1
|
Finan JM, Di Niro R, Park SY, Jeong KJ, Hedberg MD, Smith A, McCarthy GA, Haber AO, Muschler J, Sears RC, Mills GB, Gmeiner WH, Brody JR. The polymeric fluoropyrimidine CF10 overcomes limitations of 5-FU in pancreatic ductal adenocarcinoma cells through increased replication stress. Cancer Biol Ther 2024; 25:2421584. [PMID: 39513592 PMCID: PMC11552260 DOI: 10.1080/15384047.2024.2421584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease soon to become the second leading cause of cancer deaths in the US. Beside surgery, current therapies have narrow clinical benefits with systemic toxicities. FOLFIRINOX is the current standard of care, one component of which is 5- Fluorouracil (5-FU), which causes serious gastrointestinal and hematopoietic toxicities and is vulnerable to resistance mechanisms. Recently, we have developed polymeric fluoropyrimidines (F10, CF10) which unlike 5-FU, are, in principle, completely converted to the thymidylate synthase inhibitory metabolite FdUMP, without generating appreciable levels of ribonucleotides that cause systemic toxicities while displaying much stronger anti-cancer activity. Here, we confirm the potency of CF10 and investigate enhancement of its efficacy through combination with inhibitors in vitro targeting replication stress, a hallmark of PDAC cells. CF10 is 308-times more potent as a single agent than 5-FU and was effective in the nM range in primary patient derived models. Further, we find that activity of CF10, but not 5-FU, is enhanced through combination with inhibitors of ATR and Wee1 that regulate the S and G2 DNA damage checkpoints and can be reversed by addition of dNTPs indicative of CF10 acting, at least in part, through inducing replication stress. Our results indicate CF10 has the potential to supersede the established benefit of 5-FU in PDAC treatment and indicate novel combination approaches that should be validated in vivo and may be beneficial in established regimens that include 5-FU.
Collapse
Affiliation(s)
- Jennifer M. Finan
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
| | - Roberto Di Niro
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Soon Young Park
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Kang Jin Jeong
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Madeline D. Hedberg
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexander Smith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Grace A. McCarthy
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
| | - Alex O. Haber
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - John Muschler
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Rosalie C. Sears
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Gordon B. Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
| | - William H. Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jonathan R. Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Holzinger T, Frei J, Jarzebska NT, Beer HD, Kündig TM, Pascolo S, Läuchli S, Mellett M. Differential functionality of fluoropyrimidine nucleosides for safe cancer therapy. Anticancer Drugs 2024; 35:912-921. [PMID: 39012759 PMCID: PMC11462896 DOI: 10.1097/cad.0000000000001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 07/18/2024]
Abstract
Chemotherapies are standard care for most cancer types. Pyrimidine analogs including 5-fluorouracil, cytosine arabinoside, 5-azacytidine, and gemcitabine are effective drugs that are utilized as part of a number of anticancer regimens. However, their lack of cell-specificity results in severe side effects. Therefore, there is a capacity to improve the efficacy of such therapies, while decreasing unwanted side effects. Here, we report that while 5-fluorocytosine is not chemotherapeutic in itself, incorporated into a ribonucleoside and more importantly into an RNA oligonucleotide, it induces cytotoxic effects on cancer cells in vitro . Interestingly, these effects are rescued by both uridine and thymidine. Similarly, in-vitro 2'-deoxy-5-fluorocytidine inhibits the growth of tumor cells but has the advantage of being less toxic to human primary cells compared with 5-fluorocytidine, suggesting that the deoxyribonucleoside could exhibit less side-effects in vivo . Thus, this work indicates that the potency of 5-fluorocytidine and 2'-deoxy-5-fluorocytidine should be further explored. In particular, oligonucleotides incorporating 5-fluorocytosine could be novel chemotherapeutic drugs that could be formulated in cancer-specific particles for safe and efficacious cancer treatments.
