1
|
Gracia B, Montes P, Huang M, Chen J, Karras GI. HSP90 buffers deleterious genetic variations in BRCA1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623783. [PMID: 39605638 PMCID: PMC11601394 DOI: 10.1101/2024.11.15.623783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Protein-folding chaperone HSP90 buffers genetic variation in diverse organisms, but the clinical significance of HSP90 buffering in disease remains unclear. Here, we show that HSP90 buffers mutations in the BRCT domain of BRCA1. HSP90-buffered BRCA1 mutations encode protein variants that retain interactions with partner proteins and rely on HSP90 for protein stability and function in cell survival. Moreover, HSP90-buffered BRCA1 variants confer PARP inhibitor resistance in cancer cell lines. Low-level HSP90 inhibition alleviates this resistance, revealing a cryptic and mutant-specific HSP90-contingent synthetic lethality. Hence, by stabilizing metastable variants across the entirety of the BRCT domain, HSP90 reduces the clinical severity of BRCA1 mutations allowing them to accumulate in populations. We estimate that HSP90 buffers 11% to 28% of known human BRCA1- BRCT missense mutations. Our work extends the clinical significance of HSP90 buffering to a prevalent class of variations in BRCA1 , pioneering its importance in cancer predisposition and therapy resistance.
Collapse
|
2
|
Huo Y, Karnawat R, Liu L, Knieß RA, Groß M, Chen X, Mayer MP. Modification of Regulatory Tyrosine Residues Biases Human Hsp90α in its Interactions with Cochaperones and Clients. J Mol Biol 2024; 436:168772. [PMID: 39222679 DOI: 10.1016/j.jmb.2024.168772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The highly conserved Hsp90 chaperones control stability and activity of many essential signaling and regulatory proteins including many protein kinases, E3 ligases and transcription factors. Thereby, Hsp90s couple cellular homeostasis of the proteome to cell fate decisions. High-throughput mass spectrometry revealed 178 and 169 posttranslational modifications (PTMs) for human cytosolic Hsp90α and Hsp90β, but for only a few of the modifications the physiological consequences are investigated in some detail. In this study, we explored the suitability of the yeast model system for the identification of key regulatory residues in human Hsp90α. Replacement of three tyrosine residues known to be phosphorylated by phosphomimetic glutamate and by non-phosphorylatable phenylalanine individually and in combination influenced yeast growth and the maturation of 7 different Hsp90 clients in distinct ways. Furthermore, wild-type and mutant Hsp90 differed in their ability to stabilize known clients when expressed in HepG2 HSP90AA1-/- cells. The purified mutant proteins differed in their interaction with the cochaperones Aha1, Cdc37, Hop and p23 and in their support of the maturation of glucocorticoid receptor ligand binding domain in vitro. In vivo and in vitro data correspond well to each other confirming that the yeast system is suitable for the identification of key regulatory sites in human Hsp90s. Our findings indicate that even closely related clients are affected differently by the amino acid replacements in the investigated positions, suggesting that PTMs could bias Hsp90s client specificity.
