1
|
Böttger F, Radonic T, Bahce I, Monkhorst K, Piersma SR, Pham TV, Dingemans AC, Hillen LM, Santarpia M, Giovannetti E, Smit EF, Burgers SA, Jimenez CR. Identification of protein biomarkers for prediction of response to platinum-based treatment regimens in patients with non-small cell lung cancer. Mol Oncol 2024; 18:1417-1436. [PMID: 38010703 PMCID: PMC11161729 DOI: 10.1002/1878-0261.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
The majority of patients with resected stage II-IIIA non-small cell lung cancer (NSCLC) are treated with platinum-based adjuvant chemotherapy (ACT) in a one-size-fits-all approach. However, a significant number of patients do not derive clinical benefit, and no predictive patient selection biomarker is currently available. Using mass spectrometry-based proteomics, we have profiled tumour resection material of 2 independent, multi-centre cohorts of in total 67 patients with NSCLC who underwent ACT. Unsupervised cluster analysis of both cohorts revealed a poor response/survival sub-cluster composed of ~ 25% of the patients, that displayed a strong epithelial-mesenchymal transition signature and stromal phenotype. Beyond this stromal sub-population, we identified and validated platinum response prediction biomarker candidates involved in pathways relevant to the mechanism of action of platinum drugs, such as DNA damage repair, as well as less anticipated processes such as those related to the regulation of actin cytoskeleton. Integration with pre-clinical proteomics data supported a role for several of these candidate proteins in platinum response prediction. Validation of one of the candidates (HMGB1) in a third independent patient cohort using immunohistochemistry highlights the potential of translating these proteomics results to clinical practice.
Collapse
Affiliation(s)
- Franziska Böttger
- Department of Medical Oncology, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
| | - Teodora Radonic
- Department of PathologyAmsterdam UMC – location VUmcThe Netherlands
| | - Idris Bahce
- Department of Pulmonary DiseasesAmsterdam UMC – location VUmcThe Netherlands
| | - Kim Monkhorst
- Division of PathologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
| | - Anne‐Marie C. Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology & Developmental BiologyMaastricht University Medical CenterThe Netherlands
- Department of Pulmonary DiseasesErasmus Medical CentreRotterdamThe Netherlands
| | - Lisa M. Hillen
- Department of PathologyMaastricht University Medical CenterThe Netherlands
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”University of MessinaItaly
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
- Cancer Pharmacology LabFondazione Pisana per la ScienzaPisaItaly
| | - Egbert F. Smit
- Division of Thoracic OncologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
- Department of Pulmonary DiseasesLeiden University Medical CenterThe Netherlands
| | - Sjaak A. Burgers
- Division of Thoracic OncologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
- OncoProteomics Laboratory, Cancer Center AmsterdamAmsterdam UMC – location VUmcThe Netherlands
| |
Collapse
|
2
|
Kusakabe M, Kakumu E, Kurihara F, Tsuchida K, Maeda T, Tada H, Kusao K, Kato A, Yasuda T, Matsuda T, Nakao M, Yokoi M, Sakai W, Sugasawa K. Histone deacetylation regulates nucleotide excision repair through an interaction with the XPC protein. iScience 2022; 25:104040. [PMID: 35330687 PMCID: PMC8938288 DOI: 10.1016/j.isci.2022.104040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 12/05/2022] Open
Abstract
The XPC protein complex plays a central role in DNA lesion recognition for global genome nucleotide excision repair (GG-NER). Lesion recognition can be accomplished in either a UV-DDB-dependent or -independent manner; however, it is unclear how these sub-pathways are regulated in chromatin. Here, we show that histone deacetylases 1 and 2 facilitate UV-DDB-independent recruitment of XPC to DNA damage by inducing histone deacetylation. XPC localizes to hypoacetylated chromatin domains in a DNA damage-independent manner, mediated by its structurally disordered middle (M) region. The M region interacts directly with the N-terminal tail of histone H3, an interaction compromised by H3 acetylation. Although the M region is dispensable for in vitro NER, it promotes DNA damage removal by GG-NER in vivo, particularly in the absence of UV-DDB. We propose that histone deacetylation around DNA damage facilitates the recruitment of XPC through the M region, contributing to efficient lesion recognition and initiation of GG-NER. Histone deacetylation by HDAC1/2 promotes the DNA lesion recognition by XPC The HDAC1/2 activators, MTA proteins, also promote the recruitment of XPC XPC tends to localize in hypoacetylated chromatin independently of DNA damage Disordered middle region of XPC interacts with histone H3 tail and promotes GG-NER
Collapse
|
3
|
A protein with broad functions: damage-specific DNA-binding protein 2. Mol Biol Rep 2022; 49:12181-12192. [PMID: 36190612 PMCID: PMC9712371 DOI: 10.1007/s11033-022-07963-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/17/2022] [Indexed: 02/01/2023]
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was initially identified as a component of the damage-specific DNA-binding heterodimeric complex, which cooperates with other proteins to repair UV-induced DNA damage. DDB2 is involved in the occurrence and development of cancer by affecting nucleotide excision repair (NER), cell apoptosis, and premature senescence. DDB2 also affects the sensitivity of cancer cells to radiotherapy and chemotherapy. In addition, a recent study found that DDB2 is a pathogenic gene for hepatitis and encephalitis. In recent years, there have been few relevant literature reports on DDB2, so there is still room for further research about it. In this paper, the molecular mechanisms of different biological processes involving DDB2 are reviewed in detail to provide theoretical support for research on drugs that can target DDB2.