Collapse
Affiliation(s)
- Tim Holzinger
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH)
- Faculty of Medicine
| | - Julia Frei
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH)
- Faculty of Medicine
| | - Natalia Teresa Jarzebska
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH)
- Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH)
- Faculty of Medicine
| | - Thomas M. Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH)
- Faculty of Medicine
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH)
- Faculty of Medicine
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH)
- Faculty of Medicine
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH)
- Faculty of Medicine
| |
Collapse
|
3
|
Acharya G, Mani C, Sah N, Saamarthy K, Young R, Reedy MB, Sobol RW, Palle K. CHK1 inhibitor induced PARylation by targeting PARG causes excessive replication and metabolic stress and overcomes chemoresistance in ovarian cancer. Cell Death Discov 2024; 10:278. [PMID: 38862485 PMCID: PMC11166985 DOI: 10.1038/s41420-024-02040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Chemoresistance contributes to the majority of deaths in women with ovarian cancer (OC). Altered DNA repair and metabolic signaling is implicated in mediating therapeutic resistance. DNA damage checkpoint kinase 1 (CHK1) integrates cell cycle and DNA repair in replicating cells, and its inhibition causes replication stress, repair deficiency and cell cycle dysregulation. We observed elevated Poly-ADP-ribosylation (PAR) of proteins (PARylation) and subsequent decrease in cellular NAD+ levels in OC cells treated with the CHK1 inhibitor prexasertib, indicating activation of NAD+ dependent DNA repair enzymes poly-ADP-ribose polymerases (PARP1/2). While multiple PARP inhibitors are in clinical use in treating OC, tumor resistance to these drugs is highly imminent. We reasoned that inhibition of dePARylation by targeting Poly (ADP-ribose) glycohydrolase (PARG) would disrupt metabolic and DNA repair crosstalk to overcome chemoresistance. Although PARG inhibition (PARGi) trapped PARylation of the proteins and activated CHK1, it did not cause any significant OC cell death. However, OC cells deficient in CHK1 were hypersensitive to PARGi, suggesting a role for metabolic and DNA repair crosstalk in protection of OC cells. Correspondingly, OC cells treated with a combination of CHK1 and PARG inhibitors exhibited excessive replication stress-mediated DNA lesions, cell cycle dysregulation, and mitotic catastrophe compared to individual drugs. Interestingly, increased PARylation observed in combination treatment resulted in depletion of NAD+ levels. These decreased NAD+ levels were also paralleled with reduced aldehyde dehydrogenase (ALDH) activity, which requires NAD+ to maintain cancer stem cells. Furthermore, prexasertib and PARGi combinations exhibited synergistic cell death in OC cells, including an isogenic chemoresistant cell line and 3D organoid models of primary patient-derived OC cell lines. Collectively, our data highlight a novel crosstalk between metabolism and DNA repair involving replication stress and NAD+-dependent PARylation, and suggest a novel combination therapy of CHK1 and PARG inhibitors to overcome chemoresistance in OC.