Collapse
Affiliation(s)
- Yuantao Huo
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Rishabh Karnawat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Lixia Liu
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou Avenue North 1838, Tonghe, Guangzhou, Guangdong 510515, P.R.China
| | - Robert A Knieß
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Maike Groß
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Xuemei Chen
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou Avenue North 1838, Tonghe, Guangzhou, Guangdong 510515, P.R.China
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Liu L, Zheng Z, Huang Y, Su H, Wu G, Deng Z, Li Y, Xie G, Li J, Zou F, Chen X. HSP90 N-terminal inhibition promotes mitochondria-derived vesicles related metastasis by reducing TFEB transcription via decreased HSP90AA1-HCFC1 interaction in liver cancer. Autophagy 2024:1-25. [PMID: 39461872 DOI: 10.1080/15548627.2024.2421703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer cells compensate with increasing mitochondria-derived vesicles (MDVs) to maintain mitochondrial homeostasis, when canonical MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta)-mediated mitophagy is lacking. MDVs promote the transport of mitochondrial components into extracellular vesicles (EVs) and induce tumor metastasis. Although HSP90 (heat shock protein 90) chaperones hundreds of client proteins and its inhibitors suppress tumors, HSP90 inhibitors-related chemotherapy is associated with unexpected metastasis. Herein, we find that HSP90 inhibitor causes mitochondrial damage but stimulates the low LC3-induced MDVs and the release of MDVs-derived EVs. However, why LC3 decreases and what is the transcriptional regulatory mechanism of MDVs formation under HSP90 inhibition remain unknown. Because TFEB (transcription factor EB) is the most important mitophagy transcription factor, and the HSP90 client HCFC1 (host cell factor C1) regulates TFEB transcription, there should be a hidden connection between TFEB, HCFC1 and HSP90 in MDVs formation. Our results support the idea that HSP90 N-terminal inhibition reduces TFEB transcription via decreased HSP90AA1-HCFC1 interaction, which prevents HCFC1 from binding to the TFEB proximal promoter region. Decreased TFEB transcription and consequently reduced LC3, ultimately promoted MDVs formation. Blocking MDVs formation with the microtubule inhibitor nocodazole (NOC) activates the HCFC1-TFEB-LC3 axis, weakens HSP90 inhibitors-induced MDVs and the release of MDVs-derived EVs, inhibits the growth of tumor cell spheres and primary liver tumors, and reduces the extravasation of cancer cells to secondary metastatic sites. Taken together, these data suggest that combination therapy should be used to reduce the metastatic risk of low TFEB-triggered-MDVs formation caused by HSP90 inhibitors.Abbreviation: ACIs: ATP-competitive inhibitors; BaFA1: bafilomycin A1; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; CTD: C-terminal domain; EVs: extracellular vesicles; HCFC1: host cell factor C1; HSP90: heat shock protein 90; ILVs: intralumenal vesicles; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MD: middle domain; MDVs: mitochondria-derived vesicles; MQC: mitochondrial quality control; ΔΨm: mitochondrial membrane potential; MVBs: multivesicular bodies; NB: novobiocin; TEM: transmission electron microscopy; TFEB: transcription factor EB; TFs: transcription factors. NOC: nocodazole; NTD: N-terminal nucleotide binding domain; OCR: oxygen consumption rate; RFP: red fluorescent protein; ROS: reactive oxygen species; STA9090: Ganetespib; VPS35: VPS35 retromer complex component.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenming Zheng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaling Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hairou Su
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guibing Wu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihao Deng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guantai Xie
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyou Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuemei Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Wu J, Song L, Lu M, Gao Q, Xu S, Zhou P, Ma T. The multifaceted functions of DNA-PKcs: implications for the therapy of human diseases. MedComm (Beijing) 2024; 5:e613. [PMID: 38898995 PMCID: PMC11185949 DOI: 10.1002/mco2.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Liwei Song
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Mingjun Lu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Qing Gao
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Shaofa Xu
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Teng Ma
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
5
|
Liu B, Qian D. Hsp90α and cell death in cancers: a review. Discov Oncol 2024; 15:151. [PMID: 38727789 PMCID: PMC11087423 DOI: 10.1007/s12672-024-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Heat shock protein 90α (Hsp90α), an important molecular chaperone, plays a crucial role in regulating the activity of various intracellular signaling pathways and maintaining the stability of various signaling transduction proteins. In cancer, the expression level of Hsp90α is often significantly upregulated and is recognized as one of the key factors in cancer cell survival and proliferation. Cell death can help achieve numerous purposes, such as preventing aging, removing damaged or infected cells, facilitating embryonic development and tissue repair, and modulating immune response. The expression of Hsp90α is closely associated with specific modes of cell death including apoptosis, necrotic apoptosis, and autophagy-dependent cell death, etc. This review discusses the new results on the relationship between expression of Hsp90α and cell death in cancer. Hsp90α is frequently overexpressed in cancer and promotes cancer cell growth, survival, and resistance to treatment by regulating cell death, rendering it a promising target for cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China
| | - Daohai Qian
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China.
