1
|
Jiang T, Bo S, You Y, Wang Y, Hou L, Tian S, Bai B, Cheng Y, Gao Y. ELAVL1 facilitates gastric cancer progression and metastasis through TL1A mRNA stabilization. Exp Cell Res 2025; 446:114491. [PMID: 40020895 DOI: 10.1016/j.yexcr.2025.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/23/2025] [Accepted: 02/26/2025] [Indexed: 03/03/2025]
Abstract
ELAV-like RNA-binding protein 1 (ELAVL1) is a key RNA-binding protein involved in tumor progression and metastasis. This study identifies a previously unrecognized interaction between ELAVL1 and TL1A mRNA, elucidating its role in promoting gastric cancer (GC) progression through the activation of the PI3K/Akt signaling pathway. Overexpression of ELAVL1 significantly enhances the proliferation and migration of GC cells, whereas silencing ELAVL1 leads to a marked reduction in these processes. Additionally, stable knockout of ELAVL1 significantly inhibits the growth of xenograft tumors derived from GC cells in nude mice. Mechanistically, ELAVL1 directly binds to TL1A mRNA through its RNA recognition motifs (RRM1 and RRM3). The binding sites on TL1A mRNA have been confirmed in two regions: one located between nucleotides 1605 and 1868, and the other between 4324 and 4587. ELAVL1 stabilizes TL1A mRNA expression and promotes GC progression by activating the downstream PI3K/Akt signaling pathway.Our findings highlight a novel regulatory axis involving ELAVL1, TL1A mRNA, and PI3K/Akt, providing new insights into RNA-mediated oncogenic signaling and establishing ELAVL1 as a potential therapeutic target for GC. This discovery lays the groundwork for developing targeted therapies against ELAVL1.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde 067000, Hebei, China; Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, AH, 230000, China
| | - Sihan Bo
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde 067000, Hebei, China
| | - Yong You
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde 067000, Hebei, China
| | - Yongwei Wang
- Department of Anatomy, Basic Medical Institute, Chengde Medical University, Chengde 067000, Hebei, China
| | - Lei Hou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Shuang Tian
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde 067000, Hebei, China
| | - Bing Bai
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde 067000, Hebei, China
| | - Yu Cheng
- Department of Pathology, Chengde Medical University, Chengde 067000, Hebei, China
| | - Yaxian Gao
- Department of Immunology, Basic Medical Institute, Chengde Medical University, Chengde 067000, Hebei, China.
| |
Collapse
|
2
|
Chi XX, Ye P, Cao NQ, Hwang WL, Cha JH, Hung MC, Hsu KW, Yan XW, Yang WH. PPIH as a poor prognostic factor increases cell proliferation and m6A RNA methylation in hepatocellular carcinoma. Am J Cancer Res 2024; 14:3733-3756. [PMID: 39267679 PMCID: PMC11387852 DOI: 10.62347/nzij5785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
RNA-binding proteins (RBPs) play a crucial role in the biological processes of liver hepatocellular carcinoma (LIHC). Peptidyl-prolyl cis-trans isomerase H (PPIH), an RBP, possesses prolyl isomerase activity and functions as a protein chaperone. The relationship between PPIH and LIHC has not yet been fully elucidated. This study elucidated potential mechanisms through which PPIH affects the prognosis of LIHC. Bioinformatics analysis and in vitro experiments revealed that PPIH expression was higher in LIHC tissues than in normal tissues. PPIH was identified as an independent prognostic factor, with high PPIH expression being associated with worse prognoses. Moreover, PPIH increased the m6A RNA methylation level and promoted cell proliferation by modulating DNA replication and the expression of cell cycle-related genes in LIHC cells. Bioinformatics analysis also revealed that PPIH expression increased immune cell infiltration and the expression of immune checkpoint proteins. Collectively, these findings indicate that PPIH might promote LIHC progression by enhancing the m6A RNA methylation level, increasing cell proliferation, and altering the tumor immune microenvironment. Our study demonstrates that PPIH, as a poor prognostic factor, may lead to LIHC malignancy through multiple pathways. Further in-depth research on this topic is warranted.
