1
|
Wallace RG, Rochfort KD, Barabas P, Curtis TM, Uehara H, Ambati BK, Cummins PM. COMP-Ang1: Therapeutic potential of an engineered Angiopoietin-1 variant. Vascul Pharmacol 2021; 141:106919. [PMID: 34583025 DOI: 10.1016/j.vph.2021.106919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 01/20/2023]
Abstract
The Angiopoietin-1/2 system is an opportune target for therapeutic intervention in a wide range of vascular pathologies, particularly through its association with endothelium. The complex multi-domain structure of native human Angiopoietin-1 has hindered its widespread applicability as a therapeutic agent, prompting the search for alternative approaches to mimicking the Ang1:Tie2 signalling axis; a system with highly complex patterns of regulation involving multiple structurally similar molecules. An engineered variant, Cartilage Oligomeric Matrix Protein - Angiopoietin-1 (COMP-Ang1), has been demonstrated to overcome the limitations of the native molecule and activate the Tie2 pathway with several fold greater potency than Ang1, both in vitro and in vivo. The therapeutic efficacy of COMP-Ang1, at both the vascular and systemic levels, is evident from multiple studies. Beneficial impacts on skeletal muscle regeneration, wound healing and angiogenesis have been reported alongside renoprotective, anti-hypertensive and anti-inflammatory effects. COMP-Ang1 has also demonstrated synergy with other compounds to heighten bone repair, has been leveraged for potential use as a co-therapeutic for enhanced targeted cancer treatment, and has received considerable attention as an anti-leakage agent for microvascular diseases like diabetic retinopathy. This review examines the vascular Angiopoietin:Tie2 signalling mechanism, evaluates the potential therapeutic merits of engineered COMP-Ang1 in both vascular and systemic contexts, and addresses the inherent translational challenges in moving this potential therapeutic from bench-to-bedside.
Collapse
Affiliation(s)
- Robert G Wallace
- School of Biotechnology, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | - Keith D Rochfort
- School of Biotechnology, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Peter Barabas
- Wellcome-Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, UK
| | - Timothy M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, UK
| | | | | | - Philip M Cummins
- School of Biotechnology, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
2
|
Khan KA, Wu FTH, Cruz‐Munoz W, Kerbel RS. Ang2 inhibitors and Tie2 activators: potential therapeutics in perioperative treatment of early stage cancer. EMBO Mol Med 2021; 13:e08253. [PMID: 34125494 PMCID: PMC8261516 DOI: 10.15252/emmm.201708253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Anti-angiogenic drugs targeting the VEGF pathway are most effective in advanced metastatic disease settings of certain types of cancers, whereas they have been unsuccessful as adjuvant therapies of micrometastatic disease in numerous phase III trials involving early-stage (resectable) cancers. Newer investigational anti-angiogenic drugs have been designed to inhibit the Angiopoietin (Ang)-Tie pathway. Acting through Tie2 receptors, the Ang1 ligand is a gatekeeper of endothelial quiescence. Ang2 is a dynamically expressed pro-angiogenic destabilizer of endothelium, and its upregulation is associated with poor prognosis in cancer. Besides using Ang2 blockers as inhibitors of tumor angiogenesis, little attention has been paid to their use as stabilizers of blood vessels to suppress tumor cell extravasation and metastasis. In clinical trials, Ang2 blockers have shown limited efficacy in advanced metastatic disease settings. This review summarizes preclinical evidence suggesting the potential utility of Ang2 inhibitors or Tie2 activators as neoadjuvant or adjuvant therapies in the prevention or treatment of early-stage micrometastatic disease. We further discuss the rationale and potential of combining these strategies with immunotherapy, including immune checkpoint targeting antibodies.
Collapse
Affiliation(s)
- Kabir A Khan
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Florence TH Wu
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - William Cruz‐Munoz
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Robert S Kerbel
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| |
Collapse
|
3
|
Anti-metastatic effect of methylprednisolone targeting vascular endothelial cells under surgical stress. Sci Rep 2021; 11:6268. [PMID: 33737522 PMCID: PMC7973421 DOI: 10.1038/s41598-021-85241-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/26/2021] [Indexed: 12/02/2022] Open
Abstract
Perioperative systemic inflammation induced by surgical stress elevates the risk of hematogenous cancer metastasis. This study investigated the anti-metastatic effects and mechanisms of methylprednisolone (MP) administration for surgical stress. We examined the effects of MP on the expression of adhesion molecules in human vascular endothelial cells and in a murine hepatic metastasis model under lipopolysaccharide (LPS) administration, which mimics systemic inflammation induced by surgical stress. Serum E-selectin level was measured in blood samples obtained from 32 gastric cancer patients who were randomly assigned to treat preoperatively with or without MP. The expression of E-selectin in LPS-induced vascular endothelial cells was suppressed by MP. An adhesion assay showed the number of LPS-induced adherent tumour cells was significantly lower following MP. In the in vivo study, LPS significantly elevated the number of hepatic metastases, but pretreatment with MP before LPS significantly inhibited this elevation. The LPS-induced expression of E-selectin in the vascular endothelium of the portal vein was suppressed by MP. In human clinical samples, serum E-selectin level was significantly decreased by preoperative MP. Suppression of surgically induced systemic inflammation by MP administration might prevent hematogenous cancer metastases by suppressing the induction of E-selectin expression in the vascular endothelium.