Collapse
|
4
|
Manickavinayaham S, Velez-Cruz R, Biswas AK, Chen J, Guo R, Johnson DG. The E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors. Cell Cycle 2020; 19:2260-2269. [PMID: 32787501 PMCID: PMC7513849 DOI: 10.1080/15384101.2020.1801190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
The E2F1 transcription factor and RB tumor suppressor are best known for their roles in regulating the expression of genes important for cell cycle progression but, they also have transcription-independent functions that facilitate DNA repair at sites of damage. Depending on the type of DNA damage, E2F1 can recruit either the GCN5 or p300/CBP histone acetyltransferases to deposit different histone acetylation marks in flanking chromatin. At DNA double-strand breaks, E2F1 also recruits RB and the BRG1 ATPase to remodel chromatin and promote loading of the MRE11-RAD50-NBS1 complex. Knock-in mouse models demonstrate important roles for E2F1 post-translational modifications in regulating DNA repair and physiological responses to DNA damage. This review highlights how E2F1 moonlights in DNA repair, thus revealing E2F1 as a versatile protein that recruits many of the same chromatin-modifying enzymes to sites of DNA damage to promote repair that it recruits to gene promoters to regulate transcription.
Collapse
Affiliation(s)
- Swarnalatha Manickavinayaham
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Renier Velez-Cruz
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Anup K. Biswas
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jie Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David G. Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
5
|
Koklesova L, Liskova A, Samec M, Buhrmann C, Samuel SM, Varghese E, Ashrafizadeh M, Najafi M, Shakibaei M, Büsselberg D, Giordano FA, Golubnitschaja O, Kubatka P. Carotenoids in Cancer Apoptosis-The Road from Bench to Bedside and Back. Cancers (Basel) 2020; 12:E2425. [PMID: 32859058 PMCID: PMC7563597 DOI: 10.3390/cancers12092425] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
An incidence and mortality of cancer are rapidly growing worldwide, especially due to heterogeneous character of the disease that is associated with irreversible impairment of cellular homeostasis and function. Targeting apoptosis, one of cancer hallmarks, represents a potent cancer treatment strategy. Carotenoids are phytochemicals represented by carotenes, xanthophylls, and derived compounds such as apocarotenoids that demonstrate a broad spectrum of anti-cancer effects involving pro-apoptotic signaling through extrinsic and intrinsic pathways. As demonstrated in preclinical oncology research, the apoptotic modulation is performed at post-genomic levels. Further, carotenoids demonstrate additive/synergistic action in combination with conventional oncostatic agents. In addition, a sensitization of tumor cells to anti-cancer conventional treatment can be achieved by carotenoids. The disadvantage of anti-cancer application of carotenoids is associated with their low solubility and, therefore, poor bioavailability. However, this deficiency can be improved by using nanotechnological approaches, solid dispersions, microemulsions or biofortification that significantly increase the anti-cancer and pro-apoptotic efficacy of carotenoids. Only limited number of studies dealing with apoptotic potential of carotenoids has been published in clinical sphere. Pro-apoptotic effects of carotenoids should be beneficial for individuals at high risk of cancer development. The article considers the utility of carotenoids in the framework of 3P medicine.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, 51368 Tabriz, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, 67146 Kermanshah, Iran;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
6
|
Bommi PV, Chand V, Mukhopadhyay NK, Raychaudhuri P, Bagchi S. NER-factor DDB2 regulates HIF1α and hypoxia-response genes in HNSCC. Oncogene 2020; 39:1784-1796. [PMID: 31740787 PMCID: PMC11095046 DOI: 10.1038/s41388-019-1105-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022]
Abstract
Cancers in the oral/head & neck region (HNSCC) are aggressive due to high incidence of recurrence and distant metastasis. One prominent feature of aggressive HNSCC is the presence of severely hypoxic regions in tumors and activation of hypoxia-inducible factors (HIFs). In this study, we report that the XPE gene product DDB2 (damaged DNA binding protein 2), a nucleotide excision repair protein, is upregulated by hypoxia. Moreover, DDB2 inhibits HIF1α in HNSCC cells. It inhibits HIF1α in both normoxia and hypoxia by reducing mRNA expression. Knockdown of DDB2 enhances the expression of angiogenic markers and promotes tumor growth in a xenograft model. We show that DDB2 binds to an upstream promoter element in the HIF1Α gene and promotes histone H3K9 trimethylation around the binding site by recruiting Suv39h1. Also, we provide evidence that DDB2 has a significant suppressive effect on expression of the endogenous markers of hypoxia that are also prognostic indicators in HNSCC. Together, these results describe a new mechanism of hypoxia regulation that opposes expression of HIF1Α mRNA and the hypoxia-response genes.
Collapse
Affiliation(s)
- Prashant V Bommi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, 801 S, Paulina Street, Chicago, IL, 60612, USA
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Biological Sciences Research Building (BSRB), 6767 Bertner Ave, Houston, TX, USA
| | - Vaibhav Chand
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA
| | - Nishit K Mukhopadhyay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL, 60607, USA.
| | - Srilata Bagchi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, 801 S, Paulina Street, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Rechkunova NI, Maltseva EA, Lavrik OI. Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair. BIOCHEMISTRY (MOSCOW) 2019; 84:1008-1020. [PMID: 31693460 DOI: 10.1134/s0006297919090037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise coordination and regulation. NER proteins undergo post-translational modifications, such as ubiquitination, sumoylation, phosphorylation, acetylation, and poly(ADP-ribosyl)ation. These modifications affect the interaction of NER factors with DNA and other proteins and thus regulate either their recruitment into the complexes or dissociation from these complexes at certain stages of DNA repair, as well as modulate the functional activity of NER proteins and control the process of DNA repair in general. Here, we review the data on the post-translational modifications of NER factors and their effects on DNA repair. Protein poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerase 1 and its impact on NER are discussed in detail, since such analysis has not been done before.