Collapse
Affiliation(s)
- Xiao-Xia Chi
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
- Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital Shenzhen 518053, Guangdong, China
| | - Peng Ye
- Infection Medicine Research Institute of Panyu District, The Affiliated Panyu Central Hospital of Guangzhou Medical University Guangzhou 511400, Guangdong, China
| | - Neng-Qi Cao
- Department of General Surgery, Nanjing Lishui People's Hospital Nanjing 211200, Jiangsu, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, and Cancer Progression Research Center, National Yang Ming Chiao Tung University Taipei 112304, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University Incheon 22212, The Republic of Korea
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University Taichung 406040, Taiwan
| | - Kai-Wen Hsu
- Institute of Translational Medicine and New Drug Development, China Medical University Taichung 404328, Taiwan
| | - Xiu-Wen Yan
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Cell Biology, and Cancer Biology and Precision Therapeutics Center, China Medical University Taichung 404327, Taiwan
| |
Collapse
|
3
|
Lachiondo-Ortega S, Rejano-Gordillo CM, Simon J, Lopitz-Otsoa F, C Delgado T, Mazan-Mamczarz K, Goikoetxea-Usandizaga N, Zapata-Pavas LE, García-Del Río A, Guerra P, Peña-Sanfélix P, Hermán-Sánchez N, Al-Abdulla R, Fernandez-Rodríguez C, Azkargorta M, Velázquez-Cruz A, Guyon J, Martín C, Zalamea JD, Egia-Mendikute L, Sanz-Parra A, Serrano-Maciá M, González-Recio I, Gonzalez-Lopez M, Martínez-Cruz LA, Pontisso P, Aransay AM, Barrio R, Sutherland JD, Abrescia NGA, Elortza F, Lujambio A, Banales JM, Luque RM, Gahete MD, Palazón A, Avila MA, G Marin JJ, De S, Daubon T, Díaz-Quintana A, Díaz-Moreno I, Gorospe M, Rodríguez MS, Martínez-Chantar ML. SUMOylation controls Hu antigen R posttranscriptional activity in liver cancer. Cell Rep 2024; 43:113924. [PMID: 38507413 PMCID: PMC11025316 DOI: 10.1016/j.celrep.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/08/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Claudia M Rejano-Gordillo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, University Institute of Biosanitary Research of Extremadura (INUBE), 06071 Badajoz, Spain; Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Jorge Simon
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - L Estefanía Zapata-Pavas
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Ana García-Del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Pietro Guerra
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Patricia Peña-Sanfélix
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Natalia Hermán-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Ruba Al-Abdulla
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Institute of Medical Biochemistry and Molecular Biology, University Medicine of Greifswald, 17475 Greifswald, Germany
| | - Carmen Fernandez-Rodríguez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Joris Guyon
- University of Bordeaux, INSERM, BPH, U1219, 33000 Bordeaux, France; CHU de Bordeaux, Service de Pharmacologie Médicale, 33000 Bordeaux, France
| | - César Martín
- Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Arantza Sanz-Parra
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Monika Gonzalez-Lopez
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Ana M Aransay
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Rosa Barrio
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - James D Sutherland
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Félix Elortza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Asís Palazón
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Hepatology Program, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Manuel S Rodríguez
- Laboratoire de Chimie de Coordination (LCC), UPR 8241, CNRS; IPBS-University of Toulouse III-Paul Sabatier, Toulouse, France
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| |
Collapse
|
4
|
Finan JM, Sutton TL, Dixon DA, Brody JR. Targeting the RNA-Binding Protein HuR in Cancer. Cancer Res 2023; 83:3507-3516. [PMID: 37683260 DOI: 10.1158/0008-5472.can-23-0972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
The RNA-binding protein human antigen R (HuR) is a well-established regulator of gene expression at the posttranscriptional level. Its dysregulation has been implicated in various human diseases, particularly cancer. In cancer, HuR is considered "active" when it shows increased subcellular localization in the cytoplasm, in addition to its normal nuclear localization. Cytoplasmic HuR plays a crucial role in stabilizing and enhancing the translation of prosurvival mRNAs that are involved in stress responses relevant to cancer progression, such as hypoxia, radiotherapy, and chemotherapy. In general, due to HuR's abundance and function in cancer cells compared with normal cells, it is an appealing target for oncology research. Exploiting the principles underlying HuR's role in tumorigenesis and resistance to stressors, targeting HuR has the potential for synergy with existing and novel oncologic therapies. This review aims to explore HuR's role in homeostasis and cancer pathophysiology, as well as current targeting strategies, which include silencing HuR expression, preventing its translocation and dimerization from the nucleus to the cytoplasm, and inhibiting mRNA binding. Furthermore, this review will discuss recent studies investigating the potential synergy between HuR inhibition and traditional chemotherapeutics.
Collapse
Affiliation(s)
- Jennifer M Finan
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Thomas L Sutton
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
5
|
Feng Y, Zhu S, Liu T, Zhi G, Shao B, Liu J, Li B, Jiang C, Feng Q, Wu P, Wang D. Surmounting Cancer Drug Resistance: New Perspective on RNA-Binding Proteins. Pharmaceuticals (Basel) 2023; 16:1114. [PMID: 37631029 PMCID: PMC10458901 DOI: 10.3390/ph16081114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
RNA-binding proteins (RBPs), being pivotal elements in both physiological and pathological processes, possess the ability to directly impact RNA, thereby exerting a profound influence on cellular life. Furthermore, the dysregulation of RBPs not only induces alterations in the expression levels of genes associated with cancer but also impairs the occurrence of post-transcriptional regulatory mechanisms. Consequently, these circumstances can give rise to aberrations in cellular processes, ultimately resulting in alterations within the proteome. An aberrant proteome can disrupt the equilibrium between oncogenes and tumor suppressor genes, promoting cancer progression. Given their significant role in modulating gene expression and post-transcriptional regulation, directing therapeutic interventions towards RBPs represents a viable strategy for combating drug resistance in cancer treatment. RBPs possess significant potential as diagnostic and prognostic markers for diverse cancer types. Gaining comprehensive insights into the structure and functionality of RBPs, along with delving deeper into the molecular mechanisms underlying RBPs in tumor drug resistance, can enhance cancer treatment strategies and augment the prognostic outcomes for individuals afflicted with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peijie Wu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| | - Dong Wang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| |
Collapse
|
6
|
Ma Q, Lu Q, Lei X, Zhao J, Sun W, Huang D, Zhu Q, Xu Q. Relationship between HuR and tumor drug resistance. Clin Transl Oncol 2023:10.1007/s12094-023-03109-5. [PMID: 36947360 DOI: 10.1007/s12094-023-03109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Human resistance protein R (HuR), also known as embryonic lethal abnormal visual-like protein (ELAVL1), is an RNA-binding protein widely expressed in vivo that affects the mRNA stability of targeted and is involved in post-transcriptional regulation. Recent studies have shown that HuR is aberrantly expressed in different human cancers and is an essential factor in poor clinical prognosis. The role of HuR in numerous tumors suggests that it could be a new target for tumor therapy and as a marker for efficacy and prognostic assessment. This review focuses on the relationship between HuR and drug resistance in different tumors and briefly describes the structure, function, and inhibitors of HuR. We summarize the mechanisms by which HuR causes tumor resistance and the molecular targets affected.