| |
Collapse
|
6
|
Liu Y, Li C, Liu H, Tan S. Combination therapy involving HSP90 inhibitors for combating cancer: an overview of clinical and preclinical progress. Arch Pharm Res 2024; 47:442-464. [PMID: 38632167 DOI: 10.1007/s12272-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
The molecular chaperone heat shock protein 90 (HSP90) regulates multiple crucial signalling pathways in cancer by driving the maturation of key signalling components, thereby playing a crucial role in tumorigenesis and drug resistance in cancer. Inhibition of HSP90 results in metastable conformational collapse of its client proteins and their proteasomal degradation. Considerable efforts have been devoted to the development of small-molecule inhibitors targeting HSP90, and more than 20 inhibitors have been evaluated in clinical trials for cancer therapy. However, owing to disadvantages such as organ toxicity and drug resistance, only one HSP90 inhibitor has been approved for use in clinical settings. In recent years, HSP90 inhibitors used in combination with other anti-cancer therapies have shown remarkable potential in the treatment of cancer. HSP90 inhibitors work synergistically with various anti-cancer therapies, including chemotherapy, targeted therapy, radiation therapy and immunotherapy. HSP90 inhibitors can improve the pharmacological effects of the above-mentioned therapies and reduce treatment resistance. This review provides an overview of the use of combination therapy with HSP90 inhibitors and other anti-cancer therapies in clinical and preclinical studies reported in the past decade and summarises design strategies and prospects for these combination therapies. Altogether, this review provides a theoretical basis for further research and application of these combination therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Yajun Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| | - Chenyao Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dagong Road 2, Panjin, 124221, China
| | - Hongwei Liu
- Department of Head and Neck Surgery, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China.
- Affiliated Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| |
Collapse
|
7
|
Jia L, Yang H, Liu Y, Zhou Y, Li G, Zhou Q, Xu Y, Huang Z, Ye F, Ye J, Liu A, Ji C. Targeted delivery of HSP90 inhibitors for efficient therapy of CD44-positive acute myeloid leukemia and solid tumor-colon cancer. J Nanobiotechnology 2024; 22:198. [PMID: 38649957 PMCID: PMC11036589 DOI: 10.1186/s12951-024-02460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Heat shock protein 90 (HSP90) is overexpressed in numerous cancers, promotes the maturation of numerous oncoproteins and facilitates cancer cell growth. Certain HSP90 inhibitors have entered clinical trials. Although less than satisfactory clinical effects or insurmountable toxicity have compelled these trials to be terminated or postponed, these results of preclinical and clinical studies demonstrated that the prospects of targeting therapeutic strategies involving HSP90 inhibitors deserve enough attention. Nanoparticulate-based drug delivery systems have been generally supposed as one of the most promising formulations especially for targeting strategies. However, so far, no active targeting nano-formulations have succeeded in clinical translation, mainly due to complicated preparation, complex formulations leading to difficult industrialization, incomplete biocompatibility or nontoxicity. In this study, HSP90 and CD44-targeted A6 peptide functionalized biomimetic nanoparticles (A6-NP) was designed and various degrees of A6-modification on nanoparticles were fabricated to evaluate targeting ability and anticancer efficiency. With no excipients, the hydrophobic HSP90 inhibitor G2111 and A6-conjugated human serum albumin could self-assemble into nanoparticles with a uniform particle size of approximately 200 nm, easy fabrication, well biocompatibility and avoidance of hepatotoxicity. Besides, G2111 encapsulated in A6-NP was only released less than 5% in 12 h, which may avoid off-target cell toxicity before entering into cancer cells. A6 peptide modification could significantly enhance uptake within a short time. Moreover, A6-NP continues to exert the broad anticancer spectrum of Hsp90 inhibitors and displays remarkable targeting ability and anticancer efficacy both in hematological malignancies and solid tumors (with colon tumors as the model cancer) both in vitro and in vivo. Overall, A6-NP, as a simple, biomimetic and active dual-targeting (CD44 and HSP90) nanomedicine, displays high potential for clinical translation.