Collapse
Affiliation(s)
- N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - E A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
8
|
Gilson P, Drouot G, Witz A, Merlin JL, Becuwe P, Harlé A. Emerging Roles of DDB2 in Cancer. Int J Mol Sci 2019; 20:ijms20205168. [PMID: 31635251 PMCID: PMC6834144 DOI: 10.3390/ijms20205168] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023] Open
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was originally identified as a DNA damage recognition factor that facilitates global genomic nucleotide excision repair (GG-NER) in human cells. DDB2 also contributes to other essential biological processes such as chromatin remodeling, gene transcription, cell cycle regulation, and protein decay. Recently, the potential of DDB2 in the development and progression of various cancers has been described. DDB2 activity occurs at several stages of carcinogenesis including cancer cell proliferation, survival, epithelial to mesenchymal transition, migration and invasion, angiogenesis, and cancer stem cell formation. In this review, we focus on the current state of scientific knowledge regarding DDB2 biological effects in tumor development and the underlying molecular mechanisms. We also provide insights into the clinical consequences of DDB2 activity in cancers.
Collapse
Affiliation(s)
- Pauline Gilson
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Guillaume Drouot
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Andréa Witz
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Philippe Becuwe
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Alexandre Harlé
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| |
Collapse
|
9
|
Zhao L, Si CS, Yu Y, Lu JW, Zhuang Y. Depletion of DNA damage binding protein 2 sensitizes triple-negative breast cancer cells to poly ADP-ribose polymerase inhibition by destabilizing Rad51. Cancer Sci 2019; 110:3543-3552. [PMID: 31541611 PMCID: PMC6825009 DOI: 10.1111/cas.14201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
Poly ADP‐ribose polymerase inhibitors (PARPi) have shown promising therapeutic efficacy in triple‐negative breast cancer (TNBC) patients. However, resistance ultimately develops, preventing a curative effect from being attained. Extensive investigations have indicated the diversity in the mechanisms underlying the PARPi sensitivity of breast cancer. In this study, we found that DNA damage binding protein 2 (DDB2), a DNA damage‐recognition factor, could protect TNBC cells from PARPi by regulating DNA double‐strand break repair through the homologous recombination pathway, whereas the depletion of DDB2 sensitizes TNBC cells to PARPi. Furthermore, we found that DDB2 was able to stabilize Rad51 by physical association and disrupting its ubiquitination pathway‐induced proteasomal degradation. These findings highlight an essential role of DDB2 in modulating homologous recombination pathway activity and suggest a promising therapeutic target for TNBC.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng-Shuai Si
- Department of General Surgery, Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Wei Lu
- Department of Medical Oncology, Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhuang
- Department of Medical Oncology, Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Srivastava AK, Banerjee A, Cui T, Han C, Cai S, Liu L, Wu D, Cui R, Li Z, Zhang X, Xie G, Selvendiran K, Patnaik S, Karpf AR, Liu J, Cohn DE, Wang QE. Inhibition of miR-328-3p Impairs Cancer Stem Cell Function and Prevents Metastasis in Ovarian Cancer. Cancer Res 2019; 79:2314-2326. [PMID: 30894370 DOI: 10.1158/0008-5472.can-18-3668] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/31/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSC) play a central role in cancer metastasis and development of drug resistance. miRNA are important in regulating CSC properties and are considered potential therapeutic targets. Here we report that miR-328-3p (miR-328) is significantly upregulated in ovarian CSC. High expression of miR-328 maintained CSC properties by directly targeting DNA damage binding protein 2, which has been shown previously to inhibit ovarian CSC. Reduced activity of ERK signaling in ovarian CSC, mainly due to a low level of reactive oxygen species, contributed to the enhanced expression of miR-328 and maintenance of CSC. Inhibition of miR-328 in mouse orthotopic ovarian xenografts impeded tumor growth and prevented tumor metastasis. In summary, our findings provide a novel mechanism underlying maintenance of the CSC population in ovarian cancer and suggest that targeted inhibition of miR-328 could be exploited for the eradication of CSC and aversion of tumor metastasis in ovarian cancer. SIGNIFICANCE: These findings present inhibition of miR-328 as a novel strategy for efficient elimination of CSC to prevent tumor metastasis and recurrence in patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Amit K Srivastava
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Ananya Banerjee
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio.,School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Tiantian Cui
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Chunhua Han
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Shurui Cai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Lu Liu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio.,Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dayong Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Ri Cui
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Zaibo Li
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Xiaoli Zhang
- Center for Bioinformatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Guozhen Xie
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Karuppaiyah Selvendiran
- Department of Obstetrics and Gynecology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Srinivas Patnaik
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Adam R Karpf
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David E Cohn
- Department of Obstetrics and Gynecology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Qi-En Wang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio. .,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Bommi PV, Ravindran S, Raychaudhuri P, Bagchi S. DDB2 regulates Epithelial-to-Mesenchymal Transition (EMT) in Oral/Head and Neck Squamous Cell Carcinoma. Oncotarget 2018; 9:34708-34718. [PMID: 30410671 PMCID: PMC6205178 DOI: 10.18632/oncotarget.26168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/08/2018] [Indexed: 01/21/2023] Open
Abstract
DDB2 is a sensor of DNA damage and it plays an important role in Global Genomic Repair (GG-NER). Our previous studies show that DDB2 is involved in the regulation of metastasis in colon adenocarcinoma. Squamous Cell Carcinomas in the Oral/Head & Neck region (HNSCC) are particularly aggressive due to high incidence of recurrence and distant metastasis. In this study, we show that DDB2 expression is downregulated in advanced HNSCCs and loss of DDB2 expression coincides with reduced survival. Recent meta-analysis of gene expression data characterized the mesenchymal-type (EMT-type) as one most aggressive cancer cluster in HNSCC. Here, we report that DDB2 constitutively represses mRNA expression of the EMT- regulatory transcription factors SNAIL, ZEB1, and angiogenic factor VEGF in HNSCC cells. As a result, re-expression of DDB2 in metastatic cells reversed EMT with transcriptional upregulation of epithelial marker E-cadherin, and downregulation of mesenchymal markers N-cadherin, Vimentin, and Fibronectin. Interestingly, in a reverse assay, depletion of DDB2 in non-metastatic cells induced expression of the same EMT-regulatory transcription factors. TGFβs are major regulators of Snail and Zeb1, and we observed that DDB2 transcriptionally regulates expression of TGFB2 in HNSCC cells. Re-expression of DDB2 in mouse embryonic fibroblasts (MEFs) isolated from Ddb2 (-/-) knockout-mice resulted in repression of EMT-regulatory factors Zeb1, Snail and Tgfb2. Taken together, these results support the active role of DDB2 as a candidate suppressor of the EMT-process in HNSCC. Early detection leads to significantly higher survival in HNSCC and DDB2 expression in tumors can be a predictor of EMT progression.
