1
|
Lim EA, Bendell JC, Falchook GS, Bauer TM, Drake CG, Choe JH, George DJ, Karlix JL, Ulahannan S, Sachsenmeier KF, Russell DL, Moorthy G, Sidders BS, Pilling EA, Chen H, Hattersley MM, Das M, Kumar R, Pouliot GP, Patel MR. Phase Ia/b, Open-Label, Multicenter Study of AZD4635 (an Adenosine A2A Receptor Antagonist) as Monotherapy or Combined with Durvalumab, in Patients with Solid Tumors. Clin Cancer Res 2022; 28:4871-4884. [PMID: 36044531 PMCID: PMC9660540 DOI: 10.1158/1078-0432.ccr-22-0612] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE To evaluate AZD4635, an adenosine A2A receptor antagonist, as monotherapy or in combination with durvalumab in patients with advanced solid tumors. PATIENTS AND METHODS In phase Ia (dose escalation), patients had relapsed/refractory solid tumors; in phase Ib (dose expansion), patients had checkpoint inhibitor-naïve metastatic castration-resistant prostate cancer (mCRPC) or colorectal carcinoma, non-small cell lung cancer with prior anti-PD-1/PD-L1 exposure, or other solid tumors (checkpoint-naïve or prior anti-PD-1/PD-L1 exposure). Patients received AZD4635 monotherapy (75-200 mg once daily or 125 mg twice daily) or in combination with durvalumab (AZD4635 75 or 100 mg once daily). The primary objective was safety; secondary objectives included antitumor activity and pharmacokinetics; exploratory objectives included evaluation of an adenosine gene signature in patients with mCRPC. RESULTS As of September 8, 2020, 250 patients were treated (AZD4635, n = 161; AZD4635+durvalumab, n = 89). In phase Ia, DLTs were observed with monotherapy (125 mg twice daily; n = 2) and with combination treatment (75 mg; n = 1) in patients receiving nanosuspension. The most common treatment-related adverse events included nausea, fatigue, vomiting, decreased appetite, dizziness, and diarrhea. The RP2D of the AZD4635 capsule formulation was 75 mg once daily, as monotherapy or in combination with durvalumab. The pharmacokinetic profile was dose-proportional, and exposure was adequate to cover target with 100 mg nanosuspension or 75 mg capsule once daily. In patients with mCRPC receiving monotherapy or combination treatment, tumor responses (2/39 and 6/37, respectively) and prostate-specific antigen responses (3/60 and 10/45, respectively) were observed. High versus low blood-based adenosine signature was associated with median progression-free survival of 21 weeks versus 8.7 weeks. CONCLUSIONS AZD4635 monotherapy or combination therapy was well tolerated. Objective responses support additional phase II combination studies in patients with mCRPC.
Collapse
Affiliation(s)
- Emerson A. Lim
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, New York.,Corresponding Author: Emerson A. Lim, Department of Medicine, Division of Hematology/Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, 161 Fort Washington Avenue, 9th Floor, New York, NY 10032. Phone: 212-305-5098; Fax: 212-305-6762; E-mail:
| | - Johanna C. Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Gerald S. Falchook
- Drug Development Unit, Sarah Cannon Research Institute at HealthONE, Denver, Colorado
| | - Todd M. Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Charles G. Drake
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, New York
| | | | | | | | - Susanna Ulahannan
- Sarah Cannon Research Institute/Oklahoma University, Oklahoma City, Oklahoma
| | | | | | - Ganesh Moorthy
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Boston, Massachusetts
| | - Ben S. Sidders
- Oncology Biometrics R&D, AstraZeneca, Cambridge, England, United Kingdom
| | | | - Huifang Chen
- Oncology R&D, AstraZeneca, Boston, Massachusetts
| | | | - Mayukh Das
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Rakesh Kumar
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Manish R. Patel
- Sarah Cannon Research Institute/Florida Cancer Specialists, Sarasota, Florida
| |
Collapse
|
2
|
Bai Y, Zhang X, Zheng J, Liu Z, Yang Z, Zhang X. Overcoming high level adenosine-mediated immunosuppression by DZD2269, a potent and selective A2aR antagonist. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:302. [PMID: 36229853 PMCID: PMC9563815 DOI: 10.1186/s13046-022-02511-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Adenosine is a potent immunosuppressant whose levels in the tumor microenvironment (TME) are often much higher than those in normal tissues. Binding of adenosine to its receptor A2aR activates a cascade of genes and leads to immunosuppression. In addition, immune checkpoint blockage markedly increases A2aR expression in T cells, which could dampen their anti-tumor response. Several A2aR antagonists are under clinical development, but with limited clinical benefit reported so far. These A2aR antagonists showed much diminished activity at high adenosine levels found in TME, which may