1
|
Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 2024; 21:645-659. [PMID: 38992122 DOI: 10.1038/s41571-024-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60-80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuele Lettera
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Pirković A, Jovanović Krivokuća M, Vilotić A, Nacka-Aleksić M, Bojić-Trbojević Ž, Dekanski D. Oleuropein Stimulates Migration of Human Trophoblast Cells and Expression of Invasion-Associated Markers. Int J Mol Sci 2023; 25:500. [PMID: 38203672 PMCID: PMC10779171 DOI: 10.3390/ijms25010500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Successful pregnancy establishment requires highly synchronized cross talk between the invasive trophoblast cells and the receptive maternal endometrium. Any disturbances in this tightly regulated process may lead to pregnancy complications. Local factors such as nutrients, hormones, cytokines and reactive oxygen species modulate the invasion of extravillous trophoblasts through critical signaling cascades. Epidemiological studies strongly indicate that a Mediterranean diet can significantly impact molecular pathways during placentation. Therefore, the aim of the current study was to examine whether oleuropein (OLE), one of the main compounds of the Mediterranean diet, may influence trophoblast cell adhesion and migration, as well as the expression of invasion-associated molecular markers and inflammatory pathways fostering these processes. HTR-8/SVneo cells were incubated with OLE at selected concentrations of 10 and 100 µM for 24 h. Results showed that OLE did not affect trophoblast cell viability, proliferation and adhesion after 24 h in in vitro treatment. The mRNA expression of integrin subunits α1, α5 and β1, as well as matrix-degrading enzymes MMP-2 and -9, was significantly increased after treatment with 10 µM OLE. Furthermore, OLE at a concentration of 10 µM significantly increased the protein expression of integrin subunits α1 and β1. Also, OLE inhibited the activation of JNK and reduced the protein expression of COX-2. Finally, a lower concentration of OLE 10 µM significantly stimulated migration of HTR-8/SVneo cells. In conclusion, the obtained results demonstrate the effects of OLE on the function of trophoblast cells by promoting cell migration and stimulating the expression of invasion markers. As suggested from results, these effects may be mediated via inhibition of the JNK signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Dragana Dekanski
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (A.P.); (M.J.K.); (A.V.); (M.N.-A.); (Ž.B.-T.)
| |
Collapse
|
3
|
Li X, Cao D, Sun S, Wang Y. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Front Pharmacol 2023; 14:1215020. [PMID: 37564184 PMCID: PMC10411515 DOI: 10.3389/fphar.2023.1215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of reactive oxygen species (ROS) production and ROS-regulated pathways in cancer cells leads to abnormal accumulation of reactive oxygen species, displaying a double-edged role in cancer progression, either supporting transformation/proliferation and stimulating tumorigenesis or inducing cell death. Cancer cells can accommodate reactive oxygen species by regulating them at levels that allow the activation of pro-cancer signaling pathways without inducing cell death via modulation of the antioxidant defense system. Therefore, targeting reactive oxygen species is a promising approach for cancer treatment. Ginsenosides, their derivatives, and related drug carriers are well-positioned to modulate multiple signaling pathways by regulating oxidative stress-mediated cellular and molecular targets to induce apoptosis; regulate cell cycle arrest and autophagy, invasion, and metastasis; and enhance the sensitivity of drug-resistant cells to chemotherapeutic agents of different cancers depending on the type, level, and source of reactive oxygen species, and the type and stage of the cancer. Our review focuses on the pro- and anticancer effects of reactive oxygen species, and summarizes the mechanisms and recent advances in different ginsenosides that bring about anticancer effects by targeting reactive oxygen species, providing new ideas for designing further anticancer studies or conducting more preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Touihri-Barakati I, Kallech-Ziri O, Morjen M, Marrakchi N, Luis J, Hosni K. Inhibitory effect of phenolic extract from squirting cucumber ( Ecballium elaterium (L.) A. Rich) seed oil on integrin-mediated cell adhesion, migration and angiogenesis. RSC Adv 2022; 12:31747-31756. [PMID: 36380921 PMCID: PMC9638996 DOI: 10.1039/d2ra02593k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/01/2022] [Indexed: 03/10/2024] Open
Abstract
Integrin targeted therapies by natural bioactive compounds have attracted attention in the field of oncology and cancer treatment. This study evaluates the potential of phenolic extract from the medicinal herb Ecballium elaterium L. seed oil (PEO) to inhibit the adhesion and migration of the highly invasive human fibrosarcoma cell line HT1080. At safe concentrations (up to 40 μg mL-1), results show that PEO dose-dependently inhibits adhesion and migration of HT1080 to fibronectin (IC50 = 18 μg mL-1) and fibrinogen (IC50 = 12.86 μg mL-1). These observations were associated with the reduction of cell motility and migration velocity as revealed in the Boyden chamber and random motility using two-dimensional assays, respectively. Additional experiments using integrin blocking antibodies showed that PEO at the highest safe concentration (40 μg mL-1) competitively inhibited the attachment of HT1080 cell to anti-αvβ3 (>98%), anti-α5β1 (>86%), and to a lesser extent anti-α2 (>50%) immobilized antibodies, suggesting that αvβ3 and α5β1 integrins were selectively targeted by PEO. Moreover, PEO specifically targeted these integrins in human microvascular endothelial cells (HMEC-1) and dose-dependently blocked the in vitro tubulogenesis. In the CAM model, PEO inhibited the VEGF-induced neoangiogenesis confirming its anti-angiogenic effect. Collectively, these results indicate that PEO holds promise for the development of natural integrin-targeted therapies against fibrosarcoma.