Collapse
Affiliation(s)
- Ganesh Acharya
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chinnadurai Mani
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karunakar Saamarthy
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert Young
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mark B Reedy
- Department of Obstetrics & Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, & Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Obstetrics & Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
4
|
Okechukwu CC, Ma X, Sah N, Mani C, Palle K, Gmeiner WH. Enhanced Therapeutic Efficacy of the Nanoscale Fluoropyrimidine Polymer CF10 in a Rat Colorectal Cancer Liver Metastasis Model. Cancers (Basel) 2024; 16:1360. [PMID: 38611037 PMCID: PMC11011147 DOI: 10.3390/cancers16071360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Combination chemotherapy regimens that include fluoropyrimidine (FP) drugs, e.g., 5-fluorouracil (5-FU), are central to the treatment of colorectal cancer liver metastases (CRLMs), a major cause of cancer mortality. We tested a second-generation FP polymer, CF10, in a CC531/WAGRij syngeneic orthotopic rat model of liver metastasis to determine if CF10 improved response relative to 5-FU. CF10 displayed increased potency relative to 5-FU in CC531 rat colorectal cancer cells based on clonogenic assay results and caused increased apoptosis, as shown using a live/dead assay. The increased potency of CF10 to CC531 cells was associated with increased replication stress, as assessed by Western blot for biomarkers of ATR/Chk1 and ATM/Chk2 pathway activation. CF10 dosed to deliver equivalent FP content as an established dose of 5-FU in rats (50 mg/kg) did not cause weight loss in WAGRij rats even when combined with ethynyl uracil (EU), an inhibitor of dihydropyrimidine dehydrogenase, the enzyme primarily responsible for 5-FU degradation in the liver. In contrast, 5-FU caused significant weight loss that was exacerbated in combination with EU. Importantly, CF10 was significantly more effective than 5-FU at inhibiting tumor progression (~90% reduction) in the CC531/WAG/Rij CRLM model. Our results reveal strong potential for CF10 to be used for CRLM treatment.
Collapse
Affiliation(s)
- Charles Chidi Okechukwu
- Integrative Physiology and Pharmacology Graduate Program and Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xue Ma
- Department of Orthopedic Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, USA; (N.S.); (C.M.); (K.P.)
| | - Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, USA; (N.S.); (C.M.); (K.P.)
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, USA; (N.S.); (C.M.); (K.P.)
| | - William H. Gmeiner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
5
|
Gmeiner WH. Recent Advances in Therapeutic Strategies to Improve Colorectal Cancer Treatment. Cancers (Basel) 2024; 16:1029. [PMID: 38473386 PMCID: PMC10930828 DOI: 10.3390/cancers16051029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related mortality worldwide. CRC mortality results almost exclusively from metastatic disease (mCRC) for which systemic chemotherapy is often a preferred therapeutic option. Biomarker-based stratification of mCRC enables the use of precision therapy based on individual tumor mutational profiles. Activating mutations in the RAS/RAF/MAPK pathway downstream of EGFR signaling have, until recently, limited the use of EGFR-targeted therapies for mCRC; however, the development of anti-RAS and anti-RAF therapies together with improved strategies to limit compensatory signaling pathways is resulting in improved survival rates in several highly lethal mCRC sub-types (e.g., BRAF-mutant). The use of fluoropyrimidine (FP)-based chemotherapy regimens to treat mCRC continues to evolve contributing to improved long-term survival. Future advances in chemotherapy for mCRC will need to position development relative to the advances made in precision oncology.
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
6
|
Gmeiner WH, Okechukwu CC. Review of 5-FU resistance mechanisms in colorectal cancer: clinical significance of attenuated on-target effects. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:257-272. [PMID: 37457133 PMCID: PMC10344727 DOI: 10.20517/cdr.2022.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 07/18/2023]
Abstract
The emergence of chemoresistant disease during chemotherapy with 5-Fluorouracil-based (5-FU-based) regimens is an important factor in the mortality of metastatic CRC (mCRC). The causes of 5-FU resistance are multi-factorial, and besides DNA mismatch repair deficiency (MMR-D), there are no widely accepted criteria for determining which CRC patients are not likely to be responsive to 5-FU-based therapy. Thus, there is a need to systematically understand the mechanistic basis for 5-FU treatment failure and an urgent need to develop new approaches for circumventing the major causes of 5-FU resistance. In this manuscript, we review mechanisms of 5-FU resistance with an emphasis on: (1) altered anabolic metabolism limiting the formation of the primary active metabolite Fluorodeoxyuridylate (5-Fluoro-2'-deoxyuridine-5'-O-monophosphate; FdUMP); (2) elevated expression or activity of the primary enzymatic target thymidylate synthase (TS); and (3) dysregulated programmed cell death as important causes of 5-FU resistance. Importantly, these causes of 5-FU resistance can potentially be overcome through the use of next-generation fluoropyrimidine (FP) polymers (e.g., CF10) that display reduced dependence on anabolic metabolism and more potent TS inhibitory activity.