Collapse
Affiliation(s)
- Qiancheng Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, 266000, China
| | | | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wen Sun
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis, and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Qing Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis, and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
7
|
Hu Antigen R (HuR) Protein Structure, Function and Regulation in Hepatobiliary Tumors. Cancers (Basel) 2022; 14:cancers14112666. [PMID: 35681645 PMCID: PMC9179498 DOI: 10.3390/cancers14112666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Hepatobiliary tumors are a group of primary malignancies encompassing the liver, the intra- and extra-hepatic biliary tracts, and the gall bladder. Within the liver, hepatocellular carcinoma (HCC) is the most common type of primary cancer, which is, also, representing the third-most recurrent cause of cancer-associated death and the sixth-most prevalent type of tumor worldwide, nowadays. Although less frequent, cholangiocarcinoma (CCA) is, currently, a fatal cancer with limited therapeutic options. Here, we review the regulatory role of Hu antigen R (HuR), a ubiquitous member of the ELAV/Hu family of RNA-binding proteins (RBPs), in the pathogenesis, progression, and treatment of HCC and CCA. Overall, HuR is proposed as a valuable diagnostic and prognostic marker, as well as a therapeutic target in hepatobiliary cancers. Therefore, novel therapeutic approaches that can selectively modulate HuR function appear to be highly attractive for the clinical management of these types of tumors. Abstract Hu antigen R (HuR) is a 36-kDa ubiquitous member of the ELAV/Hu family of RNA-binding proteins (RBPs), which plays an important role as a post-transcriptional regulator of specific RNAs under physiological and pathological conditions, including cancer. Herein, we review HuR protein structure, function, and its regulation, as well as its implications in the pathogenesis, progression, and treatment of hepatobiliary cancers. In particular, we focus on hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), tumors where the increased cytoplasmic localization of HuR and activity are proposed, as valuable diagnostic and prognostic markers. An overview of the main regulatory axes involving HuR, which are associated with cell proliferation, invasion, metastasis, apoptosis, and autophagy in HCC, is provided. These include the transcriptional, post-transcriptional, and post-translational modulators of HuR function, in addition to HuR target transcripts. Finally, whereas studies addressing the relevance of targeting HuR in CCA are limited, in the past few years, HuR has emerged as a potential therapeutic target in HCC. In fact, the therapeutic efficacy of some pharmacological inhibitors of HuR has been evaluated, in early experimental models of HCC. We, further, discuss the major findings and future perspectives of therapeutic approaches that specifically block HuR interactions, either with post-translational modifiers or cognate transcripts in hepatobiliary cancers.
Collapse
|
8
|
Ferroptosis in Hepatocellular Carcinoma: Mechanisms, Drug Targets and Approaches to Clinical Translation. Cancers (Basel) 2022; 14:cancers14071826. [PMID: 35406596 PMCID: PMC8998032 DOI: 10.3390/cancers14071826] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In recent decades, scientific discoveries brought up several new treatments and improvements for patients suffering from hepatocellular carcinoma (HCC). However, increasing resistance to current therapies, such as sorafenib, worsen the outcome of HCC patients, leading to a search for alternative therapeutic strategies. The term ferroptosis describes a novel form of regulated cell death, which is different from apoptosis and necroptosis in a mechanistical and morphological manner. The main mechanism, which leads to cell death, is lipid peroxidation, caused by iron overload and the accumulation of polyunsaturated fatty acids. Recent studies demonstrate that ferroptosis can hamper the carcinogenesis in several tumor entities and in HCC. Therefore, a better understanding and a deeper insight in the processes of ferroptosis in HCC and the possible application of it in the clinical practice are of extreme importance. Abstract Ferroptosis, an iron and reactive oxygen species (ROS)-dependent non-apoptotic type of regulated cell death, is characterized by a massive iron overload and peroxidation of polyunsaturated fatty acids (PUFAs), which finally results in cell death. Recent studies suggest that ferroptosis can influence carcinogenesis negatively and therefore may be used as a novel anti-cancer strategy. Hepatocellular carcinoma (HCC) is a deadly malignancy with poor chances of survival and is the second leading cause of cancer deaths worldwide. Diagnosis at an already late stage and general resistance to current therapies may be responsible for the dismal outcome. As the liver acts as a key factor in iron metabolism, ferroptosis is shown to play an important role in HCC carcinogenesis and, more importantly, may hold the potential to eradicate HCC. In this review, we summarize the current knowledge we have of the role of ferroptosis in HCC and the application of ferroptosis as a therapy option and provide an overview of the potential translation of ferroptosis in the clinical practice of HCC.