Collapse
|
4
|
Jeong JH, Ojha U, Lee YM. Pathological angiogenesis and inflammation in tissues. Arch Pharm Res 2020; 44:1-15. [PMID: 33230600 PMCID: PMC7682773 DOI: 10.1007/s12272-020-01287-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
The role of angiogenesis in the growth of organs and tumors is widely recognized. Vascular-organ interaction is a key mechanism and a concept that enables an understanding of all biological phenomena and normal physiology that is essential for human survival under pathological conditions. Recently, vascular endothelial cells have been classified as a type of innate immune cells that are dependent on the pathological situations. Moreover, inflammatory cytokines and signaling regulators activated upon exposure to infection or various stresses play crucial roles in the pathological function of parenchymal cells, peripheral immune cells, stromal cells, and cancer cells in tissues. Therefore, vascular-organ interactions as a vascular microenvironment or tissue microenvironment under physiological and pathological conditions are gaining popularity as an interesting research topic. Here, we review vascular contribution as a major factor in microenvironment homeostasis in the pathogenesis of normal as well as cancerous tissues. Furthermore, we suggest that the normalization strategy of pathological angiogenesis could be a promising therapeutic target for various diseases, including cancer.
Collapse
Affiliation(s)
- Ji-Hak Jeong
- College of Pharmacy, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, 41566, Republic of Korea.,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Uttam Ojha
- College of Pharmacy, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, 41566, Republic of Korea
| | - You Mie Lee
- College of Pharmacy, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, 41566, Republic of Korea. .,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Li Y, Huang P, Peng H, Yue H, Wu M, Liu S, Qin R, Fan J, Han Y. Antitumor effects of Endostar(rh-endostatin) combined with gemcitabine in different administration sequences to treat Lewis lung carcinoma. Cancer Manag Res 2019; 11:3469-3479. [PMID: 31114380 PMCID: PMC6497885 DOI: 10.2147/cmar.s192868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 01/12/2023] Open
Abstract
Background: Endostatin therapy is known to efficiently inhibit angiogenesis and growth of endothelial cells. Nonetheless, the antitumor mechanisms of endostatin combined with chemotherapy remain to be elucidated. Methods: In our study, a Lewis lung carcinoma transplant mouse model was established and treated with the recombinant human [rh]-endostatin, Endostar, combined with gemcitabine at different sequences. 18F-FDG PET/CT imaging was performed to monitor tumor growth, and hypoxia was examined using an oxygen microelectrode. Vascular endothelial growth factor (VEGF) and alpha smooth muscle actin (α-SMA) levels were detected via immunohistochemistry analysis and cell cycle distributions were analyzed by flow cytometry. Results: Endostar decreased VEGF expression, improved hypoxia, and influenced cell cycle distributions. Simultaneous treatment of Endostar and gemcitabine displayed significantly tumor inhibition, possessed the lowest uptake of FDG, improved oxygen partial pressure, decreased expression of VEGF, and increased pericyte coverage. Cell cycle analysis demonstrated that cells accumulated in the S phase following gemcitabine treatment and G0/G1 arrest occurred following Endostar treatment. An increase of cells in G0/G1 phase was observed following treatment with Endostar and gemcitabine. Conclusions: Our study suggests that the combination therapy of Endostar with gemcitabine simutaneously may optimally enhance their individual antitumor effects.