Collapse
Affiliation(s)
- Lejiao Jia
- Department of Pharmacy, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Huatian Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yue Liu
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine (TCM), Jinan, Shandong, 250014, China
| | - Ying Zhou
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Guosheng Li
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Qian Zhou
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yan Xu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhiping Huang
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Ye
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Ye
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Anchang Liu
- Department of Pharmacy, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Chunyan Ji
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Wang Y, Wang J, Ye R, Jin Q, Yin F, Liu N, Wang Y, Zhang Q, Gao T, Zhao Y. Cancer Cell-Mimicking Prussian Blue Nanoplatform for Synergistic Mild Photothermal/Chemotherapy via Heat Shock Protein Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38624164 DOI: 10.1021/acsami.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Combined mild-temperature photothermal/chemotherapy has emerged as a highly promising modality for tumor therapy. However, its therapeutic efficacy is drastically compromised by the heat-induced overexpression of heat shock proteins (HSPs) by the cells, which resist heat stress and apoptosis. The purpose of this study was to downregulate HSPs and enhance the mild-temperature photothermal/chemotherapy effect. In detail, the colon cancer cell membrane (CT26M)-camouflaged HSP90 inhibitor ganetespib and the chemotherapeutic agent doxorubicin (DOX)-coloaded hollow mesoporous Prussian blue (HMPB) nanoplatform (named PGDM) were designed for synergistic mild photothermal/chemotherapy via HSP inhibition. In addition to being a photothermal agent with a high efficiency of photothermal conversion (24.13%), HMPB offers a hollow hole that can be filled with drugs. Concurrently, the cancer cell membrane camouflaging enhances tumor accumulation through a homologous targeting mechanism and gives the nanoplatform the potential to evade the immune system. When exposed to NIR radiation, HMPB's photothermal action (44 °C) not only causes tumor cells to undergo apoptosis but also causes ganetespib to be released on demand. This inhibits the formation of HSP90, which enhances the mild photothermal/chemotherapy effect. The results confirmed that the combined treatment regimen of mild photothermal therapy (PTT) and chemotherapy showed a better therapeutic efficacy than the individual treatment methods. Therefore, this multimodal nanoparticle can advance the development of drugs for the treatment of malignancies, such as colon cancer, and has prospects for clinical application.
Collapse
Affiliation(s)
- Yun Wang
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamus 154003, P. R. China
- Department of Internal Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi 154007, P. R. China
| | - Jinling Wang
- Department of Emergency and Critical Care Center, The Second Affiliated Hospital of Guangdong Medical University, No.12 Minyou Road, Xiashan, Zhanjiang, Guangdong 524003, P. R. China
| | - Roumei Ye
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, P. R. China
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, P. R. China
| | - Fengyue Yin
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, P. R. China
| | - Nian Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, P. R. China
| | - Yubo Wang
- Department of Biomedical Engineering, Medical College of Guangxi University, Nanning 530004, P. R. China
| | - Quan Zhang
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamus 154003, P. R. China
- Department of Internal Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi 154007, P. R. China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Yilin Zhao
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, Xiamen 361004, P. R. China
| |
Collapse
|
9
|
Mattoo S, Gupta A, Chauhan M, Agrawal A, Pore SK. Prospects and challenges of noncoding-RNA-mediated inhibition of heat shock protein 90 for cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195006. [PMID: 38218528 DOI: 10.1016/j.bbagrm.2024.195006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Heat Shock Protein 90 (HSP90) is a potential drug target for cancer therapy as it is often dysregulated in several cancers, including lung, breast, pancreatic, and prostate cancers. In cancer, HSP90 fails to maintain the structural and functional integrity of its several client proteins which are involved in the hallmarks of cancer such as cell proliferation, invasion, migration, angiogenesis, and apoptosis. Several small molecule inhibitors of HSP90 have been shown to exhibit anticancer effects in vitro and in vivo animal models. However, a few of them are currently under clinical studies. The status and potential limitations of these inhibitors are discussed here. Studies demonstrate that several noncoding RNAs (ncRNAs) such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) regulate HSP90 and its client proteins to modulate cellular processes to exhibit oncogenic or tumor suppressing properties. Over the last decade, miRNAs and lncRNAs have drawn significant interest from the scientific community as therapeutic agents or targets for clinical applications. Here, we discuss the detailed mechanistic regulation of HSP90 and its client proteins by ncRNAs. Moreover, we highlight the significance of these ncRNAs as potential therapeutic agents/targets, and the challenges associated with ncRNA-based therapies. This article aims to provide a holistic view on HSP90-regulating ncRNAs for the development of novel therapeutic strategies to combat cancer.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Abha Gupta
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Manvee Chauhan
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Akshi Agrawal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
10
|
Qiu C, Shen X, Lu H, Chen Y, Xu C, Zheng P, Xia Y, Wang J, Zhang Y, Li S, Zou P, Cui R, Chen J. Combination therapy with HSP90 inhibitors and piperlongumine promotes ROS-mediated ER stress in colon cancer cells. Cell Death Discov 2023; 9:375. [PMID: 37833257 PMCID: PMC10576049 DOI: 10.1038/s41420-023-01672-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Colon cancer is a major cause of cancer-related death. Despite recent improvements in the treatment of colon cancer, new strategies to improve the overall survival of patients are urgently needed. Heat shock protein 90 (HSP90) is widely recognized as a promising target for treating various cancers, including colon cancer. However, no HSP90 inhibitor has been approved for clinical use due to limited efficacy. In this study, we evaluated the antitumor activities of HSP90 inhibitors in combination with piperlongumine in colon cancer cells. We show that combination treatment with HSP90 inhibitors and piperlongumine displayed strong synergistic interaction in colon cancer cells. These agents synergize by promoting ER stress, JNK activation, and DNA damage. This process is fueled by oxidative stress, which is caused by the accumulation of reactive oxygen species. These studies nominated piperlongumine as a promising agent for HSP90 inhibitor-based combination therapy against colon cancer.