explain their clinical underperformance. We report the discovery and early clinical development of DZD2269, a novel A2aR antagonist which can fully block A2aR mediated immunosuppression commonly found in TME. Adenosine stimulates phosphorylation of cyclic AMP response element binding protein (CREB) in T cells and inhibits anti-tumor cytokine secretion in PBMCs in a dose-dependent manner. DZD2269 was able to reverse the immunosuppression induced by high concentrations of adenosine, as demonstrated by inhibiting CREB phosphorylation in T cells, restoring Th1 cytokine secretion in PBMCs, and stimulating dendritic cells (DCs) maturation. As a single agent, DZD2269 showed anti-tumor growth in multiple syngeneic mouse tumor models, and more profound anti-tumor effects were observed when DZD2269 was in combination with immune checkpoint inhibitors, radiotherapy, or chemotherapy. A good PK/PD relationship was observed in these animal models. In the phase 1 clinical study, downregulation of pCREB was detected in human T cells, consistent with preclinical prediction. Our data support further clinical development of DZD2269 in patients with cancer. METHODS The selectivity of DZD2269 for adenosine receptors was tested in engineered cell lines, and its efficacy in blocking A2aR signaling and reversing adenosine-mediated immunosuppression was assessed in human T cells and peripheral blood mononuclear cells (PBMCs). The anti-tumor effects of DZD2269 were evaluated in multiple syngeneic mouse models as a single agent as well as in combination with chemotherapy, radiotherapy, or immune checkpoint inhibitors. A phase 1 study in healthy volunteers (NCT04932005) has been initiated to assess safety, pharmacokinetics (PK) and pharmacodynamics (PD) of DZD2269. RESULTS Adenosine stimulates phosphorylation of cyclic AMP response element binding protein (CREB) in T cells and inhibits anti-tumor cytokine secretion in PBMCs in a dose-dependent manner. DZD2269 was able to reverse the immunosuppression induced by high concentrations of adenosine, as demonstrated by inhibiting CREB phosphorylation in T cells, restoring Th1 cytokine secretion in PBMCs, and stimulating dendritic cells (DCs) maturation. As a single agent, DZD2269 showed anti-tumor growth in multiple syngeneic mouse tumor models, and more profound anti-tumor effects were observed when DZD2269 was in combination with immune checkpoint inhibitors, radiotherapy, or chemotherapy. A good PK/PD relationship was observed in these animal models. In the phase 1 clinical study, downregulation of pCREB was detected in human T cells, consistent with preclinical prediction. CONCLUSION DZD2269 is a novel A2aR antagonist which can fully block A2aR mediated immunosuppression commonly found in TME. Clinical development of DZD2269 in patients with cancer is warranted (NCT04634344).
Collapse
Affiliation(s)
- Yu Bai
- grid.11135.370000 0001 2256 9319Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China ,Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Xin Zhang
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Jie Zheng
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Ziyi Liu
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Zhenfan Yang
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Xiaolin Zhang
- grid.11135.370000 0001 2256 9319Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China ,Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| |
Collapse
|
3
|
Voronova V, Peskov K, Kosinsky Y, Helmlinger G, Chu L, Borodovsky A, Woessner R, Sachsenmeier K, Shao W, Kumar R, Pouliot G, Merchant M, Kimko H, Mugundu G. Evaluation of Combination Strategies for the A 2AR Inhibitor AZD4635 Across Tumor Microenvironment Conditions via a Systems Pharmacology Model. Front Immunol 2021; 12:617316. [PMID: 33737925 PMCID: PMC7962275 DOI: 10.3389/fimmu.2021.617316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Adenosine receptor type 2 (A2AR) inhibitor, AZD4635, has been shown to reduce immunosuppressive adenosine effects within the tumor microenvironment (TME) and to enhance the efficacy of checkpoint inhibitors across various syngeneic models. This study aims at investigating anti-tumor activity of AZD4635 alone and in combination with an anti-PD-L1-specific antibody (anti-PD-L1 mAb) across various TME conditions and at identifying, via mathematical quantitative modeling, a therapeutic combination strategy to further improve treatment efficacy. Methods The model is represented by a set of ordinary differential equations capturing: 1) antigen-dependent T cell migration into the tumor, with subsequent proliferation and differentiation into effector T cells (Teff), leading to tumor cell lysis; 2) downregulation of processes mediated by A2AR or PD-L1, as well as other immunosuppressive mechanisms; 3) A2AR and PD-L1 inhibition