Collapse
Affiliation(s)
- Imen Touihri-Barakati
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| | - Olfa Kallech-Ziri
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| | - Maram Morjen
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar Tunis 1002 Tunisia
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar Tunis 1002 Tunisia
| | - José Luis
- CNRS-UMR 7051, Institut de Neuro Physiopathologie (INP), Université Aix-Marseille 27 Bd Jean Moulin 13385 Marseille France
| | - Karim Hosni
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| |
Collapse
|
5
|
Fakhri S, Moradi SZ, Nouri Z, Cao H, Wang H, Khan H, Xiao J. Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Crit Rev Food Sci Nutr 2022; 64:1592-1616. [PMID: 36073725 DOI: 10.1080/10408398.2022.2118226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a group of heterodimeric and transmembrane glycoproteins, integrin receptors are widely expressed in various cell types overall the body. During cardiovascular dysfunction, integrin receptors apply inhibitory effects on the antioxidative pathways, including nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch like ECH Associated Protein 1 (Keap1)/antioxidant response element (ARE) and interconnected mediators. As such, dysregulation in integrin signaling pathways influences several aspects of cardiovascular diseases (CVDs) such as heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. So, modulation of integrin pathway could trigger the downstream antioxidant pathways toward cardioprotection. Regarding the involvement of multiple aforementioned mediators in the pathogenesis of CVDs, as well as the side effects of conventional drugs, seeking for novel alternative drugs is of great importance. Accordingly, the plant kingdom could pave the road in the treatment of CVDs. Of natural entities, polyphenols are multi-target and accessible phytochemicals with promising potency and low levels of toxicity. The present study aims at providing the cardioprotective roles of integrin receptors and downstream antioxidant pathways in heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. The potential role of polyphenols has been also revealed in targeting the aforementioned dysregulated signaling mediators in those CVDs.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hui Cao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
de Brito RV, Mancini MW, Palumbo MDN, de Moraes LHO, Rodrigues GJ, Cervantes O, Sercarz JA, Paiva MB. The Rationale for "Laser-Induced Thermal Therapy (LITT) and Intratumoral Cisplatin" Approach for Cancer Treatment. Int J Mol Sci 2022; 23:5934. [PMID: 35682611 PMCID: PMC9180481 DOI: 10.3390/ijms23115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is one of the most widely used anticancer drugs in the treatment of various types of solid human cancers, as well as germ cell tumors, sarcomas, and lymphomas. Strong evidence from research has demonstrated higher efficacy of a combination of cisplatin and derivatives, together with hyperthermia and light, in overcoming drug resistance and improving tumoricidal efficacy. It is well known that the antioncogenic potential of CDDP is markedly enhanced by hyperthermia compared to drug treatment alone. However, more recently, accelerators of high energy particles, such as synchrotrons, have been used to produce powerful and monochromatizable radiation to induce an Auger electron cascade in cis-platinum molecules. This is the concept that makes photoactivation of cis-platinum theoretically possible. Both heat and light increase cisplatin anticancer activity via multiple mechanisms, generating DNA lesions by interacting with purine bases in DNA followed by activation of several signal transduction pathways which finally lead to apoptosis. For the past twenty-seven years, our group has developed infrared photo-thermal activation of cisplatin for cancer treatment from bench to bedside. The future development of photoactivatable prodrugs of platinum-based agents injected intratumorally will increase selectivity, lower toxicity and increase efficacy of this important class of antitumor drugs, particularly when treating tumors accessible to laser-based fiber-optic devices, as in head and neck cancer. In this article, the mechanistic rationale of combined intratumor injections of cisplatin and laser-induced thermal therapy (CDDP-LITT) and the clinical application of such minimally invasive treatment for cancer are reviewed.
Collapse
Affiliation(s)
- Renan Vieira de Brito
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Marília Wellichan Mancini
- Biophotonics Department, Institute of Research and Education in the Health Area (NUPEN), Sao Carlos 13562-030, SP, Brazil;
| | - Marcel das Neves Palumbo
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Luis Henrique Oliveira de Moraes
- Department of Physiological Sciences, Federal University of Sao Carlos (UFSCar), Sao Carlos 13565-905, SP, Brazil; (L.H.O.d.M.); (G.J.R.)
| | - Gerson Jhonatan Rodrigues
- Department of Physiological Sciences, Federal University of Sao Carlos (UFSCar), Sao Carlos 13565-905, SP, Brazil; (L.H.O.d.M.); (G.J.R.)
