendship University of Russia, Miklukho-Maklaya St. 6, Moscow 117198, Russia
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Vysokovol’tnaya Str. 9, Ryazan 390026, Russia
| |
Collapse
|
2
|
Grigoreva DD, Zhidkova EM, Lylova ES, Enikeev AD, Kirsanov KI, Belitsky GA, Yakubovskaya MG, Lesovaya EA. Autophagy activation in breast cancer cells in vitro after the treatment with PI3K/AKT/mTOR inhibitors. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-61-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. Current chemotherapy of breast cancer has a wide range of disadvantages, in particular, the development of therapy-related infections and hormonal imbalance. Combination of main cytostatic with glucocorticoids allows to broaden its therapeutic interval and to decrease the total toxicity of the treatment. However, long-term treatment with glucocorticoids leads to the development of severe side effects via activation of multiple molecular mechanisms. Thus, glucocorticoids activate prosurvival mTOR-dependent autophagy. Therefore, the evaluation of PI3K (phosphoinositide 3-kinases) / Akt (protein kinase B) / mTOR (mammalian target of rapamycin) inhibitors as adjuvants for breast cancer therapy is important for optimization of treatment protocol.Aim. Analysis of the effects of PI3K/Akt/mTOR inhibitors, rapamycin, wortmannin and LY-294002 in combination with glucocorticoids in breast cancer cell lines of different subtypes.Materials and methods. We demonstrated the inhibition of PI3K/Akt/mTOR signaling and the autophagy induction after the treatment of breast cancer cells with rapamycin, wortmannin and LY-294002 by Western blotting analysis of Beclin-1, phospho-Beclin-1 (Ser93 and Ser30).Conclusion. PI3K/Akt/mTOR inhibitors in combination with Dexamethasone cooperatively inhibited mTOR signaling and activated autophagy in breast cancer cells in vitro.
Collapse
Affiliation(s)
- D. D. Grigoreva
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - E. M. Zhidkova
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - E. S. Lylova
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - A. D. Enikeev
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - K. I. Kirsanov
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - G. A. Belitsky
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia
| | - E. A. Lesovaya
- N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia; I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia
| |
Collapse
|
3
|
Nutritional Sensor REDD1 in Cancer and Inflammation: Friend or Foe? Int J Mol Sci 2022; 23:ijms23179686. [PMID: 36077083 PMCID: PMC9456073 DOI: 10.3390/ijms23179686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Regulated in Development and DNA Damage Response 1 (REDD1)/DNA Damage-Induced Transcript 4 (DDIT4) is an immediate early response gene activated by different stress conditions, including growth factor depletion, hypoxia, DNA damage, and stress hormones, i.e., glucocorticoids. The most known functions of REDD1 are the inhibition of proliferative signaling and the regulation of metabolism via the repression of the central regulator of these processes, the mammalian target of rapamycin (mTOR). The involvement of REDD1 in cell growth, apoptosis, metabolism, and oxidative stress implies its role in various pathological conditions, including cancer and inflammatory diseases. Recently, REDD1 was identified as one of the central genes mechanistically involved in undesirable atrophic effects induced by chronic topical and systemic glucocorticoids widely used for the treatment of blood cancer and inflammatory diseases. In this review, we discuss the role of REDD1 in the regulation of cell signaling and processes in normal and cancer cells, its involvement in the pathogenesis of different diseases, and the approach to safer glucocorticoid receptor (GR)-targeted therapies via a combination of glucocorticoids and REDD1 inhibitors to decrease the adverse atrophogenic effects of these steroids.
