1
|
Anand S, Mardhekar S, Bhoge PR, Mishra SK, Kikkeri R. Molecular recognition and proteoglycan mimic arrangement: modulating cisplatin toxicity. Chem Commun (Camb) 2024; 60:4495-4498. [PMID: 38567462 DOI: 10.1039/d4cc00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We have demonstrated that cisplatin (CP), an anticancer drug, showed a preference for binding the sulfated-L-iduronic acid (S-L-IdoA) unit over the sulfated-D-glucuronic acid unit of heparan sulfate. The multivalency of S-L-IdoA, such as in the proteoglycan mimic, resulted in distinct modes of cell-surface engineering in normal and cancer cells, with these disparities having a significant impact on CP-mediated toxicity.
Collapse
Affiliation(s)
- Saurabh Anand
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Preeti Ravindra Bhoge
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Sandeep Kumar Mishra
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 4110008, India.
| |
Collapse
|
2
|
Katner S, Ginsburg EP, Hampton JD, Peterson EJ, Koblinski JE, Farrell NP. A Comparison of Di- and Trinuclear Platinum Complexes Interacting with Glycosaminoglycans for Targeted Chemotherapy. ACS Med Chem Lett 2023; 14:1224-1230. [PMID: 37736178 PMCID: PMC10510529 DOI: 10.1021/acsmedchemlett.3c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) and their associated proteins aid in tumor progression through modulation of biological events such as cell invasion, angiogenesis, metastasis, and immunological responses. Metalloshielding of the anionic heparan sulfate (HS) chains by cationic polynuclear platinum complexes (PPCs) prevents the HS from interacting with HS-associated proteins and thus diminishes the critical functions of HSPG. Studies herein exploring the PPC-HS interactions demonstrated that a series of PPCs varying in charge, nuclearity, distance between Pt centers, and hydrogen-bonding ability influence HS affinity. We report that the polyamine-linked complexes have high HS affinity and display excellent in vivo activity against breast cancer metastases and those arising in the bone and liver compared to carboplatin. Overall, the PPC-HS niche offers an attractive approach for targeting HSPG-expressing tumor cells.
Collapse
Affiliation(s)
- Samantha
J. Katner
- Department
of Biochemistry, Chemistry, and Geology, Minnesota State University, Mankato, Mankato, Minnesota 56001, United States
| | - Eric P. Ginsburg
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - James D. Hampton
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Erica J. Peterson
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Jennifer E. Koblinski
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department
of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Nicholas P. Farrell
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Massey
Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
3
|
Gorle AK, Malde AK, Chang CW, Rajaratnam P, von Itzstein M, Berners-Price SJ, Farrell NP. Probing Disaccharide Binding to Triplatin as Models for Tumor Cell Heparan Sulfate (GAG) Interactions. Inorg Chem 2023; 62:13212-13220. [PMID: 37552525 PMCID: PMC10445638 DOI: 10.1021/acs.inorgchem.3c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 08/09/2023]
Abstract
In this study, we have used [1H, 15N] NMR spectroscopy to investigate the interactions of the trinuclear platinum anticancer drug triplatin (1) (1,0,1/t,t,t or BBR3464) with site-specific sulfated and carboxylated disaccharides. Specifically, the disaccharides GlcNS(6S)-GlcA (I) and GlcNS(6S)-IdoA(2S) (II) are useful models of longer-chain glycosaminoglycans (GAGs) such as heparan sulfate (HS). For both the reactions of 15N-1 with I and II, equilibrium conditions were achieved more slowly (65 h) compared to the reaction with the monosaccharide GlcNS(6S) (9 h). The data suggest both carboxylate and sulfate binding of disaccharide I to the Pt with the sulfato species accounting for <1% of the total species at equilibrium. The rate constant for sulfate displacement of the aqua ligand (kL2) is 4 times higher than the analogous rate constant for carboxylate displacement (kL1). There are marked differences in the equilibrium concentrations of the chlorido, aqua, and carboxy-bound species for reactions with the two disaccharides, notably a significantly higher concentration of carboxylate-bound species for II, where sulfate-bound species were barely detectable. The trend mirrors that reported for the corresponding dinuclear platinum complex 1,1/t,t, where the rate constant for sulfate displacement of the aqua ligand was 3 times higher than that for acetate. Also similar to what we observed for the reactions of 1,1/t,t with the simple anions, aquation of the sulfato group is rapid, and the rate constant k-L2 is 3 orders of magnitude higher than that for displacement of the carboxylate (k-L1). Molecular dynamics calculations suggest that extra hydrogen-bonding interactions with the more sulfated disaccharide II may prevent or diminish sulfate binding of the triplatin moiety. The overall results suggest that Pt-O donor interactions should be considered in any full description of platinum complex cellular chemistry.