Collapse
Affiliation(s)
- Prashant V Bommi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA.,Current Address: Department of Clinical Cancer Prevention, Biological Sciences Research Building (BSRB), University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Srilata Bagchi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Cui T, Srivastava AK, Han C, Wu D, Wani N, Liu L, Gao Z, Qu M, Zou N, Zhang X, Yi P, Yu J, Bell EH, Yang SM, Maloney DJ, Zheng Y, Wani AA, Wang QE. DDB2 represses ovarian cancer cell dedifferentiation by suppressing ALDH1A1. Cell Death Dis 2018; 9:561. [PMID: 29752431 PMCID: PMC5948213 DOI: 10.1038/s41419-018-0585-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs), representing the root of many solid tumors including ovarian cancer, have been implicated in disease recurrence, metastasis, and therapeutic resistance. Our previous study has demonstrated that the CSC subpopulation in ovarian cancer can be limited by DNA damage-binding protein 2 (DDB2). Here, we demonstrated that the ovarian CSC subpopulation can be maintained via cancer cell dedifferentiation, and DDB2 is able to suppress this non-CSC-to-CSC conversion by repression of ALDH1A1 transcription. Mechanistically, DDB2 binds to the ALDH1A1 gene promoter, facilitating the enrichment of histone H3K27me3, and competing with the transcription factor C/EBPβ for binding to this region, eventually inhibiting the promoter activity of the ALDH1A1 gene. The de-repression of ALDH1A1 expression contributes to DDB2 silencing-augmented non-CSC-to-CSC conversion and expansion of the CSC subpopulation. We further showed that treatment with a selective ALDH1A1 inhibitor blocked DDB2 silencing-induced expansion of CSCs, and halted orthotopic xenograft tumor growth. Together, our data demonstrate that DDB2, functioning as a transcription repressor, can abrogate ovarian CSC properties by downregulating ALDH1A1 expression.
Collapse
Affiliation(s)
- Tiantian Cui
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Amit Kumar Srivastava
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biotechnology, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Chunhua Han
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Dayong Wu
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Nissar Wani
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Lu Liu
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, 510282, Guangdong, Guangzhou, China
| | - Zhiqin Gao
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Department of Cell Biology, Weifang Medical University, 264053, Shandong, Weifang, China
| | - Meihua Qu
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Department of Pharmacology, Weifang Medical University, 264053, Shandong, Weifang, China
| | - Ning Zou
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Department of Radiation Oncology, Hubei Cancer Hospital, 430079, Hubei, Wuhan, China
| | - Xiaoli Zhang
- Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Ping Yi
- Department of Obstetrics and Gynecology, Daping Hospital, The Third Military Medical University, 40042, Chongqing, China
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jianhua Yu
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Erica H Bell
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Shyh-Ming Yang
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, MD, 20850, USA
| | - David J Maloney
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yanfang Zheng
- Oncology Center, Zhujiang Hospital, Southern Medical University, 510282, Guangdong, Guangzhou, China
| | - Altaf A Wani
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Qi-En Wang
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Han C, Zhao R, Kroger J, He J, Wani G, Wang QE, Wani AA. UV radiation-induced SUMOylation of DDB2 regulates nucleotide excision repair. Carcinogenesis 2017; 38:976-985. [PMID: 28981631 DOI: 10.1093/carcin/bgx076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Subunit 2 of DNA damage-binding protein complex (DDB2) is an early sensor of nucleotide excision repair (NER) pathway for eliminating DNA damage induced by UV radiation (UVR) and cisplatin treatments of mammalian cells. DDB2 is modified by ubiquitin and poly(ADP-ribose) (PAR) in response to UVR, and these modifications play a crucial role in regulating NER. Here, using immuno-analysis of irradiated cell extracts, we have identified multiple post-irradiation modifications of DDB2 protein. Interestingly, although the DNA lesions induced by both UVR and cisplatin are corrected by NER, only the UV irradiation, but not the cisplatin treatment, induces any discernable DDB2 modifications. We, for the first time, show that the appearance of UVR-induced DDB2 modifications depend on the binding of DDB2 to the damaged chromatin and the participation of functionally active 26S proteasome. The in vitro and in vivo analysis revealed that SUMO-1 conjugations comprise a significant portion of these UVR-induced DDB2 modifications. Mapping of SUMO-modified sites demonstrated that UVR-induced SUMOylation occurs on Lys-309 residue of DDB2 protein. Mutation of Lys-309 to Arg-309 diminished the DDB2 SUMOylation observable both in vitro and in vivo. Moreover, K309R mutated DDB2 lost its function of recruiting XPC to the DNA damage sites, as well as the ability to repair cyclobutane pyrimidine dimers following cellular UV irradiation. Taken together, our results indicate that DDB2 is modified by SUMOylation upon UV irradiation, and this post-translational modification plays an important role in the initial recognition and processing of UVR-induced DNA damage occurring within the context of chromatin.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi-En Wang
- Department of Radiology.,James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Altaf A Wani
- Department of Radiology.,James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Kakumu E, Nakanishi S, Shiratori HM, Kato A, Kobayashi W, Machida S, Yasuda T, Adachi N, Saito N, Ikura T, Kurumizaka H, Kimura H, Yokoi M, Sakai W, Sugasawa K. Xeroderma pigmentosum group C protein interacts with histones: regulation by acetylated states of histone H3. Genes Cells 2017; 22:310-327. [PMID: 28233440 DOI: 10.1111/gtc.12479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
Abstract
In the mammalian global genome nucleotide excision repair pathway, two damage recognition factors, XPC and UV-DDB, play pivotal roles in the initiation of the repair reaction. However, the molecular mechanisms underlying regulation of the lesion recognition process in the context of chromatin structures remain to be understood. Here, we show evidence that damage recognition factors tend to associate with chromatin regions devoid of certain types of acetylated histones. Treatment of cells with histone deacetylase inhibitors retarded recruitment of XPC to sites of UV-induced DNA damage and the subsequent repair process. Biochemical studies showed novel multifaceted interactions of XPC with histone H3, which were profoundly impaired by deletion of the N-terminal tail of histone H3. In addition, histone H1 also interacted with XPC. Importantly, acetylation of histone H3 markedly attenuated the interaction with XPC in vitro, and local UV irradiation of cells decreased the level of H3K27ac in the damaged areas. Our results suggest that histone deacetylation plays a significant role in the process of DNA damage recognition for nucleotide excision repair and that the localization and functions of XPC can be regulated by acetylated states of histones.