Collapse
Affiliation(s)
- Chenyu Qiu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xin Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hui Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinghua Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peisen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yiqun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junqi Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yafei Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shaotang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peng Zou
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Ri Cui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jundixia Chen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
11
|
Zhu J, Li C, Wang P, Liu Y, Li Z, Chen Z, Zhang Y, Wang B, Li X, Yan Z, Liang X, Zhou S, Ao X, Zhu M, Zhou P, Gu Y. Deficiency of salt-inducible kinase 2 (SIK2) promotes immune injury by inhibiting the maturation of lymphocytes. MedComm (Beijing) 2023; 4:e366. [PMID: 37706195 PMCID: PMC10495731 DOI: 10.1002/mco2.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Salt-inducible kinase 2 (SIK2) belongs to the serine/threonine protein kinases of the AMPK/SNF1 family, which has important roles in cell cycle, tumor, melanogenesis, neuronal damage repair and apoptosis. Recent studies showed that SIK2 regulates the macrophage polarization to make a balance between inflammation and macrophage. Macrophage is critical to initiate immune regulation, however, whether SIK2 can be involved in immune regulation is not still well understood. Here, we revealed that the protein of SIK2 was highly expressed in thymus, spleen, lung, and brain. And SIK2 protein content increased in RAW264.7 and AHH1 cells with a time and dose-dependent after-ionizing radiation (IR). Inhibition of SIK2 could promote AHH1 cells apoptosis Moreover, we used the Cre-LoxP system to construct the SIK2+/- mice, and the research on function suggested that the deficiency of SIK2 could promote the sensitivity of IR. The deficiency of SIK2 promoted the immune injury via inhibiting the maturation of T cells and B cells. Furthermore, the TCRβ rearrangement was inhibited by the deficiency of SIK2. Collectively, this study demonstrated that SIK2 provides an essential function of regulating immune injury, which will provide new ideas for the treatment of immune injury-related diseases.