Collapse
Affiliation(s)
- Anil K. Gorle
- Institute
for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Alpeshkumar K. Malde
- Institute
for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Chih-Wei Chang
- Institute
for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Premraj Rajaratnam
- Institute
for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Mark von Itzstein
- Institute
for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Susan J. Berners-Price
- Institute
for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Nicholas P. Farrell
- Institute
for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
4
|
Rashid NS, Boyd DC, Olex AL, Grible JM, Duong AK, Alzubi MA, Altman JE, Leftwich TJ, Valentine AD, Hairr NS, Zboril EK, Smith TM, Pfefferle AD, Dozmorov MG, Harrell JC. Transcriptomic changes underlying EGFR inhibitor resistance in human and mouse models of basal-like breast cancer. Sci Rep 2022; 12:21248. [PMID: 36482068 PMCID: PMC9731984 DOI: 10.1038/s41598-022-25541-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The goals of this study were to identify transcriptomic changes that arise in basal-like breast cancer cells during the development of resistance to epidermal growth factor receptor inhibitors (EGFRi) and to identify drugs that are cytotoxic once EGFRi resistance occurs. Human patient-derived xenografts (PDXs) were grown in immunodeficient mice and treated with a set of EGFRi; the EGFRi erlotinib was selected for more expansive in vivo studies. Single-cell RNA sequencing was performed on mammary tumors from the basal-like PDX WHIM2 that was treated with vehicle or erlotinib for 9 weeks. The PDX was then subjected to long-term erlotinib treatment in vivo. Through serial passaging, an erlotinib-resistant subline of WHIM2 was generated. Bulk RNA-sequencing was performed on parental and erlotinib-resistant tumors. In vitro high-throughput drug screening with > 500 clinically used compounds was performed on parental and erlotinib-resistant cells. Previously published bulk gene expression microarray data from MMTV-Wnt1 tumors were contrasted with the WHIM2 PDX data. Erlotinib effectively inhibited WHIM2 tumor growth for approximately 4 weeks. Compared to untreated cells, single-cell RNA sequencing revealed that a greater proportion of erlotinib-treated cells were in the G1 phase of the cell cycle. Comparison of WHIM2 and MMTV-Wnt1 gene expression data revealed a set of 38 overlapping genes that were differentially expressed in the erlotinib-resistant WHIM2 and MMTV-Wnt1 tumors. Comparison of all three data types revealed five genes that were upregulated across all erlotinib-resistant samples: IL19, KLK7, LCN2, SAA1, and SAA2. Of these five genes, LCN2 was most abundantly expressed in triple-negative breast cancers, and its knockdown restored erlotinib sensitivity in vitro. Despite transcriptomic differences, parental and erlotinib-resistant WHIM2 displayed similar responses to the majority of drugs assessed for cytotoxicity in vitro. This study identified transcriptomic changes arising in erlotinib-resistant basal-like breast cancer. These data could be used to identify a biomarker or develop a gene signature predictive of patient response to EGFRi. Future studies should explore the predictive capacity of these gene signatures as well as how LCN2 contributes to the development of EGFRi resistance.
Collapse
Affiliation(s)
- Narmeen S Rashid
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
- Department of Biology, University of Richmond, Richmond, VA, 23173, USA
| | - David C Boyd
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
- Program in Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Amy L Olex
- C. Kenneth and Diane Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Jacqueline M Grible
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Alex K Duong
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Mohammad A Alzubi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
- Oncology Center-Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Julia E Altman
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Tess J Leftwich
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Aaron D Valentine
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Nicole S Hairr
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Emily K Zboril
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Timothy M Smith
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Adam D Pfefferle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Mikhail G Dozmorov
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23220, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23220, USA.