Collapse
Affiliation(s)
- Erina Kakumu
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Seiya Nakanishi
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hiromi M Shiratori
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akari Kato
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Wataru Kobayashi
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Shinichi Machida
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Takeshi Yasuda
- National Institute for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Naoko Adachi
- Division of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Naoaki Saito
- Division of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tsuyoshi Ikura
- Department of Mutagenesis, Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Masayuki Yokoi
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Wataru Sakai
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Kaoru Sugasawa
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
15
|
Zou N, Xie G, Cui T, Srivastava AK, Qu M, Yang L, Wei S, Zheng Y, Wang QE. DDB2 increases radioresistance of NSCLC cells by enhancing DNA damage responses. Tumour Biol 2016; 37:14183-14191. [PMID: 27553023 DOI: 10.1007/s13277-016-5203-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/13/2016] [Indexed: 01/24/2023] Open
Abstract
Radiotherapy resistance is one of the major factors limiting the efficacy of radiotherapy in lung cancer patients. The extensive investigations indicate the diversity in the mechanisms underlying radioresistance. Here, we revealed that DNA damage binding protein 2 (DDB2) is a potential regulator in the radiosensitivity of non-small cell lung cancer (NSCLC) cells. DDB2, originally identified as a DNA damage recognition factor in the nucleotide excision repair, promotes the survival and inhibits the apoptosis of NSCLC cell lines upon ionizing radiation (IR). Mechanistic investigations demonstrated that DDB2 is able to facilitate IR-induced phosphorylation of Chk1, which plays a critical role in the cell cycle arrest and DNA repair in response to IR-induced DNA double-strand breaks (DSBs). Indeed, knockdown of DDB2 compromised the G2 arrest in the p53-proficient A549 cell line and reduced the efficiency of homologous recombination (HR) repair. Taken together, our data indicate that the expression of DDB2 in NSCLC could be used as a biomarker to predict radiosensitivity of the patients. Targeting Chk1 can be used to increase the efficacy of radiotherapy in patients of NSCLC possessing high levels of DDB2.
Collapse
Affiliation(s)
- Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, Hubei, 430079, China
- Department of Radiology, Division of Radiobiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Guozhen Xie
- Department of Radiology, Division of Radiobiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Dublin Coffman High School, Dublin, OH, 43017, USA
| | - Tiantian Cui
- Department of Radiology, Division of Radiobiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Amit Kumar Srivastava
- Department of Radiology, Division of Radiobiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Meihua Qu
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Linlin Yang
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Shaozhong Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Hospital, Wuhan, Hubei, 430079, China
| | - Yanfang Zheng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China.
| | - Qi-En Wang
- Department of Radiology, Division of Radiobiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Steroid receptor coactivator-3 is a pivotal target of gambogic acid in B-cell Non-Hodgkin lymphoma and an inducer of histone H3 deacetylation. Eur J Pharmacol 2016; 789:46-59. [PMID: 27370960 DOI: 10.1016/j.ejphar.2016.06.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022]
Abstract
Gambogic acid (GA), the active ingredient from gamboges, has been verified as a potent anti-tumor agent in many cancer cells. Nevertheless, its function in lymphoma, especially in B-cell Non-Hodgkin lymphoma (NHL), remains unclear. Amplification and/or overexpression of steroid receptor coactivator-3 (SRC-3) have been detected in multiple tumors and have confirmed its critical roles in carcinogenesis, progression, metastasis and therapy resistance in these cancers. However, no clinical data have revealed the overexpression of SRC-3 and its role in B-cell NHL. In this study, we demonstrated the anti-tumor effects of GA, which included cell growth inhibition, G1/S phase cell cycle arrest and apoptosis in B-cell NHL. We also verified that SRC-3 was overexpressed in B-cell NHL in both cell lines and lymph node samples from patients. The overexpressed SRC-3 was a central drug target of GA, and its down-regulation subsequently modulated down-stream gene expression, ultimately contributing to apoptosis. Silencing SRC-3 decreased the expression of Bcl-2, Bcl-6 and cyclin D3, but not of NF-κB and IκB-α. GA treatment did not inhibit the activation of AKT signaling pathway, but induced the deacetylation of histone H3 at lysine 9 and lysine 27. Down-regulated SRC-3 was observed to interact with more HDAC1 to mediate the deacetylation of H3. As the component of E3 ligase, Cullin3 was up-regulated and mediated the degradation of SRC-3. Our results demonstrate that GA is a potent anti-tumor agent that can be used for therapy against B-cell NHL, especially against those with an abundance of SRC-3.