Collapse
|
9
|
Subramanian P, Gargani S, Palladini A, Chatzimike M, Grzybek M, Peitzsch M, Papanastasiou AD, Pyrina I, Ntafis V, Gercken B, Lesche M, Petzold A, Sinha A, Nati M, Thangapandi VR, Kourtzelis I, Andreadou M, Witt A, Dahl A, Burkhardt R, Haase R, Domingues AMDJ, Henry I, Zamboni N, Mirtschink P, Chung KJ, Hampe J, Coskun Ü, Kontoyiannis DL, Chavakis T. The RNA binding protein human antigen R is a gatekeeper of liver homeostasis. Hepatology 2022; 75:881-897. [PMID: 34519101 DOI: 10.1002/hep.32153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NAFLD is initiated by steatosis and can progress through fibrosis and cirrhosis to HCC. The RNA binding protein human antigen R (HuR) controls RNAs at the posttranscriptional level; hepatocyte HuR has been implicated in the regulation of diet-induced hepatic steatosis. The present study aimed to understand the role of hepatocyte HuR in NAFLD development and progression to fibrosis and HCC. APPROACH AND RESULTS Hepatocyte-specific, HuR-deficient mice and control HuR-sufficient mice were fed either a normal diet or an NAFLD-inducing diet. Hepatic lipid accumulation, inflammation, fibrosis, and HCC development were studied by histology, flow cytometry, quantitative PCR, and RNA sequencing. The liver lipidome was characterized by lipidomics analysis, and the HuR-RNA interactions in the liver were mapped by RNA immunoprecipitation sequencing. Hepatocyte-specific, HuR-deficient mice displayed spontaneous hepatic steatosis and fibrosis predisposition compared to control HuR-sufficient mice. On an NAFLD-inducing diet, hepatocyte-specific HuR deficiency resulted in exacerbated inflammation, fibrosis, and HCC-like tumor development. A multi-omic approach, including lipidomics, transcriptomics, and RNA immunoprecipitation sequencing revealed that HuR orchestrates a protective network of hepatic-metabolic and lipid homeostasis-maintaining pathways. Consistently, HuR-deficient livers accumulated, already at steady state, a triglyceride signature resembling that of NAFLD livers. Moreover, up-regulation of secreted phosphoprotein 1 expression mediated, at least partially, fibrosis development in hepatocyte-specific HuR deficiency on an NAFLD-inducing diet, as shown by experiments using antibody blockade of osteopontin. CONCLUSIONS HuR is a gatekeeper of liver homeostasis, preventing NAFLD-related fibrosis and HCC, suggesting that the HuR-dependent network could be exploited therapeutically.
Collapse
Affiliation(s)
- Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Sofia Gargani
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Margarita Chatzimike
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Michal Grzybek
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Anastasios D Papanastasiou
- Department of Biomedical SciencesUniversity of West AtticaAthensGreece.,Histopathology UnitBiomedical Sciences Research Center "Alexander Fleming"VariGreece
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Vasileios Ntafis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Mathias Lesche
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Andreas Petzold
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Anupam Sinha
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Veera Raghavan Thangapandi
- Department of Internal Medicine IUniversity Hospital and Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany.,National Center for Tumor DiseasesPartner Site Dresden, Dresden and German Cancer Research CenterHeidelbergGermany.,York Biomedical Research Institute, Hull York Medical SchoolUniversity of YorkYorkUK
| | - Margarita Andreadou
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Anke Witt
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Andreas Dahl
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Robert Haase
- Scientific Computing FacilityMax Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Ian Henry
- Scientific Computing FacilityMax Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Nicola Zamboni
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Jochen Hampe
- Department of Internal Medicine IUniversity Hospital and Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Dimitris L Kontoyiannis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece.,Department of Genetics, Development & Molecular Biology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany.,Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany.,National Center for Tumor DiseasesPartner Site Dresden, Dresden and German Cancer Research CenterHeidelbergGermany
| |
Collapse
|
10
|
An Evolutionarily Conserved AU-Rich Element in the 3' Untranslated Region of a Transcript Misannotated as a Long Noncoding RNA Regulates RNA Stability. Mol Cell Biol 2022; 42:e0050521. [PMID: 35274990 DOI: 10.1128/mcb.00505-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the primary mechanisms of post-transcriptional gene regulation is the modulation of RNA stability. We recently discovered that LINC00675, a transcript annotated as a long noncoding RNA (lncRNA), is transcriptionally regulated by FOXA1 and encodes a highly conserved small protein that localizes to the endoplasmic reticulum, hence renamed as FORCP (FOXA1-regulated conserved small protein). Here, we show that the endogenous FORCP transcript is rapidly degraded and rendered unstable as a result of 3'UTR-mediated degradation. Surprisingly, although the FORCP transcript is a canonical nonsense-mediated decay (NMD) and microRNA (miRNA) target, we found that it is not degraded by NMD or miRNAs. Targeted deletion of an evolutionarily conserved region in the FORCP 3'UTR using CRISPR/Cas9 significantly increased the stability of the FORCP transcript. Interestingly, this region requires the presence of an immediate downstream 55-nt-long sequence for transcript stability regulation. Functionally, colorectal cancer cells lacking this conserved region expressed from the endogenous FORCP locus displayed decreased proliferation and clonogenicity. These data demonstrate that the FORCP transcript is destabilized via conserved elements within its 3'UTR and emphasize the need to interrogate the function of a given 3'UTR in its native context.
Collapse
|
11
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
12
|
Assoni G, La Pietra V, Digilio R, Ciani C, Licata NV, Micaelli M, Facen E, Tomaszewska W, Cerofolini L, Pérez-Ràfols A, Varela Rey M, Fragai M, Woodhoo A, Marinelli L, Arosio D, Bonomo I, Provenzani A, Seneci P. HuR-targeted agents: An insight into medicinal chemistry, biophysical, computational studies and pharmacological effects on cancer models. Adv Drug Deliv Rev 2022; 181:114088. [PMID: 34942276 DOI: 10.1016/j.addr.2021.114088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The Human antigen R (HuR) protein is an RNA-binding protein, ubiquitously expressed in human tissues, that orchestrates target RNA maturation and processing both in the nucleus and in the cytoplasm. A survey of known modulators of the RNA-HuR interactions is followed by a description of its structure and molecular mechanism of action - RRM domains, interactions with RNA, dimerization, binding modes with naturally occurring and synthetic HuR inhibitors. Then, the review focuses on HuR as a validated molecular target in oncology and briefly describes its role in inflammation. Namely, we show ample evidence for the involvement of HuR in the hallmarks and enabling characteristics of cancer, reporting findings from in vitro and in vivo studies; and we provide abundant experimental proofs of a beneficial role for the inhibition of HuR-mRNA interactions through silencing (CRISPR, siRNA) or pharmacological inhibition (small molecule HuR inhibitors).