| |
Collapse
|
5
|
Enzymatic Digestion of Cell-surface Heparan Sulfate Alters the Radiation Response in Triple-negative Breast Cancer Cells. Arch Med Res 2022; 53:826-839. [PMID: 36411172 DOI: 10.1016/j.arcmed.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Radiation resistance represents a major challenge in the treatment of breast cancer. As heparan sulfate (HS) chains are known to contribute to tumorigenesis, we aimed to investigate the interplay between HS degradation and radiation response in triple-negative breast cancer (TNBC) cells. METHODS HS chains were degraded in vitro as TNBC cells MDA-MB-231 and HCC1806 were treated with heparinase I and III. Subsequently, radioresistance was determined via colony formation assay after doses of 2, 4 and 6 Gy. Cell cycle profile, stem cell characteristics, expression of HS, activation of beta integrins, and apoptosis were determined by flow cytometry. Additionally, cell motility was analyzed via wound-healing assays, and expression and activation of FAK, CDK-6, Src, and Erk1/2 were quantified by western blot pre- and post-irradiation. Finally, the expression of cytokines was analyzed using a cytokine array. RESULTS Radiation promoted cell cycle changes, while heparinase treatment induced apoptosis in both cell lines. Colony formation assays showed significantly increased radio-resistance for both cell lines after degradation of HS. Cell migration was similarly upregulated after degradation of HS compared to controls. This effect was even more prominent after irradiation. Interestingly, FAK, a marker of radioresistance, was significantly activated in the heparinase-treated group. Additionally, we found Src to be dysregulated in MDA-MB-231 cells. Finally, we observed differential secretion of GRO, CXCL1, IGFBP1, IL8, Angiogenin, and Osteoprotegerin after HS degradation and radiotherapy. CONCLUSION Our results suggest an influence of HS chains on the development of radioresistance in TNBC.
Collapse
|
6
|
Modi U, Kedaria D, Vasita R. Differential Migration and Proliferation Potential of the Hydrogel Aided 3D Tumoroid. Macromol Biosci 2022; 22:e2200196. [PMID: 35997309 DOI: 10.1002/mabi.202200196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/04/2022] [Indexed: 12/25/2022]
Abstract
For substantial in vitro cancer biology research, the 3D cell culture method has now been regarded as more suitable model expected to be recapitulating maximum in vivo tumor mass relevance. Despite of available techniques to develop in vitro 3D models, a system availing a physiologically relevant in vitro 3D model of primary lung adenocarcinoma with extracellular matrix (ECM) mimicry and similar tumorigenic properties still remains a quest. Thus, in the present study, chemically modified Dextran-Chitosan (MDC) hydrogel has been developed as a 3D tumoroid aiding scaffold. The 3D A549 tumoroids aided by the MDC scaffold have physiologically relevant proliferation, migration, invasive potential, and Gefitinib [targeting epidermal growth factor receptor (EGFR)] efficacy as compared to the 2D cultured cells. The surface topography and wettability of hydrogel availed in vivo micro tumor mass mimicking Lung adenocarcinoma 3D in vitro model. Thus, opening an innovative avenue for elucidating the disease mechanism and drug efficacy on relevant 3D cancer models in vitro.
Collapse
Affiliation(s)
- Unnati Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Dhaval Kedaria
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| |
Collapse
|
7
|
Jacob S, Turner TH, Cai J, Floros KV, Yu AK, Coon CM, Khatri R, Alzubi MA, Jakubik CT, Bouck YM, Puchalapalli M, Shende M, Dozmorov MG, Boikos SA, Hu B, Harrell JC, Benes CH, Koblinski JE, Costa C, Faber AC. Genomic screening reveals ubiquitin-like modifier activating enzyme 1 as a potent and druggable target in c-MYC-high triple negative breast cancer models. PNAS NEXUS 2022; 1:pgac232. [PMID: 36712364 PMCID: PMC9802478 DOI: 10.1093/pnasnexus/pgac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Triple negative breast cancer (TNBC) accounts for over 30% of all breast cancer (BC)-related deaths, despite accounting for only 10% to 15% of total BC cases. Targeted therapy development has largely stalled in TNBC, underlined by a lack of traditionally druggable addictions like receptor tyrosine kinases (RTKs). Here, through full genome CRISPR/Cas9 screening of TNBC models, we have uncovered the sensitivity of TNBCs to the depletion of the ubiquitin-like modifier activating enzyme 1 (UBA1). Targeting UBA1 with the first-in-class UBA1 inhibitor TAK-243 induced unresolvable endoplasmic reticulum (ER)-stress and activating transcription factor 4 (ATF4)-mediated upregulation of proapoptotic NOXA, leading to cell death. c-MYC expression correlates with TAK-243 sensitivity and cooperates with TAK-243 to induce a stress response and cell death. Importantly, there was an order of magnitude greater sensitivity of TNBC lines to TAK-243 compared to normal tissue-derived cells. In five patient derived xenograft models (PDXs) of TNBC, TAK-243 therapy led to tumor inhibition or frank tumor regression. Moreover, in an intracardiac metastatic model of TNBC, TAK-243 markedly reduced metastatic burden, indicating UBA1 is a potential new target in TNBC expressing high levels of c-MYC.