| | - Onivaldo Cervantes
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Joel Avram Sercarz
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Marcos Bandiera Paiva
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
7
|
Dey D, Hasan MM, Biswas P, Papadakos SP, Rayan RA, Tasnim S, Bilal M, Islam MJ, Arshe FA, Arshad EM, Farzana M, Rahaman TI, Baral SK, Paul P, Bibi S, Rahman MA, Kim B. Investigating the Anticancer Potential of Salvicine as a Modulator of Topoisomerase II and ROS Signaling Cascade. Front Oncol 2022; 12:899009. [PMID: 35719997 PMCID: PMC9198638 DOI: 10.3389/fonc.2022.899009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Salvicine is a new diterpenoid quinone substance from a natural source, specifically in a Chinese herb. It has powerful growth-controlling abilities against a broad range of human cancer cells in both in vitro and in vivo environments. A significant inhibitory effect of salvicine on multidrug-resistant (MDR) cells has also been discovered. Several research studies have examined the activities of salvicine on topoisomerase II (Topo II) by inducing reactive oxygen species (ROS) signaling. As opposed to the well-known Topo II toxin etoposide, salvicine mostly decreases the catalytic activity with a negligible DNA breakage effect, as revealed by several enzymatic experiments. Interestingly, salvicine dramatically reduces lung metastatic formation in the MDA-MB-435 orthotopic lung cancer cell line. Recent investigations have established that salvicine is a new non-intercalative Topo II toxin by interacting with the ATPase domains, increasing DNA-Topo II interaction, and suppressing DNA relegation and ATP hydrolysis. In addition, investigations have revealed that salvicine-induced ROS play a critical role in the anticancer-mediated signaling pathway, involving Topo II suppression, DNA damage, overcoming multidrug resistance, and tumor cell adhesion suppression, among other things. In the current study, we demonstrate the role of salvicine in regulating the ROS signaling pathway and the DNA damage response (DDR) in suppressing the progression of cancer cells. We depict the mechanism of action of salvicine in suppressing the DNA-Topo II complex through ROS induction along with a brief discussion of the anticancer perspective of salvicine.
Collapse
Affiliation(s)
- Dipta Dey
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Rehab A. Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Sabiha Tasnim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Mohammod Johirul Islam
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Farzana Alam Arshe
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Efat Muhammad Arshad
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Maisha Farzana
- College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, United Kingdom
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Priyanka Paul
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Md. Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md. Ataur Rahman, ; Bonglee Kim,
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md. Ataur Rahman, ; Bonglee Kim,
| |
Collapse
|
8
|
Nazmeen A, Chen G, Ghosh TK, Maiti S. Breast cancer pathogenesis is linked to the intra-tumoral estrogen sulfotransferase (hSULT1E1) expressions regulated by cellular redox dependent Nrf-2/NF κβ interplay. Cancer Cell Int 2020; 20:70. [PMID: 32158360 PMCID: PMC7057506 DOI: 10.1186/s12935-020-1153-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Estrogen sulfotransferase catalyzes conjugation of sulfuryl-group to estradiol/estrone and regulates E2 availability/activity via estrogen-receptor or non-receptor mediated pathways. Sulfoconjugated estrogen fails to bind estrogen-receptor (ER). High estrogen is a known carcinogen in postmenopausal women. Reports reveal a potential redox-regulation of hSULT1E1/E2-signalling. Further, oxidatively-regulated nuclear-receptor-factor 2 (Nrf2) and NFκβ in relation to hSULT1E1/E2 could be therapeutic-target via cellular redox-modification. METHODS Here, oxidative stress-regulated SULT1E1-expression was analyzed in human breast carcinoma-tissues and in rat xenografted with human breast-tumor. Tumor and its surrounding tissues were obtained from the district-hospital. Intracellular redox-environment of tumors was screened with some in vitro studies. RT-PCR and western blotting was done for SULT1E1 expression. Immunohistochemistry was performed to analyze SULT1E1/Nrf2/NFκβ localization. Tissue-histoarchitecture/DNA-stability (comet assay) studies were done. RESULTS Oxidative-stress induces SULT1E1 via Nrf2/NFκβ cooperatively in tumor-pathogenesis to maintain the required proliferative-state under enriched E2-environment. Higher malondialdehyde/non-protein-soluble-thiol with increased superoxide-dismutase/glutathione-peroxidase/catalase activities was noticed. SULT1E1 expression and E2-level were increased in tumor-tissue compared to their corresponding surrounding-tissues. CONCLUSIONS It may be concluded that tumors maintain a sustainable oxidative-stress through impaired antioxidants as compared to the surrounding. Liver-tissues from xenografted rat manifested similar E2/antioxidant dysregulations favoring pre-tumorogenic environment.