Collapse
Affiliation(s)
- Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Chao Li
- School of Life ScienceShihezi University, ShiheziXinjiang ProvinceP. R. China
| | - Ping Wang
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Zhongqiu Li
- Medical SchoolShihezi University, ShiheziXinjiang ProvinceP. R. China
| | - Zhongmin Chen
- PLA Rocket Force Characteristic Medical CenterBeijingP. R. China
| | - Ying Zhang
- Medical SchoolShihezi University, ShiheziXinjiang ProvinceP. R. China
| | - Bin Wang
- School of Life ScienceShihezi University, ShiheziXinjiang ProvinceP. R. China
| | - Xueping Li
- School of Life ScienceShihezi University, ShiheziXinjiang ProvinceP. R. China
| | - Ziyan Yan
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Xinxin Liang
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceP. R. China
| | - Shenghui Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceP. R. China
| | - Xingkun Ao
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceP. R. China
| | - Maoxiang Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Pingkun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
- Medical SchoolShihezi University, ShiheziXinjiang ProvinceP. R. China
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceP. R. China
| |
Collapse
|
12
|
Lin CF, Chen ZW, Kang FP, Hu JF, Huang L, Liao CY, Lai JL, Huang Y, Wang ZW, Tian YF, Chen S. Analyzing molecular typing and clinical application of immunogenic cell death-related genes in hepatocellular carcinoma. BMC Cancer 2023; 23:522. [PMID: 37291495 PMCID: PMC10249577 DOI: 10.1186/s12885-023-10992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is considered one of the most common cancers, characterized by low early detection and high mortality rates, and is a global health challenge. Immunogenic cell death (ICD) is defined as a specific type of regulated cell death (RCD) capable of reshaping the tumor immune microenvironment by releasing danger signals that trigger immune responses, which would contribute to immunotherapy. METHODS The ICD gene sets were collected from the literature. We collected expression data and clinical information from public databases for the HCC samples in our study. Data processing and mapping were performed using R software to analyze the differences in biological characteristics between different subgroups. The expression of the ICD representative gene in clinical specimens was assessed by immunohistochemistry, and the role of the representative gene in HCC was evaluated by various in vitro assays, including qRT-PCR, colony formation, and CCK8 assay. Lasso-Cox regression was used to screen prognosis-related genes, and an ICD-related risk model (ICDRM) was constructed. To improve the clinical value of ICDRM, Nomograms and calibration curves were created to predict survival probabilities. Finally, the critical gene of ICDRM was further investigated through pan-cancer analysis and single-cell analysis. RESULTS We identified two ICD clusters that differed significantly in terms of survival, biological function, and immune infiltration. As well as assessing the immune microenvironment of tumors in HCC patients, we demonstrate that ICDRM can differentiate ICD clusters and predict the prognosis and effectiveness of therapy. High-risk subpopulations are characterized by high TMB, suppressed immunity, and poor survival and response to immunotherapy, whereas the opposite is true for low-risk subpopulations. CONCLUSIONS This study reveals the potential impact of ICDRM on the tumor microenvironment (TME), immune infiltration, and prognosis of HCC patients, but also a potential tool for predicting prognosis.
Collapse
Affiliation(s)
- Cai-Feng Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Zhi-Wen Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Feng-Ping Kang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Jian-Lin Lai
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, China.
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Department of Hepatobiliary Surgery, Shengli Clinical Medical College of Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, PR China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China.
- Department of Hepatobiliary Surgery, Shengli Clinical Medical College of Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, PR China.
| |
Collapse
|
13
|
Chen DD, Liu B, Wang Y, Jiang M, Shang G, Xue M, Jia X, Lang Y, Zhou G, Zhang F, Peng X, Hu Y. The downregulation of HSP90-controlled CRALBP expression is associated with age-related vision attenuation. FASEB J 2023; 37:e22832. [PMID: 36826429 DOI: 10.1096/fj.202201608rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
The dysfunction of CRALBP, a key regulator of the visual cycle, is associated with retinitis punctata albescens characterized by night vision loss and retinal degeneration. In this paper, we find that the expression of CRALBP is regulated by heat shock protein 90 (HSP90). Inhibition of HSP90α or HSP90β expression by using the CRISPR-Cas9 technology downregulates CRALBP's mRNA and protein expression in ARPE-19 cells by triggering the degradation of transcription factor SP1 in the ubiquitin-proteasome pathway. SP1 can bind to CRALBP's promoter, and inhibition of SP1 by its inhibitor plicamycin or siRNA downregulates CRALBP's mRNA expression. In the zebrafish, inhibition of HSP90 by the intraperitoneal injection of IPI504 reduces the thickness of the retinal outer nuclear layer and Rlbp1b mRNA expression. Interestingly, the expression of HSP90, SP1, and CRALBP is correlatedly downregulated in the senescent ARPE-19 and Pig primary RPE cells in vitro and in the aged zebrafish and mouse retinal tissues in vivo. The aged mice exhibit the low night adaption activity. Taken together, these data indicate that the HSP90-SP1 is a novel regulatory axis of CRALBP transcriptional expression in RPE cells. The age-mediated downregulation of the HSP90-SP1-CRALBP axis is a potential etiology for the night vision reduction in senior people.