Collapse
Affiliation(s)
- Yuan Li
- The Oncology Department, Affiliated Hospital of Southwest Medical University, Lu Zhou, Si Chuan 646000, People's Republic of China
| | - Pan Huang
- Neurology Department, Deyang People's Hospital, Deyang, Sichuan 618000, People's Republic of China
| | - Hongju Peng
- The Oncology Department, Affiliated Hospital of Southwest Medical University, Lu Zhou, Si Chuan 646000, People's Republic of China
| | - Hongcheng Yue
- The Oncology Department, Affiliated Hospital of Southwest Medical University, Lu Zhou, Si Chuan 646000, People's Republic of China
| | - Min Wu
- The Oncology Department, Affiliated Hospital of Southwest Medical University, Lu Zhou, Si Chuan 646000, People's Republic of China
| | - Shanshan Liu
- The Oncology Department, Affiliated Hospital of Southwest Medical University, Lu Zhou, Si Chuan 646000, People's Republic of China
| | - Rongsheng Qin
- The Oncology Department, Affiliated Hospital of Southwest Medical University, Lu Zhou, Si Chuan 646000, People's Republic of China
| | - Juan Fan
- The Oncology Department, Affiliated Hospital of Southwest Medical University, Lu Zhou, Si Chuan 646000, People's Republic of China
| | - Yunwei Han
- The Oncology Department, Affiliated Hospital of Southwest Medical University, Lu Zhou, Si Chuan 646000, People's Republic of China
| |
Collapse
|
6
|
STAT3 activation in endothelial cells is important for tumor metastasis via increased cell adhesion molecule expression. Oncogene 2017; 36:5445-5459. [DOI: 10.1038/onc.2017.148] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 12/18/2022]
|
7
|
Park JS, Kim IK, Han S, Park I, Kim C, Bae J, Oh SJ, Lee S, Kim JH, Woo DC, He Y, Augustin HG, Kim I, Lee D, Koh GY. Normalization of Tumor Vessels by Tie2 Activation and Ang2 Inhibition Enhances Drug Delivery and Produces a Favorable Tumor Microenvironment. Cancer Cell 2016; 30:953-967. [PMID: 27960088 DOI: 10.1016/j.ccell.2016.10.018] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/29/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
Abstract
A destabilized tumor vasculature leads to limited drug delivery, hypoxia, detrimental tumor microenvironment, and even metastasis. We performed a side-by-side comparison of ABTAA (Ang2-Binding and Tie2-Activating Antibody) and ABA (Ang2-Blocking Antibody) in mice with orthotopically implanted glioma, with subcutaneously implanted Lewis lung carcinoma, and with spontaneous mammary cancer. We found that Tie2 activation induced tumor vascular normalization, leading to enhanced blood perfusion and chemotherapeutic drug delivery, markedly lessened lactate acidosis, and reduced tumor growth and metastasis. Moreover, ABTAA favorably altered the immune cell profile within tumors. Together, our findings establish that simultaneous Tie2 activation and Ang2 inhibition form a powerful therapeutic strategy to elicit a favorable tumor microenvironment and enhanced delivery of a chemotherapeutic agent into tumors.
Collapse
Affiliation(s)
- Jin-Sung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Il-Kug Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangyeul Han
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea; Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea
| | - Intae Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Chan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeomil Bae
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seung Ja Oh
- Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Yulong He
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), 69121 Heidelberg, Germany
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea; Bio-Synergy Research Center, Daejeon 34141, Republic of Korea.
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.
| |
Collapse
|
8
|
Wu FTH, Lee CR, Bogdanovic E, Prodeus A, Gariépy J, Kerbel RS. Vasculotide reduces endothelial permeability and tumor cell extravasation in the absence of binding to or agonistic activation of Tie2. EMBO Mol Med 2016; 7:770-87. [PMID: 25851538 PMCID: PMC4459817 DOI: 10.15252/emmm.201404193] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiopoietin-1 (Ang1) activation of Tie2 receptors on endothelial cells (ECs) reduces adhesion by tumor cells (TCs) and limits junctional permeability to TC diapedesis. We hypothesized that systemic therapy with Vasculotide (VT)—a purported Ang1 mimetic, Tie2 agonist—can reduce the extravasation of potentially metastatic circulating TCs by similarly stabilizing the host vasculature. In vitro, VT and Ang1 treatments impeded endothelial hypermeability and the transendothelial migration of MDA-MB-231•LM2-4 (breast), HT29 (colon), or SN12 (renal) cancer cells to varying degrees. In mice, VT treatment inhibited the transit of TCs through the pulmonary endothelium, but not the hepatic or lymphatic endothelium. In the in vivo LM2-4 model, VT monotherapy had no effect on primary tumors, but significantly delayed distant metastatic dissemination to the lungs. In the post-surgical adjuvant treatment setting, VT therapeutically complemented sunitinib therapy, an anti-angiogenic tyrosine kinase inhibitor which limited the local growth of residual disease. Unexpectedly, detailed investigations into the putative mechanism of action of VT revealed no evidence of Tie2 agonism or Tie2 binding; alternative mechanisms have yet to be determined.