Collapse
Affiliation(s)
- Aarifa Nazmeen
- Dept. of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, 721101 India
| | - Guangping Chen
- Venture I OSU Laboratory, Oklahoma Technology & Research Park, 1110 S. Innovation Way, Stillwater, OK 74074 USA
| | - Tamal Kanti Ghosh
- Special Secretary, Higher Medical Education, Health and Family Welfare Dept, Govt. of West Bengal, Salt Lake, Calcutta, India
| | - Smarajit Maiti
- Dept. of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, 721101 India
- Department of Biochemistry and Biotechnology, Cell & Molecular Therapeutics Lab, OIST, Midnapore, 721102 India
| |
Collapse
|
9
|
|
10
|
Efficient hydrolytic cleavage of DNA and antiproliferative effect on human cancer cells by two dinuclear Cu(II) complexes containing a carbohydrazone ligand and 1,10-phenanthroline as a coligand. J Biol Inorg Chem 2019; 24:343-363. [DOI: 10.1007/s00775-019-01651-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
|
11
|
Shih YL, Au MK, Liu KL, Yeh MY, Lee CH, Lee MH, Lu HF, Yang JL, Wu RSC, Chung JG. Ouabain impairs cell migration, and invasion and alters gene expression of human osteosarcoma U-2 OS cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2400-2413. [PMID: 28795476 DOI: 10.1002/tox.22453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Ouabain, the specific Na+ /K+ -ATPase blocker, has biological activity including anti-proliferative and anti-metastasis effects in cancer cell. There is no study to show ouabain inhibiting cell migration and invasion in human osteosarcoma U-2 OS cells. Thus, we investigated the effect of ouabain on the cell migration and invasion of human osteosarcoma U-2 OS cells. Results indicated that ouabain significantly decreased the percentage of viable cells at 2.5-5.0 μM, thus, we selected 0.25-1.0 μM for inhibiting studies. Ouabain inhibited cell migration, invasion and the enzymatic activities of MMP-2, and also affected the expression of metastasis-associated protein in U-2 OS cells. The cDNA microarray assay indicated that CDH1, TGFBR3, SHC3 and MAP2K6 metastasis-related genes were increased, but CCND1, JUN, CDKN1A, TGFB1, 2 and 3, SMAD4, MMP13, MMP2 and FN1 genes were decreased. These findings provide more information regarding ouabain inhibited cell migration and invasion and associated gene expressions in U-2 OS cells after exposed to ouabain.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Man-Kuan Au
- Department of Orthopedics, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ko-Lin Liu
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ming-Yang Yeh
- Office of Director, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsu-Feng Lu
- Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City, Taiwan
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Jiun-Long Yang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | | | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
12
|
Cucurbitacin B purified from Ecballium elaterium (L.) A. Rich from Tunisia inhibits α5β1 integrin-mediated adhesion, migration, proliferation of human glioblastoma cell line and angiogenesis. Eur J Pharmacol 2017; 797:153-161. [DOI: 10.1016/j.ejphar.2017.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 11/20/2022]
|
13
|
Abstract
The aim of the present review is to survey the accumulated knowledge on the extracellular matrix (ECM) of tumors referring to its putative utility as therapeutic target. Following the traditional observation on the extensive morphological alteration in the tumor-affected tissue, the well-documented aberrant cellular regulation indicated that ECM components have an active role in tumor progression. However, due to the diverse functions and variable expression of proteoglycans, matrix proteins, and integrins, it is rather difficult to identify a comprehensive therapeutic target among ECM components. At present, the elevated level of heparanase and the prominent expression of αvβ5 integrin are considered as promising therapeutic targets. The inhibition of glycosaminoglycan offers another promising approach in the treatment of those tumors which are stimulated by proteoglycans. It can be ascertained that a selective ECM inhibitor would be a great asset to control metastasis driven by ECM-mediated signaling.
Collapse
Affiliation(s)
- Revekka Harisi
- 1st Institute of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Andras Jeney
- 1st Institute of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Sun C, Cui H, Yang H, DU X, Yue L, Liu J, Lin YU. Anti-metastatic effect of jolkinolide B and the mechanism of activity in breast cancer MDA-MB-231 cells. Oncol Lett 2015; 10:1117-1122. [PMID: 26622636 DOI: 10.3892/ol.2015.3310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 05/01/2015] [Indexed: 11/06/2022] Open
Abstract
Tumor metastasis is the main cause of mortality in cancer patients. However, no effective therapies are currently available to prevent metastasis. Cell adhesion to the extracellular matrix (ECM) is crucial in cancer progression and metastasis. Thus, suppression of cell adhesion may be an effective therapeutic strategy for the prevention of metastasis. In the present study, the anti-adhesion and anti-invasion effects of jolkinolide B, a diterpenoid compound from Euphorbia fischeriana Steud, that were exerted through suppression of β1-integrin expression and phosphorylation of focal adhesion kinase (FAK) were examined in human breast cancer MDA-MB-231 cells. Jolkinolide B inhibited the adhesion of MDA-MB-231 cells to fibronectin but not to poly-L-lysine. In addition, jolkinolide B inhibited extracellular signal-regulated kinase (ERK) phosphorylation. U0126, an ERK inhibitor, also suppressed the invasion and adhesion of MDA-MB-231 cells. Overall, the present data demonstrated that jolkinolide B is a novel inhibitor of FAK-mediated signaling pathways that is involved in decreasing cell adhesion and invasion. Mitogen-activated protein kinase/ERK kinase may play a critical role in these effects, indicating that jolkinolide B possesses therapeutic potential for the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Chao Sun
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hongxia Cui
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hongyan Yang
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xiaohui DU
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liling Yue
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Jicheng Liu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Y U Lin
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
15
|
Chen Y, Zheng L, Liu J, Zhou Z, Cao X, Lv X, Chen F. Shikonin inhibits prostate cancer cells metastasis by reducing matrix metalloproteinase-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways. Int Immunopharmacol 2014; 21:447-55. [PMID: 24905636 DOI: 10.1016/j.intimp.2014.05.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/07/2014] [Accepted: 05/23/2014] [Indexed: 01/10/2023]
Abstract
Metastasis is one of the most important factors related to prostate cancer therapeutic efficacy. In previous studies, shikonin, an active naphthoquinone isolated from the Chinese medicine Zi Cao, has various anticancer activities both in vivo and in vitro. However, the mechanisms underlying shikonin's anticancer activity are not fully elucidated on prostate cancer cells. In the present study, we aimed to investigate the potential effects of shikonin on prostate cancer cells and the underlying mechanisms by which shikonin exerted its actions. With cell proliferation, flow cytometric cell cycle, migration and invasion assays, we found that shikonin potently suppressed PC-3 and DU145 cell growth by cell cycle arrest at the G2 phase and metastasis in a dose-dependent manner. Mechanically, we presented that shikonin could suppress the metastasis of PC-3 and DU145 cells via inhibiting the matrix metalloproteinase-2 (MMP-2) and MMP-9 expression and activation. In addition, shikonin significantly decreased the phosphorylation of AKT and mTOR in a dose-dependent manner while it induced extracellular signal-regulated kinase (ERK), p38 mitogen activated protein kinase (MAPK) and c-Jun N terminal kinase (JNK) phosphorylation. Further investigation of the underlying mechanism revealed that shikonin also induced the production of reactive oxygen species (ROS) that was reversed by the ROS scavenger dithiothreitol (DTT). Additionally, DTT reversed the shikonin induced activation of ERK1/2, thereby maintaining MMP-2 and MMP-9 expression and restoring cell metastasis. Together, shikonin inhibits aggressive prostate cancer cell migration and invasion by reducing MMP-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways and presents a potential novel alternative agent for the treatment of human prostate cancer.