Collapse
Affiliation(s)
- Giulia Assoni
- Chemistry Department, University of Milan, Via Golgi 19, I-20133 Milan, Italy; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Rosangela Digilio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Caterina Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Nausicaa Valentina Licata
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Mariachiara Micaelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Elisa Facen
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Weronika Tomaszewska
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Anna Pérez-Ràfols
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Marta Varela Rey
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; Department of Functional Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain; Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Luciana Marinelli
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), National Research Council (CNR), Via C. Golgi 19, I-20133 Milan, Italy
| | - Isabelle Bonomo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy.
| | - Pierfausto Seneci
- Chemistry Department, University of Milan, Via Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
13
|
Beaufrère A, Caruso S, Calderaro J, Poté N, Bijot JC, Couchy G, Cauchy F, Vilgrain V, Zucman-Rossi J, Paradis V. Gene expression signature as a surrogate marker of microvascular invasion on routine hepatocellular carcinoma biopsies. J Hepatol 2022; 76:343-352. [PMID: 34624411 DOI: 10.1016/j.jhep.2021.09.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Microvascular invasion (MVI), a major risk factor for tumor recurrence after surgery in hepatocellular carcinoma (HCC), is only detectable by microscopic examination of the surgical specimen. We aimed to define a transcriptomic signature associated with MVI in HCC than can be applied to formalin-fixed paraffin-embedded (FFPE) biopsies for use in clinical practice. METHODS To identify a gene expression signature related to MVI by using NanoString technology, we selected a set of 200 genes according to the literature and RNA-sequencing data obtained from a cohort of 150 frozen HCC samples previously published. We used 178 FFPE-archived HCC samples, including 109 surgical samples for the training set and 69 paired pre-operative biopsies for the validation set. In 14 cases of the training set, a paired biopsy was available and was also analyzed. RESULTS We identified a 6-gene signature (ROS1, UGT2B7, FAS, ANGPTL7, GMNN, MKI67) strongly associated with MVI in the training set of FFPE surgical HCC samples, with 82% accuracy (sensitivity 82%, specificity 81%, AUC 0.82). The NanoString gene expression was highly correlated in 14 paired surgical/biopsy HCC samples (mean R: 0.97). In the validation set of 69 FFPE HCC biopsies, the 6-gene NanoString signature predicted MVI with 74% accuracy (sensitivity 73%, specificity 76%, AUC 0.74). Moreover, on multivariate analysis, the MVI signature was associated with overall survival in both sets (hazard ratio 2.29; 95% CI 1.03-5.07; p = 0.041). CONCLUSION We defined a 6-gene signature that can accurately predict MVI in FFPE HCC biopsy samples, which is also associated with overall survival, although its survival impact must be confirmed by extensive study with further clinical data. LAY SUMMARY Microvascular invasion, a major risk factor for tumor recurrence after surgery in hepatocellular carcinoma, is only detectable by microscopic examination of a surgical specimen. In this study, we defined a relevant surrogate signature of microvascular invasion in hepatocellular carcinoma that may be applied in clinical practice with routine tumor biopsy and integrated into the therapeutic strategy.
Collapse
Affiliation(s)
- Aurélie Beaufrère
- Université de Paris, Paris, France; APHP, Department of Pathology, Hôpital Beaujon, 100 boulevard du Général Leclerc, Clichy, 92110, France; INSERM UMR 1149, Centre de Recherche sur l'Inflammation, 16 rue Henri Huchard, Paris, 75018, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France
| | - Julien Calderaro
- Department of Pathology, Hôpital Henri Mondor, AP-HP, 51 Avenue du Maréchal de Lattre de Tassigny, Créteil, 94010, France
| | - Nicolas Poté
- Université de Paris, Paris, France; Department of Pathology, Hôpital Bichat, AP-HP.Nord, 46 Rue Henri Huchard, Paris, 75018, France
| | - Jean-Charles Bijot
- Université de Paris, Paris, France; Department of Radiology, Hôpital Beaujon, AP-HP, 100 boulevard du Général Leclerc, Clichy, 92110, France
| | - Gabielle Couchy
- Université de Paris, Paris, France; Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France
| | - François Cauchy
- Université de Paris, Paris, France; INSERM UMR 1149, Centre de Recherche sur l'Inflammation, 16 rue Henri Huchard, Paris, 75018, France; Department of HPB and Pancreatic surgery, Beaujon AP-HP, Clichy, 92110, France
| | - Valérie Vilgrain
- Université de Paris, Paris, France; INSERM UMR 1149, Centre de Recherche sur l'Inflammation, 16 rue Henri Huchard, Paris, 75018, France; Department of Radiology, Hôpital Beaujon, AP-HP, 100 boulevard du Général Leclerc, Clichy, 92110, France
| | - Jessica Zucman-Rossi
- Université de Paris, Paris, France; Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; Department of Oncology, Hopital Européen Georges Pompidou, AP-HP, F-75015, Paris, France
| | - Valérie Paradis
- Université de Paris, Paris, France; APHP, Department of Pathology, Hôpital Beaujon, 100 boulevard du Général Leclerc, Clichy, 92110, France; INSERM UMR 1149, Centre de Recherche sur l'Inflammation, 16 rue Henri Huchard, Paris, 75018, France.