Collapse
Affiliation(s)
- William H. Gmeiner
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Integrative Physiology and Pharmacology Graduate Program, Institution, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Charles Chidi Okechukwu
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
7
|
Fàbrega C, Clua A, Eritja R, Aviñó A. Oligonucleotides Carrying Nucleoside Antimetabolites as Potential Prodrugs. Curr Med Chem 2023; 30:1304-1319. [PMID: 34844535 PMCID: PMC11497139 DOI: 10.2174/0929867328666211129124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleoside and nucleobase antimetabolites are an important class of chemotherapeutic agents for the treatment of cancer as well as other diseases. INTRODUCTION In order to avoid undesirable side effects, several prodrug strategies have been developed. In the present review, we describe a relatively unknown strategy that consists of using oligonucleotides modified with nucleoside antimetabolites as prodrugs. METHODS The active nucleotides are generated by enzymatic degradation once incorporated into cells. This strategy has attracted large interest and is widely utilized at present due to the continuous developments made in therapeutic oligonucleotides and the recent advances in nanomaterials and nanomedicine. RESULTS A large research effort was made mainly in the improvement of the antiproliferative properties of nucleoside homopolymers, but recently, chemically modified aptamers, antisense oligonucleotides and/or siRNA carrying antiproliferative nucleotides have demonstrated a great potential due to the synergetic effect of both therapeutic entities. In addition, DNA nanostructures with interesting properties have been built to combine antimetabolites and enhancers of cellular uptake in the same scaffold. Finally, protein nanoparticles functionalized with receptor-binders and antiproliferative oligomers represent a new avenue for a more effective treatment in cancer therapy. CONCLUSION It is expected that oligonucleotides carrying nucleoside antimetabolites will be considered as potential drugs in the near future for biomedical applications.
Collapse
Affiliation(s)
- Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Anna Clua
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| |
Collapse
|
8
|
Gmeiner WH. A narrative review of genetic factors affecting fluoropyrimidine toxicity. PRECISION CANCER MEDICINE 2021; 4:38. [PMID: 34901834 PMCID: PMC8664072 DOI: 10.21037/pcm-21-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Our objective is to document progress in developing personalized therapy with fluoropyrimidine drugs (FPs) to improve outcomes for cancer patients and to identify areas requiring further investigation. BACKGROUND FPs including 5-fluorouracil (5-FU), are among the most widely used drugs for treating colorectal cancer (CRC) and other gastrointestinal (GI) malignancies. While FPs confer a survival benefit for CRC patients, serious systemic toxicities, including neutropenia, occur in ~30% of patients with lethality in 0.5-1% of patients. While serious systemic toxicities may occur in any patient, patients with polymorphisms in DPYD, which encodes the rate-limiting enzyme for pyrimidine degradation are at very high risk. Other genetic factors affecting risk for 5-FU toxicity, including miR-27a, are under investigation. METHODS Literature used to inform the text of this article was selected from PubMed.gov from the National Library of Medicine while regulatory documents were identified via Google search. CONCLUSIONS Clinical studies to date have validated four DPYD polymorphisms (DPYD*2A, DPYD*13, c.2846A>T, HapB3) associated with serious toxicities in patients treated with 5-FU. Genetic screening for these is being implemented in the Netherlands and the UK and has been shown to be a cost-effective way to improve outcomes. Factors other than DPYD polymorphisms (e.g., miR-27a, TYMS, ENOSF1, p53) also affect 5-FU toxicity. Functional testing for deficient pyrimidine catabolism {defined as [U] >16 ng/mL or [UH2]:[U] <10} is being implemented in France and has demonstrated utility in identifying patients with elevated risk for 5-FU toxicity. Therapeutic drug monitoring (TDM) from plasma levels of 5-FU during first cycle treatment also is being used to improve outcomes and pharmacokinetic-based dosing is being used to increase the percent of patients within optimal area under the curve (AUC) (18-28 mg*h/L) values. Patients maintained in the optimal AUC range experienced significantly reduced systemic toxicities. As understanding the genetic basis for increased risk of 5-FU toxicity becomes more refined, the development of functional-based methods to optimize treatment is likely to become more widespread.