by, respectively, AZD4635 and anti-PD-L1 mAb. Tumor size dynamics data from CT26, MC38, and MCA205 syngeneic mice treated with vehicle, anti-PD-L1 mAb, AZD4635, or their combination were used to inform model parameters. Between-animal and between-study variabilities (BAV, BSV) in treatment efficacy were quantified using a non-linear mixed-effects methodology. Results The model reproduced individual and cohort trends in tumor size dynamics for all considered treatment regimens and experiments. BSV and BAV were explained by variability in T cell-to-immunosuppressive cell (ISC) ratio; BSV was additionally driven by differences in intratumoral adenosine content across the syngeneic models. Model sensitivity analysis and model-based preclinical study simulations revealed therapeutic options enabling a potential increase in AZD4635-driven efficacy; e.g., adoptive cell transfer or treatments affecting adenosine-independent immunosuppressive pathways. Conclusions The proposed integrative modeling framework quantitatively characterized the mechanistic activity of AZD4635 and its potential added efficacy in therapy combinations, across various immune conditions prevailing in the TME. Such a model may enable further investigations, via simulations, of mechanisms of tumor resistance to treatment and of AZD4635 combination optimization strategies.
Collapse
Affiliation(s)
| | - Kirill Peskov
- M&S Decisions LLC, Moscow, Russia
- Computational Oncology Group, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Gabriel Helmlinger
- Clinical Pharmacology and Quantitative Pharmacology, BioPharmaceuticals R&D, AstraZeneca R&D Boston, Boston, MA, United States
| | - Lulu Chu
- Clinical Pharmacology and Quantitative Pharmacology, BioPharmaceuticals R&D, AstraZeneca R&D Boston, Boston, MA, United States
| | | | - Richard Woessner
- Translational Medicine, AstraZeneca R&D Boston, Waltham, MA, United States
| | - Kris Sachsenmeier
- Translational Medicine, AstraZeneca R&D Boston, Waltham, MA, United States
| | - Wenlin Shao
- Oncology, BioPharmaceuticals R&D, AstraZeneca R&D Boston, Boston, MA, United States
| | - Rakesh Kumar
- Oncology, BioPharmaceuticals R&D, AstraZeneca R&D Boston, Boston, MA, United States
| | - Gayle Pouliot
- Oncology, BioPharmaceuticals R&D, AstraZeneca R&D Boston, Boston, MA, United States
| | - Melinda Merchant
- Translational Medicine, AstraZeneca R&D Boston, Waltham, MA, United States
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, BioPharmaceuticals R&D, AstraZeneca R&D Boston, Boston, MA, United States
| | - Ganesh Mugundu
- Clinical Pharmacology and Quantitative Pharmacology, BioPharmaceuticals R&D, AstraZeneca R&D Boston, Boston, MA, United States
| |
Collapse
|
4
|
Deflorian F, Perez-Benito L, Lenselink EB, Congreve M, van Vlijmen HWT, Mason JS, Graaf CD, Tresadern G. Accurate Prediction of GPCR Ligand Binding Affinity with Free Energy Perturbation. J Chem Inf Model 2020; 60:5563-5579. [PMID: 32539374 DOI: 10.1021/acs.jcim.0c00449] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The computational prediction of relative binding free energies is a crucial goal for drug discovery, and G protein-coupled receptors (GPCRs) are arguably the most important drug target class. However, they present increased complexity to model compared to soluble globular proteins. Despite breakthroughs, experimental X-ray crystal and cryo-EM structures are challenging to attain, meaning computational models of the receptor and ligand binding mode are sometimes necessary. This leads to uncertainty in understanding ligand-protein binding induced changes such as, water positioning and displacement, side chain positioning, hydrogen bond networks, and the overall structure of the hydration shell around the ligand and protein. In other words, the very elements that define structure activity relationships (SARs) and are crucial for accurate binding free energy calculations are typically more uncertain for GPCRs. In this work we use free energy perturbation (FEP) to predict the relative binding free energies for ligands of two different GPCRs. We pinpoint the key aspects for success such as the important role of key water molecules, amino acid ionization states, and the benefit of equilibration with specific ligands. Initial calculations following typical FEP setup and execution protocols delivered no correlation with experiment, but we show how results are improved in a logical and systematic way. This approach gave, in the best cases, a coefficient of determination (R2) compared with experiment in the range of 0.6-0.9 and mean unsigned errors compared to experiment of 0.6-0.7 kcal/mol. We anticipate that our findings will be applicable to other difficult-to-model protein ligand data sets and be of wide interest for the community to continue improving FE binding energy predictions.