Collapse
|
4
|
Lesovaya EA, Chudakova D, Baida G, Zhidkova EM, Kirsanov KI, Yakubovskaya MG, Budunova IV. The long winding road to the safer glucocorticoid receptor (GR) targeting therapies. Oncotarget 2022; 13:408-424. [PMID: 35198100 PMCID: PMC8858080 DOI: 10.18632/oncotarget.28191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoids (Gcs) are widely used to treat inflammatory diseases and hematological malignancies, and despite the introduction of novel anti-inflammatory and anti-cancer biologics, the use of inexpensive and effective Gcs is expected to grow. Unfortunately, chronic treatment with Gcs results in multiple atrophic and metabolic side effects. Thus, the search for safer glucocorticoid receptor (GR)-targeted therapies that preserve therapeutic potential of Gcs but result in fewer adverse effects remains highly relevant. Development of selective GR agonists/modulators (SEGRAM) with reduced side effects, based on the concept of dissociation of GR transactivation and transrepression functions, resulted in limited success, and currently focus has shifted towards partial GR agonists. Additional approach is the identification and inhibition of genes associated with Gcs specific side effects. Others and we recently identified GR target genes REDD1 and FKBP51 as key mediators of Gcs-induced atrophy, and selected and validated candidate molecules for REDD1 blockage including PI3K/Akt/mTOR inhibitors. In this review, we summarized classic and contemporary approaches to safer GR-mediated therapies including unique concept of Gcs combination with REDD1 inhibitors. We discussed protective effects of REDD1 inhibitors against Gcs–induced atrophy in skin and bone and underlined the translational potential of this combination for further development of safer and effective Gcs-based therapies.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | - Daria Chudakova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Ekaterina M. Zhidkova
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Kirill I. Kirsanov
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Deparment of General Medical Practice, RUDN University, Moscow, Russia
| | - Marianna G. Yakubovskaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev Oncol Hematol 2022; 172:103625. [PMID: 35158070 DOI: 10.1016/j.critrevonc.2022.103625] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The most widespread, malignant, and deadliest type of glial tumor is glioblastoma multiforme (GBM). Despite radiation, chemotherapy, and radical surgery, the median survival of afflicted individuals is about 12 months. Unfortunately, existing therapeutic interventions are abysmal. Dexamethasone (Dex), a synthetic glucocorticoid, has been used for many years to treat brain edema and inflammation caused by GBM. Several investigations have recently shown that Dex also exerts antitumoral effects against GBM. On the other hand, more recent disputed findings have questioned the long-held dogma of Dex treatment for GBM. Unfortunately, steroids are associated with various undesirable side effects, including severe immunosuppression and metabolic changes like hyperglycemia, which may impair the survival of GBM patients. Current ideas and concerns about Dex's effects on GBM cerebral edema, cell proliferation, migration, and its clinical outcomes were investigated in this study.
Collapse
|
6
|
Gargalionis AN, Papavassiliou KA, Basdra EK, Papavassiliou AG. mTOR Signaling Components in Tumor Mechanobiology. Int J Mol Sci 2022; 23:1825. [PMID: 35163745 PMCID: PMC8837098 DOI: 10.3390/ijms23031825] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a central signaling hub that integrates networks of nutrient availability, cellular metabolism, and autophagy in eukaryotic cells. mTOR kinase, along with its upstream regulators and downstream substrates, is upregulated in most human malignancies. At the same time, mechanical forces from the tumor microenvironment and mechanotransduction promote cancer cells' proliferation, motility, and invasion. mTOR signaling pathway has been recently found on the crossroads of mechanoresponsive-induced signaling cascades to regulate cell growth, invasion, and metastasis in cancer cells. In this review, we examine the emerging association of mTOR signaling components with certain protein tools of tumor mechanobiology. Thereby, we highlight novel mechanisms of mechanotransduction, which regulate tumor progression and invasion, as well as mechanisms related to the therapeutic efficacy of antitumor drugs.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
- Department of Biopathology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| |
Collapse
|
7
|
Han H, Yu Z, Feng M. Regulated in Development and DNA Damage Response 1 Knockdown Alleviates Lipopolysaccharide-Induced Acute Lung Injury. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Regulated in Development and DNA Damage Response 1 (REDD1) knockdown can reduce the endoplasmic reticulum stress response in liver injury. However, its role on lipopolysaccharide (LPS)-induced acute lung injury (ALI) has not been explored. This study aimed to evaluate the effect of
REDD1 on lung epithelial cells induced by LPS. Rt-qPCR and Western blot were used to detect REDD1 expression in 16HBE cells induced by LPS. The interfering REDD1 plasmid was constructed, and CCK8 was used to detect the effect of interference with REDD1 on LPS-induced lung epithelial cell activity.
The expression of inflammatory factors was detected by ELISA and the apoptotic level was detected by TUNEL staining. String database was used to predict the combination of REDD1 and EP300 in lung epithelial cells, which was verified by CoIP experiment. An overexpressed plasmid of EP300 was
constructed to detect the effects of EP300 on inflammatory factors and apoptosis in REDD1 lung epithelial cells. LPS-induced increased REDD1 expression in lung epithelial cells. Interference with REDD1 inhibits LPS-induced lung epithelial cell activity injury and inflammatory factor expression
and inhibits LPS-induced lung epithelial cell apoptosis. After interference with REDD1, the expression of EP300 in LPS-induced lung epithelial cells was inhibited, and the overexpression of EP300 was reversed to promote the production of inflammatory factors and apoptosis. In conclusion, these
results demonstrate that REDD1 knockdown alleviates LPS-induced acute lung injury.
Collapse
Affiliation(s)
- Han Han
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310006, P. R. China
| | - Zhenxi Yu
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310006, P. R. China
| | - Mei Feng
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310006, P. R. China
| |
Collapse
|