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Gmeiner WH, van Waardenburg RCAM. Targeting DNA topoisomerases: past & future. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:758-761. [PMID: 34532656 PMCID: PMC8442622 DOI: 10.20517/cdr.2021.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022]
Affiliation(s)
- William H. Gmeiner
- Department of Cancer Biology Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
10
|
Gmeiner WH. Recent Advances in Our Knowledge of mCRC Tumor Biology and Genetics: A Focus on Targeted Therapy Development. Onco Targets Ther 2021; 14:2121-2130. [PMID: 33790575 PMCID: PMC8007558 DOI: 10.2147/ott.s242224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Metastatic colorectal cancer (mCRC) remains a highly lethal malignancy although considerable progress has resulted from characterizing molecular alterations such as RAS mutation status and extent of microsatellite instability (MSI) to guide optimal use of available therapies. The availability of gene expression profiling, next generation sequencing technologies, proteomics analysis and other technologies provides high resolution information on individual tumors, including metastatic lesions to better define intra-tumor and inter-tumor heterogeneity. Recent literature applying this information to further customize personalized therapies is reviewed. Current biomarker-based stratification used to select optimal therapy that is personalized to the mutation profile of individual tumors is described. Recent literature using whole exome sequencing of metastatic lesions and primary CRC tumors and other advanced technologies to more fully elucidate the tumor biology specific to mCRC sub-types and to develop more precise therapies that improve outcomes is also reviewed.
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
11
|
Haber AO, Jain A, Mani C, Nevler A, Agostini LC, Golan T, Palle K, Yeo CJ, Gmeiner WH, Brody JR. AraC-FdUMP[10] Is a Next-Generation Fluoropyrimidine with Potent Antitumor Activity in PDAC and Synergy with PARG Inhibition. Mol Cancer Res 2021; 19:565-572. [PMID: 33593942 DOI: 10.1158/1541-7786.mcr-20-0985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
AraC-FdUMP[10] (CF10) is a second-generation polymeric fluoropyrimidine that targets both thymidylate synthase (TS), the target of 5-fluorouracil (5-FU), and DNA topoisomerase 1 (Top1), the target of irinotecan, two drugs that are key components of FOLFIRNOX, a standard-of-care regimen for pancreatic ductal adenocarcinoma (PDAC). We demonstrated that F10 and CF10 are potent inhibitors of PDAC cell survival (in multiple cell lines including patient-derived lines) with IC50s in the nanomolar range and are nearly 1,000-fold more potent than 5-FU. The increased potency of CF10 relative to 5-FU correlated with enhanced TS inhibition and strong Top1 cleavage complex formation. Furthermore, CF10 displayed single-agent activity in PDAC murine xenografts without inducing weight loss. Through a focused drug synergy screen, we identified that combining CF10 with targeting the DNA repair enzyme, poly (ADP-ribose) glycohydrolase, induces substantial DNA damage and apoptosis. This work moves CF10 closer to a clinical trial for the treatment of PDAC. IMPLICATIONS: CF10 is a promising polymeric fluoropyrimidine with dual mechanisms of action (i.e., TS and Top1 inhibition) for the treatment of PDAC and synergizes with targeting of DNA repair. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/4/565/F1.large.jpg.
Collapse
Affiliation(s)
- Alex O Haber
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Avinoam Nevler
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lebaron C Agostini
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Talia Golan
- Oncology Institute, Chaim Sheba Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Komaraiah Palle
- Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Charles J Yeo
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - William H Gmeiner
- Deparment of Cancer Biology, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina.
| | - Jonathan R Brody
- Department of Surgery and Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|