Collapse
|
17
|
Li Y, Deng H, Miao M, Li H, Huang S, Wang S, Liu Y. Tomato MBD5, a methyl CpG binding domain protein, physically interacting with UV-damaged DNA binding protein-1, functions in multiple processes. THE NEW PHYTOLOGIST 2016; 210:208-26. [PMID: 26551231 DOI: 10.1111/nph.13745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/02/2015] [Indexed: 05/22/2023]
Abstract
In tomato (Solanum lycopersicum), high pigment mutations (hp-1 and hp-2) were mapped to genes encoding UV-damaged DNA binding protein 1 (DDB1) and de-etiolated-1 (DET1), respectively. Here we characterized a tomato methyl-CpG-binding domain protein SlMBD5 identified by yeast two-hybrid screening using SlDDB1 as a bait. Yeast two-hybrid assay demonstrated that the physical interaction of SlMBD5 with SlDDB1 is mediated by the C-termini of SlMBD5 and the β-propeller-C (BPC) of SlDDB1. Co-immunoprecipitation analyses revealed that SlMBD5 associates with SlDDB1-interacting partners including SlDET1, SlCUL4, SlRBX1a and SlRBX1b in vivo. SlMBD5 was shown to target to nucleus and dimerizes via its MBD motif. Electrophoresis mobility shift analysis suggested that the MBD of SlMBD5 specifically binds to methylated CpG dinucleotides but not to methylated CpHpG or CpHpH dinucleotides. SlMBD5 expressed in protoplast is capable of activating transcription of CG islands, whereas CUL4/DDB1 antagonizes this effect. Overexpressing SlMBD5 resulted in diverse developmental alterations including darker green fruits with increased plastid level and elevated pigmentation, as well as enhanced expression of SlGLK2, a key regulator of plastid biogenesis. Taken together, we hypothesize that the physical interaction of SlMBD5 with the CUL4-DDB1-DET1 complex component may affect its binding activity to methylated DNA and subsequently attenuate its transcription activation of downstream genes.
Collapse
Affiliation(s)
- Yuxiang Li
- Ministry of education Key Laboratory for Bio-resource and Eco-environment, State key laboratory of Hydraulics and mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Heng Deng
- Ministry of education Key Laboratory for Bio-resource and Eco-environment, State key laboratory of Hydraulics and mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Min Miao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Huirong Li
- Ministry of education Key Laboratory for Bio-resource and Eco-environment, State key laboratory of Hydraulics and mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Shengxiong Huang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yongsheng Liu
- Ministry of education Key Laboratory for Bio-resource and Eco-environment, State key laboratory of Hydraulics and mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
18
|
Barbieux C, Bacharouche J, Soussen C, Hupont S, Razafitianamaharavo A, Klotz R, Pannequin R, Brie D, Bécuwe P, Francius G, Grandemange S. DDB2 (damaged-DNA binding 2) protein: a new modulator of nanomechanical properties and cell adhesion of breast cancer cells. NANOSCALE 2016; 8:5268-79. [PMID: 26879405 DOI: 10.1039/c5nr09126h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
DDB2, known for its role in DNA repair, was recently shown to reduce mammary tumor invasiveness by inducing the transcription of IκBα, an inhibitor of NF-κB activity. Since cellular adhesion is a key event during the epithelial to mesenchymal transition (EMT) leading to the invasive capacities of breast tumor cells, the aim of this study was to investigate the role of DDB2 in this process. Thus, using low and high DDB2-expressing MDA-MB231 and MCF7 cells, respectively, in which DDB2 expression was modulated experimentally, we showed that DDB2 overexpression was associated with a decrease of adhesion abilities on glass and plastic areas of breast cancer cells. Then, we investigated cell nanomechanical properties by atomic force microscopy (AFM). Our results revealed significant changes in the Young's Modulus value and the adhesion force in MDA-MB231 and MCF7 cells, whether DDB2 was expressed or not. The cell stiffness decrease observed in MDA-MB231 and MCF7 expressing DDB2 was correlated with a loss of the cortical actin-cytoskeleton staining. To understand how DDB2 regulates these processes, an adhesion-related gene PCR-Array was performed. Several adhesion-related genes were differentially expressed according to DDB2 expression, indicating that important changes are occurring at the molecular level. Thus, this work demonstrates that AFM technology is an important tool to follow cellular changes during tumorigenesis. Moreover, our data revealed that DDB2 is involved in early events occurring during metastatic progression of breast cancer cells and will contribute to define this protein as a new marker of metastatic progression in this type of cancer.