Collapse
Affiliation(s)
- Dan-Dan Chen
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Baixue Liu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuxuan Wang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mingjun Jiang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guohui Shang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengjiao Xue
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaolin Jia
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YouFei Lang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guiling Zhou
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fengyan Zhang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuyan Peng
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanzhong Hu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| |
Collapse
|
14
|
Evaluation of the Heat Shock Protein 90 Inhibitor Ganetespib as a Sensitizer to Hyperthermia-Based Cancer Treatments. Cancers (Basel) 2022; 14:cancers14215250. [PMID: 36358669 PMCID: PMC9654690 DOI: 10.3390/cancers14215250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Hyperthermia boosts the effects of radio- and chemotherapy regimens, but its clinical potential is hindered by the ability of (cancer) cells to activate a protective mechanism known as the heat stress response. Strategies that inhibit its activation or functions have the potential, therefore, to improve the overall efficacy of hyperthermia-based treatments. In this study, we evaluated the efficacy of the HSP90 inhibitor ganetespib in promoting the effects of radiotherapy or cisplatin combined with hyperthermia in vitro and in a cervix cancer mouse model. Abstract Hyperthermia is being used as a radio- and chemotherapy sensitizer for a growing range of tumor subtypes in the clinic. Its potential is limited, however, by the ability of cancer cells to activate a protective mechanism known as the heat stress response (HSR). The HSR is marked by the rapid overexpression of molecular chaperones, and recent advances in drug development make their inhibition an attractive option to improve the efficacy of hyperthermia-based therapies. Our previous in vitro work showed that a single, short co-treatment with a HSR (HSP90) inhibitor ganetespib prolongs and potentiates the effects of hyperthermia on DNA repair, enhances hyperthermic sensitization to radio- and chemotherapeutic agents, and reduces thermotolerance. In the current study, we first validated these results using an extended panel of cell lines and more robust methodology. Next, we examined the effects of hyperthermia and ganetespib on global proteome changes. Finally, we evaluated the potential of ganetespib to boost the efficacy of thermo-chemotherapy and thermo-radiotherapy in a xenograft murine model of cervix cancer. Our results revealed new insights into the effects of HSR inhibition on cellular responses to heat and show that ganetespib could be employed to increase the efficacy of hyperthermia when combined with radiation.
Collapse
|
15
|
Archer SN, Möller-Levet CS, Laing EE, Dijk DJ. Mistimed sleep and waking activity in humans disrupts glucocorticoid signalling transcripts and SP1, but not plasma cortisol rhythms. Front Physiol 2022; 13:946444. [PMID: 36060675 PMCID: PMC9428761 DOI: 10.3389/fphys.2022.946444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 12/05/2022] Open
Abstract
Cortisol is a robust circadian signal that synchronises peripheral circadian clocks with the central clock in the suprachiasmatic nucleus via glucocorticoid receptors that regulate peripheral gene expression. Misalignment of the cortisol rhythm with the sleep–wake cycle, as occurs in shift work, is associated with negative health outcomes, but underlying molecular mechanisms remain largely unknown. We experimentally induced misalignment between the sleep–wake cycle and melatonin and cortisol rhythms in humans and measured time series blood transcriptomics while participants slept in-phase and out-of-phase with the central clock. The cortisol rhythm remained unchanged, but many glucocorticoid signalling transcripts were disrupted by mistimed sleep. To investigate which factors drive this dissociation between cortisol and its signalling pathways, we conducted bioinformatic and temporal coherence analyses. We found that glucocorticoid signalling transcripts affected by mistimed sleep were enriched for binding sites for the transcription factor SP1. Furthermore, changes in the timing of the rhythms of SP1 transcripts, a major regulator of transcription, and changes in the timing of rhythms in transcripts of the glucocorticoid signalling pathways were closely associated. Associations between the rhythmic changes in factors that affect SP1 expression and its activity, such as STAT3, EP300, HSP90AA1, and MAPK1, were also observed. We conclude that plasma cortisol rhythms incompletely reflect the impact of mistimed sleep on glucocorticoid signalling pathways and that sleep–wake driven changes in SP1 may mediate disruption of these pathways. These results aid understanding of mechanisms by which mistimed sleep affects health.
Collapse
Affiliation(s)
- Simon N. Archer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- *Correspondence: Simon N. Archer,
| | - Carla S. Möller-Levet
- Bioinformatics Core Facility, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Emma E. Laing
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, United Kingdom
| |
Collapse
|