Collapse
Affiliation(s)
- Florence T H Wu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christina R Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Elena Bogdanovic
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Aaron Prodeus
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jean Gariépy
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Robert S Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
9
|
Abstract
The endothelial TIE1 and TIE2 receptor tyrosine kinases form a distinct subfamily characterized by their unique extracellular domains. Together with the angiopoietin growth factors (ANGPT1, ANGPT2, ANGPT4, also abbreviated as ANG), the TIE receptors form an endothelial specific signaling pathway with important functions in the regulation of lymphatic and cardiovascular development and vascular homeostasis. Angiopoietins exist in multimeric forms that activate the TIE receptors via unique mechanism. In endothelial cell–cell contacts, angiopoietins induce the formation of homomeric in trans TIE receptor complexes extending across the cell junctions, whereas matrix-bound angiopoietin-1 (ANG1) activates the TIE receptors in a cis configuration. In comparison to the vascular endothelial growth factor receptors, the TIE receptors undergo little ubiquitin-mediated degradation after activation, whereas TIE2 signaling is negatively regulated by the vascular endothelial protein tyrosine phosphatase, VE-PTP. ANG1 activation of TIE2 supports vascular stabilization, whereas angiopoietin-2 (ANG2), a context-dependent weak TIE2 agonist/antagonist, promotes pathological tumor angiogenesis, vascular permeability, and inflammation. Recently, ANG2 has been found to mediate some of its vascular destabilizing and angiogenic functions via integrin signalling. The circulating levels of ANG2 are increased in cancer, and in several human diseases associated with inflammation and vascular leak, for example, in sepsis. Blocking of ANG2 has emerged as a potential novel therapeutic strategy for these diseases. In addition, preclinical results demonstrate that genetic TIE1 deletion in mice inhibits the vascularization and growth of tumor isografts and protects from atherosclerosis, with little effect on normal vascular homeostasis in adult mice. The ability of the ANG-TIE pathway to control vessel stability and angiogenesis makes it an interesting vascular target for the treatment of the various diseases.
Collapse
|
10
|
Korpela E, Yohan D, Chin LC, Kim A, Huang X, Sade S, Van Slyke P, Dumont DJ, Liu SK. Vasculotide, an Angiopoietin-1 mimetic, reduces acute skin ionizing radiation damage in a preclinical mouse model. BMC Cancer 2014; 14:614. [PMID: 25159192 PMCID: PMC4159535 DOI: 10.1186/1471-2407-14-614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/20/2014] [Indexed: 11/24/2022] Open
Abstract
Background Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal tissue. Acute skin damage from cancer radiotherapy diminishes patients’ quality of life, yet effective biological interventions for this damage are lacking. Protecting microvascular endothelial cells from irradiation-induced perturbations is emerging as a targeted damage-reduction strategy. Since Angiopoetin-1 signaling through the Tie2 receptor on endothelial cells opposes microvascular perturbations in other disease contexts, we used a preclinical Angiopoietin-1 mimic called Vasculotide to investigate its effect on skin radiation toxicity using a preclinical model. Methods Athymic mice were treated intraperitoneally with saline or Vasculotide and their flank skin was irradiated with a single large dose of ionizing radiation. Acute cutaneous damage and wound healing were evaluated by clinical skin grading, histology and immunostaining. Diffuse reflectance optical spectroscopy, myeloperoxidase-dependent bioluminescence imaging of neutrophils and a serum cytokine array were used to assess inflammation. Microvascular endothelial cell response to radiation was tested with in vitro clonogenic and Matrigel tubule formation assays. Tumour xenograft growth delay experiments were also performed. Appreciable differences between treatment groups were assessed mainly using parametric and non-parametric statistical tests comparing areas under curves, followed by post-hoc comparisons. Results In vivo, different schedules of Vasculotide treatment reduced the size of the irradiation-induced wound. Although skin damage scores remained similar on individual days, Vasculotide administered post irradiation resulted in less skin damage overall. Vasculotide alleviated irradiation-induced inflammation in the form of reduced levels of oxygenated hemoglobin, myeloperoxidase bioluminescence and chemokine MIP-2. Surprisingly, Vasculotide-treated animals also had higher microvascular endothelial cell density in wound granulation tissue. In vitro, Vasculotide enhanced the survival and function of irradiated endothelial cells. Conclusions Vasculotide administration reduces acute skin radiation damage in mice, and may do so by affecting several biological processes. This radiation protection approach may have clinical impact for cancer radiotherapy patients by reducing the severity of their acute skin radiation damage. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-614) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Stanley K Liu