Collapse
Affiliation(s)
- Claire Barbieux
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Jalal Bacharouche
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France. and CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Charles Soussen
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Sébastien Hupont
- CNRS, FR3209 Biologie Moléculaire Cellulaire et Thérapeutique (BMCT), Plateforme d'Imagerie Cellulaire et Tissulaire PTIBC-IBISA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Vandœuvre-lès-Nancy, F-54506, France
| | - Angélina Razafitianamaharavo
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, LIEC, UMR 7360, Vandœuvre-lès-Nancy, F-54500, France and CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, LIEC, UMR 7360, Vandœuvre-lès-Nancy, F-54500, France
| | - Rémi Klotz
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Rémi Pannequin
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - David Brie
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Philippe Bécuwe
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Grégory Francius
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France. and CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Stéphanie Grandemange
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| |
Collapse
|
19
|
Sun Y, Guo BF, Xu LB, Zhong JT, Liu ZW, Liang H, Wen NY, Yun WJ, Zhang L, Zhao XJ. Stat3-siRNA inhibits the growth of gastric cancerin vitroandin vivo. Cell Biochem Funct 2015; 33:495-502. [DOI: 10.1002/cbf.3148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Sun
- Department of Plastic Surgery, the China- Japan Union Hospital; Jilin University; Changchun China
| | - Bao-feng Guo
- Department of Plastic Surgery, the China- Japan Union Hospital; Jilin University; Changchun China
| | - Li-bo Xu
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Jia-teng Zhong
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Zhe-wen Liu
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Hang Liang
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Nai-yan Wen
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Wen-jing Yun
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Ling Zhang
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| | - Xue-jian Zhao
- Department of Pathophysiology, College of Basic Medicine Sciences; Jilin University; Changchun China
| |
Collapse
|
20
|
Dai W, Ma W, Li Q, Tao Y, Ding P, Zhu R, Jin J. The 5'-UTR of DDB2 harbors an IRES element and upregulates translation during stress conditions. Gene 2015; 573:57-63. [PMID: 26187069 DOI: 10.1016/j.gene.2015.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/15/2022]
Abstract
DDB2 is a tumor-inhibiting factor not only involved a major DNA repair mechanism in the Nucleotide Excision Repair (NER), but also correlated with cell apoptosis in the DNA damage response pathway. During serum-starvation, we noted that the translation levels of DDB2 were increased. To evaluate whether the 5'-UTR of DDB2 harbors an IRES element, we used a bicistronic luciferase plasmid with the 5'-UTR of DDB2 inserted between two cistron coding regions. We found that DDB2 5'-UTR could initiate the downstream reporter, demonstrating that the 5'-UTR of DDB2 contained an IRES. The 5'-UTR of DDB2 was predicted into a relatively stable secondary structure by the Mfold program. We deleted the stem-loops in turn to analyze the core part of IRES and found that full length of the 5'-UTR was significant for the IRES activity. Furthermore, our data demonstrated that the DDB2 IRES activity was promoted during stress conditions. These results reveal a novel mechanism contributing to DDB2 expression.
Collapse
Affiliation(s)
- Wenyan Dai
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Wennan Ma
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Qi Li
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Yifen Tao
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Pengpeng Ding
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Ruiyu Zhu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| | - Jian Jin
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
21
|
Zhao R, Cui T, Han C, Zhang X, He J, Srivastava AK, Yu J, Wani AA, Wang QE. DDB2 modulates TGF-β signal transduction in human ovarian cancer cells by downregulating NEDD4L. Nucleic Acids Res 2015; 43:7838-49. [PMID: 26130719 PMCID: PMC4652750 DOI: 10.1093/nar/gkv667] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/18/2015] [Indexed: 01/07/2023] Open
Abstract
The expression of DNA damage-binding protein 2 (DDB2) has been linked to the prognosis of ovarian cancer and its underlying transcription regulatory function was proposed to contribute to the favorable treatment outcome. By applying gene microarray analysis, we discovered neural precursor cell expressed, developmentally downregulated 4-Like (NEDD4L) as a previously unidentified downstream gene regulated by DDB2. Mechanistic investigation demonstrated that DDB2 can bind to the promoter region of NEDD4L and recruit enhancer of zeste homolog 2 histone methyltransferase to repress NEDD4L transcription by enhancing histone H3 lysine 27 trimethylation (H3K27me3) at the NEDD4L promoter. Given that NEDD4L plays an important role in constraining transforming growth factor β signaling by targeting activated Smad2/Smad3 for degradation, we investigated the role of DDB2 in the regulation of TGF-β signaling in ovarian cancer cells. Our data indicate that DDB2 enhances TGF-β signal transduction and increases the responsiveness of ovarian cancer cells to TGF-β-induced growth inhibition. The study has uncovered an unappreciated regulatory mode that hinges on the interaction between DDB2 and NEDD4L in human ovarian cancer cells. The novel mechanism proposes the DDB2-mediated fine-tuning of TGF-β signaling and its downstream effects that impinge upon tumor growth in ovarian cancers.
Collapse
Affiliation(s)
- Ran Zhao
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Tiantian Cui
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Chunhua Han
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jinshan He
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Amit Kumar Srivastava
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Jianhua Yu
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Altaf A Wani
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Qi-En Wang
- Division of Radiobiology, Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210, USA Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Braakman RBH, Bezstarosti K, Sieuwerts AM, de Weerd V, van Galen AM, Stingl C, Luider TM, Timmermans MAM, Smid M, Martens JWM, Foekens JA, Demmers JAA, Umar A. Integrative Analysis of Genomics and Proteomics Data on Clinical Breast Cancer Tissue Specimens Extracted with Acid Guanidinium Thiocyanate–Phenol–Chloroform. J Proteome Res 2015; 14:1627-36. [DOI: 10.1021/acs.jproteome.5b00046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- René B. H. Braakman
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics
Center, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein
50, 3015 GE Rotterdam, The Netherlands
| | - Anieta M. Sieuwerts
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Vanja de Weerd
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Anne M. van Galen
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Christoph Stingl
- Department