Collapse
Affiliation(s)
- Yongqiang Chen
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Lu Zheng
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Junquan Liu
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Zhonghai Zhou
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Xiliang Cao
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Xiaoting Lv
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Fuxing Chen
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China.
| |
Collapse
|
16
|
Ke C, Jin H, Cai J. AFM studied the effect of celastrol on β1 integrin-mediated HUVEC adhesion and migration. SCANNING 2013; 35:316-326. [PMID: 23239560 DOI: 10.1002/sca.21070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 06/01/2023]
Abstract
Integrin-mediated human umbilical vein endothelial cells (HUVECs) adhesion to the extracellular matrix plays a fundamental role in tumor-induced angiogenesis. Celastrol, a traditional Chinese medicine plant, has possessed anticancer and suppressed angiogenesis activities. Here, the mechanism underling the antiangiogenesis capacity of celastrol was investigated by exploring the effect of celastrol on β1(CD29) integrin-mediated cell adhesion and migration. Flow cytometry results showed that the HUVECs highly expressed CD29 and cell adhesion assay indicated that celastrol specifically inhibited the adhesion of HUVECs to fibronectin (FN) without affecting nonspecific adhesion to poly-L-lysine (PLL). After cell FN adhesion being inhibited, the cell surface nanoscale structure and adhesion force were detected by atomic force microscope (AFM). High-resolution imaging revealed that cell morphology and ultrastructure changed a lot after being treated with celastrol. The membrane average roughness (Ra) and the major forces were decreased from 31.34 ± 4.56 nm, 519.60 ± 82.86 pN of 0 μg/ml celastrol to 18.47 ± 6.53 nm, 417.79 ± 53.35 pN of 4.0 μg/ml celastrol, 10.54 ± 2.85 nm, 258.95 ± 38.98 pN of 8.0 μg/ml celastrol, respectively. Accompanying with the decrease of adhesion force, the actin cytoskeleton in the cells was obviously disturbed by the celastrol. All of these changes influenced the migration of HUVECs from the wound-healing migration assay. Taken together, our results suggest that celastrol can be as an inhibitor of HUVEC adhesion to FN. This work provides a novel approach to inhibition of tumor angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Changhong Ke
- Department of Chemistry, College of Life Science and Technology, Jinan University, Guangzhou, China
| | | | | |
Collapse
|
17
|
Andrade Carvalho A, da Costa PM, Da Silva Souza LG, Lemos TLG, Alves APNN, Pessoa C, de Moraes MO. Inhibition of metastatic potential of B16-F10 melanoma cell line in vivo and in vitro by biflorin. Life Sci 2013; 93:201-7. [DOI: 10.1016/j.lfs.2013.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/08/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
|
18
|
Zhang Y, Wang L, Chen Y, Qing C. Anti-angiogenic activity of salvicine. PHARMACEUTICAL BIOLOGY 2013; 51:1061-1065. [PMID: 23750780 DOI: 10.3109/13880209.2013.776612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Salvicine is a pharmacologically active derivative from Chinese medicinal plant Salvia prionitis Hance (Labiatae). It has been reported that salvicine inactivates β1 integrin and inhibits integrin-mediated cell adhesion to fibronectin. Given the emerging correlation between integrins and angiogenesis, we propose that salvicine abolishes cell adhesion and subsequent metastasis by inhibiting angiogenisis. OBJECTIVE The anti-angiogenesis activities of salvicine were investigated for the first time. MATERIALS AND METHODS The cytotoxicity of salvicine on human microvascular endothelial cells (HMECs) and non-small cell lung adenocarcinoma A549 cells were measured at doses between 0.625 and 200 µM. Changes of cell migration were detected with doses of salvicine at 1.25-5 µM, and basement membrane matrigel matrix was used for the assessment of tube formation at concentrations ranging from 0.078 to 1.25 µM. In addition, mRNA expression of basic fibroblast growth factor (bFGF) in A549 cells was studied with the RT-PCR assay. RESULTS In vitro studies revealed that the IC50 of salvicine on A549 cells (18.66 µM) was two-fold higher than that of HMECs (7.91 µM). Salvicine (1.25, 2.5 and 5.0 μM) inhibited significantly the endothelial cell migration up to 56, 73 and 82%, respectively. Salvicine decreased capillary-like tube formation of HMECs with high potency. Furthermore, it (30 µM) markedly reduced the mRNA expression of bFGF in A549 cells, while vascular endothelial growth factor (VEGF) mRNA expression remained unchanged. DISCUSSION AND CONCLUSION Our results suggest that salvicine has potent anti-angiogenic activity through the inhibition on the sequential angiogenic cascades: proliferation, migration and tube formation and is associated with influence on the expression of bFGF of tumor cell.
