1
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
2
|
Wang P, Ke B, Ma G. Drug-tolerant persister cancer cells. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:1-5. [PMID: 39036383 PMCID: PMC11256673 DOI: 10.1016/j.jncc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Affiliation(s)
- Pengliang Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Ke
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Gang Ma
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
3
|
Rosenbaum SR, Caksa S, Stefanski CD, Trachtenberg IV, Wilson HP, Wilski NA, Ott CA, Purwin TJ, Haj JI, Pomante D, Kotas D, Chervoneva I, Capparelli C, Aplin AE. SOX10 Loss Sensitizes Melanoma Cells to Cytokine-Mediated Inflammatory Cell Death. Mol Cancer Res 2024; 22:209-220. [PMID: 37847239 PMCID: PMC10842433 DOI: 10.1158/1541-7786.mcr-23-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The transcription factor, SOX10, plays an important role in the differentiation of neural crest precursors to the melanocytic lineage. Malignant transformation of melanocytes leads to the development of melanoma, and SOX10 promotes melanoma cell proliferation and tumor formation. SOX10 expression in melanomas is heterogeneous, and loss of SOX10 causes a phenotypic switch toward an invasive, mesenchymal-like cell state and therapy resistance; hence, strategies to target SOX10-deficient cells are an active area of investigation. The impact of cell state and SOX10 expression on antitumor immunity is not well understood but will likely have important implications for immunotherapeutic interventions. To this end, we tested whether SOX10 status affects the response to CD8+ T cell-mediated killing and T cell-secreted cytokines, TNFα and IFNγ, which are critical effectors in the cytotoxic killing of cancer cells. We observed that genetic ablation of SOX10 rendered melanoma cells more sensitive to CD8+ T cell-mediated killing and cell death induction by either TNFα or IFNγ. Cytokine-mediated cell death in SOX10-deficient cells was associated with features of caspase-dependent pyroptosis, an inflammatory form of cell death that has the potential to increase immune responses. IMPLICATIONS These data support a role for SOX10 expression altering the response to T cell-mediated cell death and contribute to a broader understanding of the interaction between immune cells and melanoma cells.
Collapse
Affiliation(s)
- Sheera R. Rosenbaum
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Signe Caksa
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Casey D. Stefanski
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Isabella V. Trachtenberg
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Haley P. Wilson
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nicole A. Wilski
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Connor A. Ott
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J. Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jelan I. Haj
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Danielle Pomante
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel Kotas
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Inna Chervoneva
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Claudia Capparelli
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Chen HL, Jin WL. Diapause-like Drug-Tolerant Persister State: The Key to Nirvana Rebirth. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:228. [PMID: 38399515 PMCID: PMC10890489 DOI: 10.3390/medicina60020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Cancer is one of the leading causes of death in the world. Various drugs have been developed to eliminate it but to no avail because a tumor can go into dormancy to avoid therapy. In the past few decades, tumor dormancy has become a popular topic in cancer therapy. Recently, there has been an important breakthrough in the study of tumor dormancy. That is, cancer cells can enter a reversible drug-tolerant persister (DTP) state to avoid therapy, but no exact mechanism has been found. The study of the link between the DTP state and diapause seems to provide an opportunity for a correct understanding of the mechanism of the DTP state. Completely treating cancer and avoiding dormancy by targeting the expression of key genes in diapause are possible. This review delves into the characteristics of the DTP state and its connection with embryonic diapause, and possible treatment strategies are summarized. The authors believe that this review will promote the development of cancer therapy.
Collapse
Affiliation(s)
- Han-Lin Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wei-Lin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Hartman ML, Koziej P, Kluszczyńska K, Czyz M. Pro-Apoptotic Activity of MCL-1 Inhibitor in Trametinib-Resistant Melanoma Cells Depends on Their Phenotypes and Is Modulated by Reversible Alterations Induced by Trametinib Withdrawal. Cancers (Basel) 2023; 15:4799. [PMID: 37835493 PMCID: PMC10571954 DOI: 10.3390/cancers15194799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Although BRAFV600/MEK inhibitors improved the treatment of melanoma patients, resistance is acquired almost inevitably. METHODS Trametinib withdrawal/rechallenge and MCL-1 inhibition in trametinib-resistance models displaying distinct p-ERK1/2 levels were investigated. RESULTS Trametinib withdrawal/rechallenge caused reversible changes in ERK1/2 activity impacting the balance between pro-survival and pro-apoptotic proteins. Reversible alterations were found in MCL-1 levels and MCL-1 inhibitors, BIM and NOXA. Taking advantage of melanoma cell dependency on MCL-1 for survival, we used S63845. While it was designed to inhibit MCL-1 activity, we showed that it also significantly reduced NOXA levels. S63845-induced apoptosis was detected as the enhancement of Annexin V-positivity, caspase-3/7 activation and histone H2AX phosphorylation. Percentages of Annexin V-positive cells were increased most efficiently in trametinib-resistant melanoma cells displaying the p-ERK1/2low/MCL-1low/BIMhigh/NOXAlow phenotype with EC50 values at concentrations as low as 0.1 μM. Higher ERK1/2 activity associated with increased MCL-1 level and reduced BIM level limited pro-apoptotic activity of S63845 further influenced by a NOXA level. CONCLUSIONS Our study supports the notion that the efficiency of an agent designed to target a single protein can largely depend on the phenotype of cancer cells. Thus, it is important to define appropriate phenotype determinants to stratify the patients for the novel therapy.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.H.); (P.K.); (K.K.)
| |
Collapse
|