Collapse
Affiliation(s)
- Francesca Deflorian
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG United Kingdom
| | - Laura Perez-Benito
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Eelke B Lenselink
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300, RA, The Netherlands
| | - Miles Congreve
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG United Kingdom
| | - Herman W T van Vlijmen
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Jonathan S Mason
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG United Kingdom
| | - Chris de Graaf
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG United Kingdom
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
5
|
Goueli SA, Hsiao K. Monitoring and characterizing soluble and membrane-bound ectonucleotidases CD73 and CD39. PLoS One 2019; 14:e0220094. [PMID: 31652269 PMCID: PMC6814236 DOI: 10.1371/journal.pone.0220094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022] Open
Abstract
The success of immunotherapy treatment in oncology ushered a new modality for treating a wide variety of cancers. However, lack of effect in some patients made it imperative to identify other pathways that are exploited by cancer cells to circumvent immune surveillance, and possibly synergize immune checkpoint treatment in those cases. It has been recently recognized that adenosine levels increase significantly in the tumor microenvironment and that adenosine/adenosine receptors play a powerful role as immunosuppressive and attenuating several effector T cell functions. The two main enzymes responsible for generating adenosine in the microenvironment are the ectonucleotidases CD39 and CD73, the former utilizes both ATP and ADP and produces AMP while the latter utilizes AMP and generates adenosine. Thus, these two enzymes combined are the major source for the bulk of adenosine produced in the microenvironment. They were shown to be validated targets in oncology leading to several clinical trials that include small molecules as well as antibodies, showing positive and encouraging results in the preclinical arena. Towards the development of novel drugs to target these enzymes, we have developed a platform that can be utilized to monitor the activities of both enzymes in vitro (biochemical) as well as in cells (cell based) assays. We have developed very sensitive and homogenous assays that enabled us to monitor the activity of both enzymes and demonstrate selectivity of known inhibitors as well as monoclonal antibodies. This should speed up screening for novel inhibitors that might lead to more effective cancer therapy.
Collapse
Affiliation(s)
- Said A. Goueli
- Department of Cell Signaling, Research and Development, Promega Corp. Madison, WI, United States of America
| | - Kevin Hsiao
- Department of Cell Signaling, Research and Development, Promega Corp. Madison, WI, United States of America
| |
Collapse
|
6
|
Al-Shar'i NA, Al-Balas QA. Molecular Dynamics Simulations of Adenosine Receptors: Advances, Applications and Trends. Curr Pharm Des 2019; 25:783-816. [DOI: 10.2174/1381612825666190304123414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/26/2019] [Indexed: 01/09/2023]
Abstract
:
Adenosine receptors (ARs) are transmembrane proteins that belong to the G protein-coupled receptors
(GPCRs) superfamily and mediate the biological functions of adenosine. To date, four AR subtypes are known,
namely A1, A2A, A2B and A3 that exhibit different signaling pathways, tissue localization, and mechanisms of
activation. Moreover, the widespread ARs and their implication in numerous physiological and pathophysiological
conditions had made them pivotal therapeutic targets for developing clinically effective agents.
:
The crystallographic success in identifying the 3D crystal structures of A2A and A1 ARs has dramatically enriched
our understanding of their structural and functional properties such as ligand binding and signal transduction.
This, in turn, has provided a structural basis for a larger contribution of computational methods, particularly molecular
dynamics (MD) simulations, toward further investigation of their molecular properties and designing
bioactive ligands with therapeutic potential. MD simulation has been proved to be an invaluable tool in investigating
ARs and providing answers to some critical questions. For example, MD has been applied in studying ARs
in terms of ligand-receptor interactions, molecular recognition, allosteric modulations, dimerization, and mechanisms
of activation, collectively aiding in the design of subtype selective ligands.
:
In this review, we focused on the advances and different applications of MD simulations utilized to study the
structural and functional aspects of ARs that can foster the structure-based design of drug candidates. In addition,
relevant literature was briefly discussed which establishes a starting point for future advances in the field of drug
discovery to this pivotal group of drug targets.
Collapse
Affiliation(s)
- Nizar A. Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Qosay A. Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|