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
11
|
Jeltsch M, Leppänen VM, Saharinen P, Alitalo K. Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb Perspect Biol 2013; 5:5/9/a009183. [PMID: 24003209 DOI: 10.1101/cshperspect.a009183] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The endothelial cell is the essential cell type forming the inner layer of the vasculature. Two families of receptor tyrosine kinases (RTKs) are almost completely endothelial cell specific: the vascular endothelial growth factor (VEGF) receptors (VEGFR1-3) and the Tie receptors (Tie1 and Tie2). Both are key players governing the generation of blood and lymphatic vessels during embryonic development. Because the growth of new blood and lymphatic vessels (or the lack thereof) is a central element in many diseases, the VEGF and the Tie receptors provide attractive therapeutic targets in various diseases. Indeed, several drugs directed to these RTK signaling pathways are already on the market, whereas many are in clinical trials. Here we review the VEGFR and Tie families, their involvement in developmental and pathological angiogenesis, and the different possibilities for targeting them to either block or enhance angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Michael Jeltsch
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
12
|
Eklund L, Saharinen P. Angiopoietin signaling in the vasculature. Exp Cell Res 2013; 319:1271-80. [PMID: 23500414 DOI: 10.1016/j.yexcr.2013.03.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 01/26/2023]
Abstract
The angiopoietin (Ang) growth factors and the endothelial Tie receptors regulate blood and lymphatic vessel development, and vascular permeability, inflammation, angiogenic remodeling and tumor vascularization in adult tissues. The angiopoietins activate the Tie receptors in unique in trans complexes at endothelial cell-cell and cell-matrix contacts. In addition, integrins have been implicated in the regulation of Ang-Tie signaling. Recent interest has focused on the function of angiopoietin-2 and its inhibition in the tumor vasculature and also in other pathological conditions associated with endothelial dysfunction. Here we review the current understanding of the signaling functions of the Ang-Tie pathway and its potential for future development of targeted vascular therapeutics.
Collapse
Affiliation(s)
- Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, and Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland
| | | |
Collapse
|
13
|
Pericytes on the tumor vasculature: jekyll or hyde? CANCER MICROENVIRONMENT 2012; 6:1-17. [PMID: 22467426 DOI: 10.1007/s12307-012-0102-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/08/2012] [Indexed: 12/15/2022]
Abstract
The induction of tumor vasculature, known as the 'angiogenic switch', is a rate-limiting step in tumor progression. Normal blood vessels are composed of two distinct cell types: endothelial cells which form the channel through which blood flows, and mural cells, the pericytes and smooth muscle cells which serve to support and stabilize the endothelium. Most functional studies have focused on the responses of endothelial cells to pro-angiogenic stimuli; however, there is mounting evidence that the supporting mural cells, particularly pericytes, may play key regulatory roles in both promoting vessel growth as well as terminating vessel growth to generate a mature, quiescent vasculature. Tumor vessels are characterized by numerous structural and functional abnormalities, including altered association between endothelial cells and pericytes. These dysfunctional, unstable vessels contribute to hypoxia, interstitial fluid pressure, and enhanced susceptibility to metastatic invasion. Increasing evidence points to the pericyte as a critical regulator of endothelial activation and subsequent vessel development, stability, and function. Here we discuss both the stimulatory and inhibitory effects of pericytes on the vasculature and the possible utilization of vessel normalization as a therapeutic strategy to combat cancer.
Collapse
|
14
|
Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med 2011; 17:347-62. [PMID: 21481637 DOI: 10.1016/j.molmed.2011.01.015] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/24/2011] [Accepted: 01/28/2011] [Indexed: 12/12/2022]
Abstract
Solid tumors require blood vessels for growth and dissemination, and lymphatic vessels as additional conduits for metastatic spread. The identification of growth factor receptor pathways regulating angiogenesis has led to the clinical approval of the first antiangiogenic molecules targeted against the vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR)-2 pathway. However, in many cases resistance to anti-VEGF-VEGFR therapy occurs, and thus far the clinical benefit has been limited to only modest improvements in overall survival. Therefore, novel treatment modalities are required. Here, we discuss the members of the VEGF-VEGFR family as well as the angiopoietin growth factors and their Tie receptors as potential novel targets for antiangiogenic and antilymphangiogenic therapies.
Collapse
Affiliation(s)
- Pipsa Saharinen
- Molecular/Cancer Biology, Research Programs Unit, Biomedicum Helsinki, P.O.B. 63, (Haartmaninkatu 8), FIN-00014, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|