Collapse
MESH Headings
- Adenocarcinoma/blood supply
- Adenocarcinoma/drug therapy
- Adenocarcinoma/pathology
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/isolation & purification
- Angiogenesis Inhibitors/pharmacology
- Cell Adhesion/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Fibroblast Growth Factor 2/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Inhibitory Concentration 50
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Naphthoquinones/administration & dosage
- Naphthoquinones/isolation & purification
- Naphthoquinones/pharmacology
- Neovascularization, Pathologic/drug therapy
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Salvia/chemistry
Collapse
Affiliation(s)
- Yanli Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, PR China
| | | | | | | |
Collapse
|
19
|
Montenegro RC, de Vasconcellos MC, Barbosa GDS, Burbano RMR, Souza LGS, Lemos TLG, Costa-Lotufo LV, de Moraes MO. A novel o-naphtoquinone inhibits N-cadherin expression and blocks melanoma cell invasion via AKT signaling. Toxicol In Vitro 2013; 27:2076-83. [PMID: 23912027 DOI: 10.1016/j.tiv.2013.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
The down-regulation or loss of epithelial markers is often accompanied by the up-regulation of mesenchymal markers. E-cadherin generally suppresses invasiveness, whereas N-cadherin promotes invasion and metastasis in vitro. The aim of this work is to investigate the role of biflorin, a naphthoquinone with proven anticancer properties, on the expression of N-cadherin and AKT proteins in MDA-MB-435 invasive melanoma cancer cells after 12h of exposure to 1, 2.5 and 5 μM biflorin. Biflorin inhibited MDA-MB-435 invasion in a dose-dependent manner (p<0.01). Likewise, biflorin down-regulated N-cadherin and AKT-1 expression in a dose-dependent manner. Biflorin did not inhibit the adhesion of MDA-MB-435 cells to any tested substrates. Additionally, biflorin blocked the invasiveness of cells by down-regulating N-cadherin, most likely via AKT-1 signaling. As such, biflorin may be a novel anticancer agent and a new prototype for drug design.
Collapse
Affiliation(s)
- Raquel Carvalho Montenegro
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa 01-Guamá, Belém/PA, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou J, Chen GB, Tang YC, Sinha RA, Wu Y, Yap CS, Wang G, Hu J, Xia X, Tan P, Goh LK, Yen PM. Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library. BMC Med Genomics 2012; 5:34. [PMID: 22876838 PMCID: PMC3479415 DOI: 10.1186/1755-8794-5-34] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 07/09/2012] [Indexed: 12/11/2022] Open
Abstract
Background While there is strong evidence for phosphatidylinositol 3-kinase (PI3K) involvement in cancer development, there is limited information about the role of PI3K regulatory subunits. PIK3R3, the gene that encodes the PI3K regulatory subunit p55γ, is over-expressed in glioblastoma and ovarian cancers, but its expression in gastric cancer (GC) is not known. We thus used genetic and bioinformatic approaches to examine PIK3R3 expression and function in GC, the second leading cause of cancer mortality world-wide and highly prevalent among Asians. Methods Primary GC and matched non-neoplastic mucosa tissue specimens from a unique Asian patient gastric cancer library were comprehensively profiled with platforms that measured genome-wide mRNA expression, DNA copy number variation, and DNA methylation status. Function of PIK3R3 was predicted by IPA pathway analysis of co-regulated genes with PIK3R3, and further investigated by siRNA knockdown studies. Cell proliferation was estimated by crystal violet dye elution and BrdU incorporation assay. Cell cycle distribution was analysed by FACS. Results PIK3R3 was significantly up-regulated in GC specimens (n = 126, p < 0.05), and 9.5 to 15% tumors showed more than 2 fold increase compare to the paired mucosa tissues. IPA pathway analysis showed that PIK3R3 promoted cellular growth and proliferation. Knockdown of PIK3R3 decreased the growth of GC cells, induced G0/G1 cell cycle arrest, decreased retinoblastoma protein (Rb) phosphorylation, cyclin D1, and PCNA expression. Conclusion Using a combination of genetic, bioinformatic, and molecular biological approaches, we showed that PIK3R3 was up-regulated in GC and promoted cell cycle progression and proliferation; and thus may be a potential new therapeutic target for GC.
