1
|
Sharpe MA, Ijare OB, Raghavan S, Baskin AM, Baskin BN, Baskin DS. Targeting the Leloir Pathway with Galactose-Based Antimetabolites in Glioblastoma. Cancers (Basel) 2024; 16:3510. [PMID: 39456605 PMCID: PMC11506710 DOI: 10.3390/cancers16203510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) uses Glut3 and/or Glut14 and the Leloir pathway to catabolize D-Galactose (Gal). UDP-4-deoxy-4-fluorogalactose (UDP-4DFG) is a potent inhibitor of the two key enzymes, UDP-galactose-4-epimerase (GALE) and UDP-Glucose 6-dehydrogenase (UGDH), involved in Gal metabolism and in glycan synthesis. The Gal antimetabolite 4-deoxy-4-fluorogalactose (4DFG) is a good substrate for Glut3/Glut14 and acts as a potent glioma chemotherapeutic. METHODS Primary GBM cell cultures were used to examine toxicity and alterations in glycan composition via lectin binding in fixed cells and by Western blots. Toxicity/efficacy in vivo data was performed in mouse flank and intracranial models. The effect of 4DFG on D-glucose (Glc) metabolism in GBM cells was assessed by using 13C NMR-based tracer studies. RESULTS 4DFG is moderately potent against GBM cells (IC50: 125-300 µM). GBM glycosylation is disrupted by 4DFG. Survival analysis in an intracranial mouse model showed that treatment with 4DFG (6 × 25 mg/kg of 4DFG, intravenously) improved outcomes by three-fold (p < 0.01). Metabolic flux analysis revealed that both glycolytic and mitochondrial metabolic fluxes of [U-13C]Glc were significantly decreased in the presence of 4DFG in GBM cells. CONCLUSION A functional Gal-scavenging pathway in GBM allows Gal-based antimetabolites to act as chemotherapeutics. 4DFG is metabolized by GBM in vitro and in vivo, is lethal to GBM tumors, and is well tolerated in mice.
Collapse
Affiliation(s)
- Martyn A. Sharpe
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist Hospital, Houston, TX 77030, USA; (S.R.); (A.M.B.); (B.N.B.); (D.S.B.)
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
- Houston Methodist Academic Institute, Houston, TX 77030, USA
| | - Omkar B. Ijare
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist Hospital, Houston, TX 77030, USA; (S.R.); (A.M.B.); (B.N.B.); (D.S.B.)
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
- Houston Methodist Academic Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Sudhir Raghavan
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist Hospital, Houston, TX 77030, USA; (S.R.); (A.M.B.); (B.N.B.); (D.S.B.)
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
- Houston Methodist Academic Institute, Houston, TX 77030, USA
| | - Alexandra M. Baskin
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist Hospital, Houston, TX 77030, USA; (S.R.); (A.M.B.); (B.N.B.); (D.S.B.)
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
- Houston Methodist Academic Institute, Houston, TX 77030, USA
| | - Brianna N. Baskin
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist Hospital, Houston, TX 77030, USA; (S.R.); (A.M.B.); (B.N.B.); (D.S.B.)
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
- Houston Methodist Academic Institute, Houston, TX 77030, USA
| | - David S. Baskin
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist Hospital, Houston, TX 77030, USA; (S.R.); (A.M.B.); (B.N.B.); (D.S.B.)