| |
Collapse
|
14
|
Delgado ME, Cárdenas BI, Farran N, Fernandez M. Metabolic Reprogramming of Liver Fibrosis. Cells 2021; 10:3604. [PMID: 34944111 PMCID: PMC8700241 DOI: 10.3390/cells10123604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is an excessive and imbalanced deposition of fibrous extracellular matrix (ECM) that is associated with the hepatic wound-healing response. It is also the common mechanism that contributes to the impairment of the liver function that is observed in many chronic liver diseases (CLD). Despite the efforts, no effective therapy against fibrosis exists yet. Worryingly, due to the growing obesity pandemic, fibrosis incidence is on the rise. Here, we aim to summarize the main components and mechanisms involved in the progression of liver fibrosis, with special focus on the metabolic regulation of key effectors of fibrogenesis, hepatic stellate cells (HSCs), and their role in the disease progression. Hepatic cells that undergo metabolic reprogramming require a tightly controlled, fine-tuned cellular response, allowing them to meet their energetic demands without affecting cellular integrity. Here, we aim to discuss the role of ribonucleic acid (RNA)-binding proteins (RBPs), whose dynamic nature being context- and stimuli-dependent make them very suitable for the fibrotic situation. Thus, we will not only summarize the up-to-date literature on the metabolic regulation of HSCs in liver fibrosis, but also on the RBP-dependent post-transcriptional regulation of this metabolic switch that results in such important consequences for the progression of fibrosis and CLD.
Collapse
Affiliation(s)
- M. Eugenia Delgado
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| | | | | | - Mercedes Fernandez
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| |
Collapse
|
15
|
Dolicka D, Foti M, Sobolewski C. The Emerging Role of Stress Granules in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22179428. [PMID: 34502337 PMCID: PMC8430939 DOI: 10.3390/ijms22179428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are small membrane-free cytosolic liquid-phase ordered entities in which mRNAs are protected and translationally silenced during cellular adaptation to harmful conditions (e.g., hypoxia, oxidative stress). This function is achieved by structural and functional SG components such as scaffold proteins and RNA-binding proteins controlling the fate of mRNAs. Increasing evidence indicates that the capacity of cells to assemble/disassemble functional SGs may significantly impact the onset and the development of metabolic and inflammatory diseases, as well as cancers. In the liver, the abnormal expression of SG components and formation of SG occur with chronic liver diseases, hepatocellular carcinoma (HCC), and selective hepatic resistance to anti-cancer drugs. Although, the role of SG in these diseases is still debated, the modulation of SG assembly/disassembly or targeting the expression/activity of specific SG components may represent appealing strategies to treat hepatic disorders and potentially cancer. In this review, we discuss our current knowledge about pathophysiological functions of SGs in HCC as well as available molecular tools and drugs capable of modulating SG formation and functions for therapeutic purposes.
Collapse
|
16
|
Wang Y, Gao R, Li J, Tang S, Li S, Tong Q, Li S. Downregulation of hsa_circ_0074854 Suppresses the Migration and Invasion in Hepatocellular Carcinoma via Interacting with HuR and via Suppressing Exosomes-Mediated Macrophage M2 Polarization. Int J Nanomedicine 2021; 16:2803-2818. [PMID: 33880025 PMCID: PMC8052130 DOI: 10.2147/ijn.s284560] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been identified as key factors in the development of hepatocellular carcinoma (HCC). However, the role and potential molecular mechanism of circRNAs in HCC remain largely unclear. In addition, exosomes are known as important messengers of the cross-talk between tumor cells and immune cells, while the role of extracellular circRNAs in the cell-to-cell communication of tumor cells and immune cells remains not unclear. METHODS The level of hsa_circ_0074854 in HCC cell lines and HCC cell-derived exosomes was assessed using RT-qPCR assay. In addition, CCK-8 and transwell assays were used to determine the viability, migration and invasion of HCC cells. RESULTS Hsa_circ_0074854 expression was upregulated in HCC tissues and HCC cell lines. Additionally, hsa_circ_0074854 knockdown was found to inhibit HCC growth in vitro and in vivo. Mechanistically, hsa_circ_0074854 knockdown inhibited the migration and invasion of HCC cells via interacting with human antigen R (HuR) to reduce its stability. Furthermore, hsa_circ_0074854 can be transferred from HCC cells to macrophages via exosomes. Exosomes with downregulated hsa_circ_0074854 suppressed macrophage M2 polarization, which in turn suppressing migration and invasion of HCC cells both in vitro and in vivo. CONCLUSION Downregulation of hsa_circ_0074854 suppresses the migration and invasion in hepatocellular carcinoma via interacting with HuR and via suppressing exosomes-mediated macrophage M2 polarization. Collectively, these findings may help to understand the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People’s Republic of China
| | - Rongfen Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, Hubei, People’s Republic of China
| | - Shaotao Tang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People’s Republic of China
| | - Shuai Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People’s Republic of China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People’s Republic of China
| | - Shiwang Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People’s Republic of China
| |
Collapse
|
17
|
Papatheofani V, Levidou G, Sarantis P, Koustas E, Karamouzis MV, Pergaris A, Kouraklis G, Theocharis S. HuR Protein in Hepatocellular Carcinoma: Implications in Development, Prognosis and Treatment. Biomedicines 2021; 9:119. [PMID: 33513829 PMCID: PMC7912068 DOI: 10.3390/biomedicines9020119] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hu-antigen R (HuR) is a post-transcriptional regulator that belongs to the embryonic lethal abnormal vision Drosophila-like family (ELAV). HuR regulates the stability, translation, subcellular localization, and degradation of several target mRNAs, which are implicated in carcinogenesis and could affect therapeutic options. HuR protein is consistently highly expressed in hepatocellular carcinoma (HCC) compared to the adjacent normal liver tissue and is involved in the post-transcriptional regulation of various genes implicated in liver malignant transformation. Additionally, HuR protein seems to be a putative prognosticator in HCC, predicting worse survival. This review summarizes the recent evidence regarding the role of HuR in primary liver tumors, as presented in clinical studies, in vitro experiments and in vivo animal models. In conclusion, our review supports the consistent role of HuR protein in the development, prognosis, and treatment of HCC. Additional studies are expected to expand current information and exploit its putative employment as a future candidate for more personalized treatment in these tumors.