Collapse
Affiliation(s)
- Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012; 112:3611-40. [PMID: 22397403 DOI: 10.1021/cr200325f] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Bailly
- Centre de Recherche et Développement, Institut de Recherche Pierre Fabre, Toulouse, France.
| |
Collapse
|
22
|
Xu B, Ding J, Chen KX, Miao ZH, Huang H, Liu H, Luo XM. Advances in Cancer Chemotherapeutic Drug Research in China. RECENT ADVANCES IN CANCER RESEARCH AND THERAPY 2012. [PMCID: PMC7158183 DOI: 10.1016/b978-0-12-397833-2.00012-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bin Xu
- Corresponding author: Bin Xu, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zi Road, Shanghai 201203, People’s Republic of China. Tel: O21-54920515 (o), 13501793936 (mobile), Fax: 021-54920568, e-mail:
| | | | | | | | | | | | | |
Collapse
|
23
|
Muscella A, Calabriso N, Vetrugno C, Urso L, Fanizzi FP, De Pascali SA, Marsigliante S. Sublethal concentrations of the platinum(II) complex [Pt(O,O'-acac)(gamma-acac)(DMS)] alter the motility and induce anoikis in MCF-7 cells. Br J Pharmacol 2010; 160:1362-77. [PMID: 20590627 DOI: 10.1111/j.1476-5381.2010.00782.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE We showed previously that a new Pt(II) complex ([Pt(O,O'-acac)(gamma-acac)(DMS)]) exerted high and fast apoptotic processes in MCF-7 cells. The objective of this study was to investigate the hypothesis that [Pt(O,O'-acac)(gamma-acac)(DMS)] is also able to exert anoikis and alter the migration ability of MCF-7 cells, and to show some of the signalling events leading to these alterations. EXPERIMENTAL APPROACH Cells were treated with sublethal doses of [Pt(O,O'-acac)(gamma-acac)(DMS)], and the efficiency of colony initiation and anchorage-independent growth was assayed; cell migration was examined by in vitro culture wounding assay. Gelatin zymography for MMP-2 and -9 activities, Western blottings of MMPs, MAPKs, Src, PKC-epsilon and FAK, after [Pt(O,O'-acac)(gamma-acac)(DMS)] treatment, were also performed. KEY RESULTS Sub-cytotoxic drug concentrations decreased the: (i) anchorage-dependent and -independent growth; (ii) migration ability; and (iii) expression and activity of MMP-2 and MMP-9. [Pt(O,O'-acac)(gamma-acac)(DMS)] provoked the generation of reactive oxygen species (ROS), and the activation of p38MAPK, Src and PKC-epsilon. p38MAPK phosphorylation, cell anoikis and migration due to [Pt(O,O'-acac)(gamma-acac)(DMS)] were blocked by PKC-epsilon inhibition. Furthermore, Src inhibition blocked the [Pt(O,O'-acac)(gamma-acac)(DMS)]-provoked activation of PKC-epsilon, while ROS generation blockage inhibited the activation of Src, and also the decrement of phosphorylated FAK observed in detached [Pt(O,O'-acac)(gamma-acac)(DMS)]-treated cells. CONCLUSIONS AND IMPLICATIONS Sublethal concentrations of [Pt(O,O'-acac)(gamma-acac)(DMS)] induced anoikis and prevented events leading to metastasis via alterations in cell migration, anchorage independency, stromal interactions and MMP activity. Hence, [Pt(O,O'-acac)(gamma-acac)(DMS)] may be a promising therapeutic agent for preventing growth and metastasis of breast cancer.
Collapse
Affiliation(s)
- Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects of tumour development and progression. However, tumour cells also express increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further, the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of ROS in cancer. A challenge for novel therapeutic strategies will be the fine tuning of intracellular ROS signalling to effectively deprive cells from ROS-induced tumour promoting events, towards tipping the balance to ROS-induced apoptotic signalling. Alternatively, therapeutic antioxidants may prevent early events in tumour development, where ROS are important. However, to effectively target cancer cells specific ROS-sensing signalling pathways that mediate the diverse stress-regulated cellular functions need to be identified. This review discusses the generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize, but also provides an outlook on their modulation in therapeutics.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville FL 32224, USA
| | | |
Collapse
|
25
|
Zhang J, Gao J, Tan X, Wang M, Qin R. Effects of down-regulation of integrin-beta1 expression on migration and hepatic metastasis of human colon carcinoma. ACTA ACUST UNITED AC 2010; 30:464-9. [PMID: 20714871 DOI: 10.1007/s11596-010-0450-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Indexed: 12/21/2022]
Abstract
Organ-specific tumor cell adhesion to extracellular matrix (ECM) components and cell migration into host organs often involve integrin-mediated cellular processes. Direct integrin-mediated cell adhesion to ECM components in the space of Disse appears to be required for the successful liver metastatic formation of colon cancer. In the present study, human colon cancer HT-29 cells were transfected by liposome with integrin-beta1 antisense oligodeoxynucleotide (ASODN). The integrin-beta1 gene expression in HT-29 cells was significantly down-regulated. The migration of HT-29 cells was assayed using transwell cell culture chambers in vitro. The number of migrating HT-29 cells in experimental group was far less than that in control group (P<0.05). The models of hepatic metastasis in nude mice were established by the intrasplenic injection of transfected HT-29 cells. Thirty days later, the nude mice were killed and the average number of hepatic metastases (4.00+/-0.93 per mouse), average volume (10.10+/-6.50 mm3 per mouse), average weight (0.0440+/-0.0008 g per mouse) in experimental group were remarkably reduced as compared with those in control group (P<0.05). Integrin-beta1 expression in the hepatic metastasis was studied by immunohistochemistry (SP). Positive cell percentage of hepatic metastases in experimental group was markedly decreased as compared with that in control group (P<0.05). It was concluded that integrin-beta1 may take part in hepatic metastasis, and down-regulation of integrin-beta1 expression may play a key role in decreasing migration and hepatic metastasis of human colon carcinoma cells (HT-29).