of Neurology, Erasmus MC, University Medical Center Rotterdam, Dr
Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Theo M. Luider
- Department
of Neurology, Erasmus MC, University Medical Center Rotterdam, Dr
Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Mieke A. M. Timmermans
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Marcel Smid
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - John W. M. Martens
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - John A. Foekens
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Jeroen A. A. Demmers
- Proteomics
Center, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein
50, 3015 GE Rotterdam, The Netherlands
| | - Arzu Umar
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
23
|
Zhu Q, Battu A, Ray A, Wani G, Qian J, He J, Wang QE, Wani AA. Damaged DNA-binding protein down-regulates epigenetic mark H3K56Ac through histone deacetylase 1 and 2. Mutat Res 2015; 776:16-23. [PMID: 26255936 DOI: 10.1016/j.mrfmmm.2015.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/09/2014] [Accepted: 01/17/2015] [Indexed: 12/12/2022]
Abstract
Acetylated histone H3 lysine 56 (H3K56Ac) is one of the reversible histone post-translational modifications (PTMs) responsive to DNA damage. We previously described a biphasic decrease and increase of epigenetic mark H3K56Ac in response to ultraviolet radiation (UVR)-induced DNA damage. Here, we report a new function of UV damaged DNA-binding protein (DDB) in deacetylation of H3K56Ac through specific histone deacetylases (HDACs). We show that simultaneous depletion of HDAC1/2 compromises the deacetylation of H3K56Ac, while depletion of HDAC1 or HDAC2 alone has no effect on H3K56Ac. The H3K56Ac deacetylation does not require functional nucleotide excision repair (NER) factors XPA and XPC, but depends on the function of upstream factors DDB1 and DDB2. UVR enhances the association of DDB2 with HDAC1 and, enforced DDB2 expression leads to translocation of HDAC1 to UVR-damaged chromatin. HDAC1 and HDAC2 are recruited to UVR-induced DNA damage spots, which are visualized by anti-XPC immunofluorescence. Dual HDAC1/2 depletion decreases XPC ubiquitination, but does not affect the recruitment of DDB2 to DNA damage. By contrast, the local accumulation of γH2AX at UVR-induced DNA damage spots was compromised upon HDAC1 as well as dual HDAC1/2 depletions. Additionally, UVR-induced ATM activation decreased in H12899 cells expressing H3K56Ac-mimicing H3K56Q. These results revealed a novel role of DDB in H3K56Ac deacetylation during early step of NER and the existence of active functional cross-talk between DDB-mediated damage recognition and H3K56Ac deacetylation.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Aruna Battu
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Alo Ray
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Gulzar Wani
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Jiang Qian
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Jinshan He
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Qi-en Wang
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States; Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, United States; James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
24
|
Zhou J, Wang Y, Wang Y, Yin X, He Y, Chen L, Wang W, Liu T, Di W. FOXM1 modulates cisplatin sensitivity by regulating EXO1 in ovarian cancer. PLoS One 2014; 9:e96989. [PMID: 24824601 PMCID: PMC4019642 DOI: 10.1371/journal.pone.0096989] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/14/2014] [Indexed: 12/15/2022] Open
Abstract
Cisplatin is commonly used in ovarian cancer chemotherapy, however, chemoresistance to cisplatin remains a great clinical challenge. Oncogenic transcriptional factor FOXM1 has been reported to be overexpressed in ovarian cancer. In this study, we aimed to investigate the potential role of FOXM1 in ovarian cancers with chemoresistance to cisplatin. Our results indicate that FOXM1 is upregulated in chemoresistant ovarian cancer samples, and defends ovarian cancer cells against cytotoxicity of cisplatin. FOXM1 facilitates DNA repair through regulating direct transcriptional target EXO1 to protect ovarian cancer cells from cisplatin-mediated apoptosis. Attenuating FOXM1 and EXO1 expression by small interfering RNA, augments the chemotherapy efficacy against ovarian cancer. Our findings indicate that targeting FOXM1 and its target gene EXO1 could improve cisplatin effect in ovarian cancer, confirming their role in modulating cisplatin sensitivity.
Collapse
Affiliation(s)
- Jinhua Zhou
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
- Focus Construction Subject of Shanghai Education Department, Shanghai, China
- Shanghai Health Bureau Key Disciplines and Specialties Foundation, Shanghai, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yunfei Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
- Focus Construction Subject of Shanghai Education Department, Shanghai, China
- Shanghai Health Bureau Key Disciplines and Specialties Foundation, Shanghai, China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Xia Yin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Yifeng He
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Lilan Chen
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
- Focus Construction Subject of Shanghai Education Department, Shanghai, China
- Shanghai Health Bureau Key Disciplines and Specialties Foundation, Shanghai, China
- * E-mail:
| |
Collapse
|
25
|
Han C, Zhao R, Liu X, Srivastava A, Gong L, Mao H, Qu M, Zhao W, Yu J, Wang QE. DDB2 suppresses tumorigenicity by limiting the cancer stem cell population in ovarian cancer. Mol Cancer Res 2014; 12:784-94. [PMID: 24574518 DOI: 10.1158/1541-7786.mcr-13-0638] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED Ovarian cancer is an extremely aggressive disease associated with a high percentage of tumor recurrence and chemotherapy resistance. Understanding the underlying mechanism of tumor relapse is crucial for effective therapy of ovarian cancer. DNA damage-binding protein 2 (DDB2) is a DNA repair factor mainly involved in nucleotide excision repair. Here, a novel role was identified for DDB2 in the tumorigenesis of ovarian cancer cells and the prognosis of patients with ovarian cancer. Overexpressing DDB2 in human ovarian cancer cells suppressed its capability to recapitulate tumors in athymic nude mice. Mechanistic investigation demonstrated that DDB2 is able to reduce the cancer stem cell (CSC) population characterized with high aldehyde dehydrogenase activity in ovarian cancer cells, probably through disrupting the self-renewal capacity of CSCs. Low DDB2 expression correlates with poor outcomes among patients with ovarian cancer, as revealed from the analysis of publicly available gene expression array datasets. Given the finding that DDB2 protein expression is low in ovarian tumor cells, enhancement of DDB2 expression is a promising strategy to eradicate CSCs and would help to halt ovarian cancer relapse. IMPLICATIONS DDB2 status has prognostic potential, and elevating its expression eradicates CSCs and could reduce ovarian cancer relapse.
Collapse
Affiliation(s)
- Chunhua Han
- Authors' Affiliations: Departments of Radiology and 2Pathology; 3Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; and 4Weifang Medical University, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|