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
- Houston Methodist Academic Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Texas A & M Medical School, Houston, TX 77030, USA
| |
Collapse
|
2
|
Jimenez-Macias J, Lee YC, Miller E, Finkelberg T, Zdioruk M, Berger G, Farquhar C, Nowicki M, Cho CF, Fedeles B, Loas A, Pentelute B, Lawler SE. A Pt(IV)-conjugated brain penetrant macrocyclic peptide shows pre-clinical efficacy in glioblastoma. J Control Release 2022; 352:623-636. [PMID: 36349615 PMCID: PMC9881056 DOI: 10.1016/j.jconrel.2022.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary malignant brain tumor, with a median survival of approximately 15 months. Treatment is limited by the blood-brain barrier (BBB) which restricts the passage of most drugs to the brain. We previously reported the design and synthesis of a BBB-penetrant macrocyclic cell-penetrating peptide conjugate (M13) covalently linked at the axial position of a Pt(IV) cisplatin prodrug. Here we show the Pt(IV)-M13 conjugate releases active cisplatin upon intracellular reduction and effects potent in vitro GBM cell killing. Pt(IV)-M13 significantly increased platinum uptake in an in vitro BBB spheroid model and intravenous administration of Pt(IV)-M13 in GBM tumor-bearing mice led to higher platinum levels in brain tissue and intratumorally compared with cisplatin. Pt(IV)-M13 administration was tolerated in naïve nude mice at higher dosage regimes than cisplatin and significantly extended survival above controls in a murine GBM xenograft model (median survival 33 days for Pt(IV)-M13 vs 24 days for Pt(IV) prodrug, 22.5 days for cisplatin and 22 days for control). Increased numbers of γH2AX nuclear foci, biomarkers of DNA damage, were observed in tumors of Pt(IV)-M13-treated mice, consistent with elevated platinum levels. The present work provides the first demonstration that systemic injection of a Pt(IV) complex conjugated to a brain-penetrant macrocyclic peptide can lead to increased platinum levels in the brain and extend survival in mouse GBM models, supporting further development of this approach and the utility of brain-penetrating macrocyclic peptide conjugates for delivering non-BBB penetrant drugs to the central nervous system.
Collapse
Affiliation(s)
- J.L. Jimenez-Macias
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI 02903, USA,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Y.-C. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - E. Miller
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - T. Finkelberg
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - M. Zdioruk
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - G. Berger
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - C.E. Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M.O. Nowicki
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - C.-F. Cho
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA,Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - B.I. Fedeles
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A. Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - B.L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA,Correspondence to: B.L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. (B.L. Pentelute)
| | - S. E. Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI 02903, USA,Correspondence to: S.E. Lawler, Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI 02903, USA. (S.E. Lawler)
| |
Collapse
|
4
|
Gabano E, Gariboldi MB, Caron G, Ermondi G, Marras E, Vallaro M, Ravera M. Application of the anthraquinone drug rhein as an axial ligand in bifunctional Pt(IV) complexes to obtain antiproliferative agents against human glioblastoma cells. Dalton Trans 2022; 51:6014-6026. [PMID: 35352739 DOI: 10.1039/d2dt00235c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octahedral Pt(IV) prodrugs are an effective way to combine cisplatin-like moieties and a second drug to obtain selective and stimuli responsive bifunctional antiproliferative compounds. Recently, two bifunctional Pt(IV) complexes have shown interesting in vitro and in vivo effects in glioblastoma, the most aggressive primary brain tumor. An interesting observation indicates that 4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (rhein) can inhibit in vivo glioma tumor progression. Furthermore, a prodrug in which cisplatin was combined with two molecules of rhein showed a potency higher than that of cisplatin toward cisplatin-resistant lung carcinoma cells. However, the high lipophilicity of this type of complex affects their solubility and bioavailability. To overcome these limits, in the present work, three Pt(IV) derivatives were obtained by differently linking one molecule of rhein and one acetato ligand at the axial position to a cisplatin core. The complexes proved to be similar to or more potent than the parent cisplatin and rhein, and the reference drug temozolomide on two human glioblastoma cell lines (U87-MG and T98G). They retained their activity under hypoxia and caused a significant reduction in the motility of both cell lines, which can be related to their ability to inhibit MMP2 and MMP9 matrix metalloproteinases. Finally, physicochemical and computational studies indicated that these Pt(IV) derivatives are more prone than rhein to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | - Marzia Bruna Gariboldi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Giulia Caron
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Emanuela Marras
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Maura Vallaro
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|