Collapse
Affiliation(s)
- Jianli Zhang
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | | | | | | |
Collapse
|
26
|
Zhu H, Liu XW, Cai TY, Cao J, Tu CX, Lu W, He QJ, Yang B. Celastrol acts as a potent antimetastatic agent targeting beta1 integrin and inhibiting cell-extracellular matrix adhesion, in part via the p38 mitogen-activated protein kinase pathway. J Pharmacol Exp Ther 2010; 334:489-99. [PMID: 20472666 DOI: 10.1124/jpet.110.165654] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Malignant tumors remain a significant health threat, with death often occurring as a result of metastasis. Cell adhesion is a crucial step in the metastatic cascade of tumor cells, and interruption of this step is considered to be a logical strategy for prevention and treatment of tumor metastasis. Celastrol [3-hydroxy-24-nor-2-oxo-1(10),3,5,7-friedelatetraen-29-oic acid], a quinone methide triterpene from the medicinal plant Tripterygium wilfordii, possesses antitumor activities, whereas the underlying mechanism(s) remains elusive. Here, we found that celastrol inhibited cell-extracellular matrix (ECM) adhesion of human lung cancer 95-D and mouse melanoma B16F10 cells. This inhibition was achieved through suppressing beta1 integrin ligand affinity and focal adhesion formation, accompanied by the reduced phosphorylation of focal adhesion kinase (FAK). In understanding the underlying mechanisms, we found that celastrol activated p38 mitogen-activated protein kinase (MAPK) by phosphorylation before the decrement of phosphorylated FAK and that this action was independent of the presence of fibronectin. Using 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), a specific inhibitor of p38 MAPK, the effects of celastrol on beta1 integrin function, cell-ECM adhesion, and phosphorylation of FAK were partially attenuated. In addition, focal adhesion-dependent cell migration and invasion were both inhibited by treatment with celastrol. Finally, the antimetastatic activity of celastrol was examined in vivo using the B16F10-green fluorescent protein-injected C57BL/6 mouse model, as indicated by decreased pulmonary metastases in celastrol-administrated mice. Taken together, these data demonstrate for the first time that celastrol exerts potent antimetastatic activity both in vitro and in vivo, and they provide new evidence for the critical roles of p38 MAPK in the regulation of integrin function and cell adhesion.
Collapse
Affiliation(s)
- Hong Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Shewchuk LJ, Bryan S, Ulanova M, Khaper N. Integrin β3 prevents apoptosis of HL-1 cardiomyocytes under conditions of oxidative stressThis article is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 2010; 88:324-30. [DOI: 10.1139/y09-131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrin receptors are essential in the regulation of vital cardiac functions, and impaired integrin activity has been associated with cardiac remodeling. Oxidative stress is known to be involved in apoptosis and cardiac remodeling and thus may profoundly influence cardiac function via integrin modulation. The aim of this study was to determine the expression pattern and functional role of integrins in HL-1 cardiomyocytes under conditions of oxidative stress. Gene expression was studied by end-point and real-time PCR; surface protein expression was studied by flow cytometry; integrin knockdown was accomplished by siRNA gene silencing; and apoptosis was studied by annexin V staining and active caspase-3/7 using flow cytometry. Among the various subunits under study (αv, α5, α6, and β1, β3, β4, and β5), the expression of β3 integrin was significantly increased at both the mRNA and protein levels in cardiomyocytes exposed to 100 µmol/L hydrogen peroxide for 3 h. Gene silencing of β3 integrin by using siRNA resulted in a 2-fold increase in cardiomyocyte apoptosis upon treatment with hydrogen peroxide. This increase in apoptosis, as measured by annexin V staining, correlated with an increase in active caspase-3/7. Integrin β3 plays a vital role in preventing cardiomyocyte apoptosis under conditions of oxidative stress.
Collapse
Affiliation(s)
- Lee J. Shewchuk
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Sean Bryan
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marina Ulanova
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Neelam Khaper
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
28
|
Eriocalyxin B induces apoptosis in lymphoma cells through multiple cellular signaling pathways. Exp Hematol 2010; 38:191-201. [DOI: 10.1016/j.exphem.2009.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/07/2009] [Accepted: 12/22/2009] [Indexed: 11/22/2022]
|
29
|
Abstract
Reactive oxygen species (ROS) are molecules or ions formed by the incomplete one-electron reduction of oxygen. Of interest, it seems that ROS manifest dual roles, cancer promoting or cancer suppressing, in tumorigenesis. ROS participate simultaneously in two signaling pathways that have inverse functions in tumorigenesis, Ras-Raf-MEK1/2-ERK1/2 signaling and the p38 mitogen-activated protein kinases (MAPK) pathway. It is well known that Ras-Raf-MEK1/2-ERK1/2 signaling is related to oncogenesis, while the p38 MAPK pathway contributes to cancer suppression, which involves oncogene-induced senescence, inflammation-induced cellular senescence, replicative senescence, contact inhibition and DNA-damage responses. Thus, ROS may not be an absolute carcinogenic factor or cancer suppressor. The purpose of the present review is to discuss the dual roles of ROS in the pathogenesis of cancer, and the signaling pathway mediating their role in tumorigenesis.
Collapse
|