Collapse
Affiliation(s)
- Vasiliki Papatheofani
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.P.); (G.L.); (P.S.); (A.P.)
- Second Department of Propedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgia Levidou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.P.); (G.L.); (P.S.); (A.P.)
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.P.); (G.L.); (P.S.); (A.P.)
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (M.V.K.)
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (M.V.K.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (M.V.K.)
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.P.); (G.L.); (P.S.); (A.P.)
| | - Gregorios Kouraklis
- Second Department of Propedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.P.); (G.L.); (P.S.); (A.P.)
| |
Collapse
|
18
|
Chen T, Dai X, Dai J, Ding C, Zhang Z, Lin Z, Hu J, Lu M, Wang Z, Qi Y, Zhang L, Pan R, Zhao Z, Lu L, Liao W, Lu X. AFP promotes HCC progression by suppressing the HuR-mediated Fas/FADD apoptotic pathway. Cell Death Dis 2020; 11:822. [PMID: 33009373 PMCID: PMC7532541 DOI: 10.1038/s41419-020-03030-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major leading cause of cancer-related death worldwide. Alpha fetoprotein (AFP) is reactivated in a majority of hepatocellular carcinoma (HCC) and associated with poor patient outcomes. Although increasing evidence has shown that AFP can regulate HCC cell growth, the precise functions of AFP in hepatocarcinogenesis and the associated underlying mechanism remain incompletely understood. In this study, we demostrated that depleting AFP significantly suppressed diethylnitrosamine (DEN)-induced liver tumor progression in an AFP gene-deficient mouse model. Similarly, knocking down AFP expression inhibited human HCC cell proliferation and tumor growth by inducing apoptosis. AFP expression level was inversely associated with the apoptotic rate in mouse and human HCC specimens. Investigation of potential cross-talk between AFP and apoptotic signaling revealed that AFP exerted its growth-promoting effect by suppressing the Fas/FADD-mediated extrinsic apoptotic pathway. Mechanistically, AFP bound to the RNA-binding protein HuR, increasing the accumulation of HuR in the cytoplasm and subsequent inhibition of Fas mRNA translation. In addition, we found that inhibiting AFP enhanced the cytotoxicity of therapeutics to AFP-positive HCC cells by activating HuR-mediated Fas/FADD apoptotic signaling. Conclusion: Our study defined the pro-oncogenic role of AFP in HCC progression and uncovered a novel antiapoptotic mechanism connecting AFP to HuR-mediated Fas translation. Our findings suggest that AFP is involved in the pathogenesis and chemosensitivity of HCC and that blockade of AFP may be a promising strategy to treat advanced HCC.
Collapse
Affiliation(s)
- Tianke Chen
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Xiaowei Dai
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Chaodong Ding
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Zheng Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Ziqi Lin
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jin Hu
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Mei Lu
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Zhanyu Wang
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Yalei Qi
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Zhu Zhao
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.
| |
Collapse
|
19
|
mRNA Post-Transcriptional Regulation by AU-Rich Element-Binding Proteins in Liver Inflammation and Cancer. Int J Mol Sci 2020; 21:ijms21186648. [PMID: 32932781 PMCID: PMC7554771 DOI: 10.3390/ijms21186648] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
AU-rich element-binding proteins (AUBPs) represent important post-transcriptional regulators of gene expression. AUBPs can bind to the AU-rich elements present in the 3'-UTR of more than 8% of all mRNAs and are thereby able to control the stability and/or translation of numerous target mRNAs. The regulation of the stability and the translation of mRNA transcripts by AUBPs are highly complex processes that occur through multiple mechanisms depending on the cell type and the cellular context. While AUBPs have been shown to be involved in inflammatory processes and the development of various cancers, their important role and function in the development of chronic metabolic and inflammatory fatty liver diseases (FLDs), as well as in the progression of these disorders toward cancers such as hepatocellular carcinoma (HCC), has recently started to emerge. Alterations of either the expression or activity of AUBPs are indeed significantly associated with FLDs and HCC, and accumulating evidence indicates that several AUBPs are deeply involved in a significant number of cellular processes governing hepatic metabolic disorders, inflammation, fibrosis, and carcinogenesis. Herein, we discuss our current knowledge of the roles and functions of AUBPs in liver diseases and cancer. The relevance of AUBPs as potential biomarkers for different stages of FLD and HCC, or as therapeutic targets for these diseases, are also highlighted.