Collapse
Affiliation(s)
- Sheeba Jacob
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tia H Turner
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA,Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Jinyang Cai
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Konstantinos V Floros
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ann K Yu
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Colin M Coon
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rishabh Khatri
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammad A Alzubi
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA,Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Charles T Jakubik
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| | - Ynes M Bouck
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Madhavi Puchalapalli
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Mayuri Shende
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sosipatros A Boikos
- Hematology, Oncology and Palliative Care, School of Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bin Hu
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA,Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA,Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | |
Collapse
|
8
|
Clark GC, Hampton JD, Koblinski JE, Quinn B, Mahmoodi S, Metcalf O, Guo C, Peterson E, Fisher PB, Farrell NP, Wang XY, Mikkelsen RB. Radiation induces ESCRT pathway dependent CD44v3 + extracellular vesicle production stimulating pro-tumor fibroblast activity in breast cancer. Front Oncol 2022; 12:913656. [PMID: 36106109 PMCID: PMC9465418 DOI: 10.3389/fonc.2022.913656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/03/2022] [Indexed: 02/03/2023] Open
Abstract
Despite recent advances in radiotherapeutic strategies, acquired resistance remains a major obstacle, leading to tumor recurrence for many patients. Once thought to be a strictly cancer cell intrinsic property, it is becoming increasingly clear that treatment-resistance is driven in part by complex interactions between cancer cells and non-transformed cells of the tumor microenvironment. Herein, we report that radiotherapy induces the production of extracellular vesicles by breast cancer cells capable of stimulating tumor-supporting fibroblast activity, facilitating tumor survival and promoting cancer stem-like cell expansion. This pro-tumor activity was associated with fibroblast production of the paracrine signaling factor IL-6 and was dependent on the expression of the heparan sulfate proteoglycan CD44v3 on the vesicle surface. Enzymatic removal or pharmaceutical inhibition of its heparan sulfate side chains disrupted this tumor-fibroblast crosstalk. Additionally, we show that the radiation-induced production of CD44v3+ vesicles is effectively silenced by blocking the ESCRT pathway using a soluble pharmacological inhibitor of MDA-9/Syntenin/SDCBP PDZ1 domain activity, PDZ1i. This population of vesicles was also detected in the sera of human patients undergoing radiotherapy, therefore representing a potential biomarker for radiation therapy and providing an opportunity for clinical intervention to improve treatment outcomes.
Collapse
Affiliation(s)
- Gene Chatman Clark
- Virginia Commonwealth University, Richmond, VA, United States,Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States,*Correspondence: Gene Chatman Clark,
| | - James David Hampton
- Virginia Commonwealth University, Richmond, VA, United States,Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer E. Koblinski
- Virginia Commonwealth University, Richmond, VA, United States,Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Bridget Quinn
- Virginia Commonwealth University, Richmond, VA, United States,Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Sitara Mahmoodi
- Virginia Commonwealth University, Richmond, VA, United States
| | - Olga Metcalf
- University of Virginia, Charlottesville, VA, United States
| | - Chunqing Guo
- Virginia Commonwealth University, Richmond, VA, United States,Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Erica Peterson
- Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul B. Fisher
- Virginia Commonwealth University, Richmond, VA, United States,Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Nicholas P. Farrell
- Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Department of Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiang-Yang Wang
- Virginia Commonwealth University, Richmond, VA, United States,University of Virginia, Charlottesville, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Ross B. Mikkelsen
- Virginia Commonwealth University, Richmond, VA, United States,Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|