Collapse
|
20
|
The RNA-Binding Protein HuR in Digestive System Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9656051. [PMID: 32775456 PMCID: PMC7396115 DOI: 10.1155/2020/9656051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Human antigen R (HuR) is a member of the Hu family of RNA-binding proteins. This molecule, which was first described in tumors nearly two decades ago, has recently received much attention in tumor-related research because it regulates the expression of many tumor-associated molecules through posttranscriptional regulatory mechanisms, thereby affecting biological characteristics. It is suggested that HuR might be a novel therapeutic target and a marker for therapeutic response and prognostic assessment. Increasing evidence supports that HuR also plays critical roles in the development, therapy, and prognosis of digestive system tumors. Herein, we review the relationships between HuR and digestive system tumors, demonstrating the importance of HuR in digestive system tumor diagnosis.
Collapse
|
21
|
Gao J, Dai C, Yu X, Yin XB, Zhou F. Long noncoding RNA LINC00324 exerts protumorigenic effects on liver cancer stem cells by upregulating fas ligand via PU box binding protein. FASEB J 2020; 34:5800-5817. [PMID: 32128906 DOI: 10.1096/fj.201902705rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) represents a major cause of cancer death, but the molecular mechanism for its development has not yet been well characterized. Long noncoding RNAs (lncRNAs) are involved in a wide range of biological processes via their roles as oncogenes or tumor suppressor genes. The present study aimed to elucidate the role of LINC00324 in HCC through its interaction with Fas ligand (FasL). Initially, microarray-based gene expression profiling of HCC was employed to identify differentially expressed genes. Next, the expression of LINC00324 in HCC tissues and liver cancer stem cell (LCSC) lines was examined using RT-qPCR. Then, the interaction among LINC00324, PU box binding protein (PU.1) and FasL was identified with RIP, ChIP and dual-luciferase reporter gene assays. The effect of LINC00324 on viability, proliferation, migration, invasion, and apoptosis as well as the tumorigenesis of transfected cells was examined with gain- and loss-of-function experiments. LINC00324 and FasL were highly expressed in HCC. LINC00324 regulated FasL expression via interaction with PU.1. Silencing of LINC00324 or FasL suppressed expression of stemness-related genes, cell viability, proliferation, migration, invasion, self-renewal, and tumorigenesis, but enhanced cell apoptosis. Taken together, LINC00324 promotes the expression of FasL through the recruitment of PU.1, which ultimately maintains the biological properties of LCSCs, thus, highlighting LINC00324 as a promising therapeutic candidate for HCC.
Collapse
Affiliation(s)
- Jun Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Chao Dai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xin Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xiang-Bao Yin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Fan Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
22
|
Shen DJ, Jiang YH, Li JQ, Xu LW, Tao KY. The RNA-binding protein RBM47 inhibits non-small cell lung carcinoma metastasis through modulation of AXIN1 mRNA stability and Wnt/β-catentin signaling. Surg Oncol 2020; 34:31-39. [PMID: 32891348 DOI: 10.1016/j.suronc.2020.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) remains a highly prevalent and deadly form of cancer, with efforts to better understand the molecular basis of the progression of this disease being essential to its effective treatment. Several recent studies have highlighted the ability of RNA-binding proteins (RBPs) to regulate a wide range of cellular processes in both healthy and pathogenic contexts. Among these RBPs, RNA binding motif protein 47 (RBM47) has recently been identified as a tumor suppressor in both breast and colon cancers, whereas its role in NSCLC is poorly understood. METHODS RBM47 expression in NSCLC samples was evaluated by RT-PCR, western blotting and immunohistochemistry analysis. Molecular and cellular techniques including lentiviral vector-mediated knockdown were used to elucidate the functions and mechanisms of RBM47. RESULTS This study sought to analyze the expression and role of RBM47 in NSCLC. In the present study, we observed reduced levels of RBM47 expression in NSCLC, with these reductions corresponding to a poorer prognosis and more advanced disease including a higher TNM stage (p = 0.022), a higher likelihood of tumor thrombus (p = 0.001), and pleural invasion (p = 0.033). Through functional analyses in vitro and in vivo, we further demonstrated that these RBP was able to disrupt the proliferation, migration, and invasion of NSCLC cells. At a molecular level, we determined that RBM47 was able to bind the AXIN1 mRNA, stabilizing it and thereby enhancing the consequent suppression of Wnt/β-catentin signaling. CONCLUSION Together our findings reveal that RBM47 targets AXIN1 in order to disrupt Wnt/β-catenin signaling in NSCLC and thereby disrupting tumor progression. These results thus offer new insights into the molecular biology of NSCLC, and suggest that RBM47 may also have value as a prognostic biomarker and/or therapeutic target in NSCLC patients.
Collapse
Affiliation(s)
- Di-Jian Shen
- Department of Thoracic Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Gongshu District, Hangzhou, 310022, China
| | - You-Hua Jiang
- Department of Thoracic Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Gongshu District, Hangzhou, 310022, China
| | - Jian-Qiang Li
- Department of Thoracic Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Gongshu District, Hangzhou, 310022, China
| | - Li-Wei Xu
- Department of Thoracic Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Gongshu District, Hangzhou, 310022, China
| | - Kai-Yi Tao
- Department of Thoracic Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Gongshu District, Hangzhou, 310022, China.
| |
Collapse
|
23
|
Human antigen R: A potential therapeutic target for liver diseases. Pharmacol Res 2020; 155:104684. [PMID: 32045667 DOI: 10.1016/j.phrs.2020.104684] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
Human antigen R (HuR), also known as HuA and embryonic lethal abnormal vision-like 1 (ELAVL1), is a ubiquitously expressed RNA binding protein and functions as an RNA regulator and mediates the expression of various proteins by diverse post-transcriptional mechanisms. HuR has been well characterized in the inflammatory responses and in the development of various cancers. The importance of HuR-mediated roles in cell signaling, inflammation, fibrogenesis and cancer development in the liver has attracted a great deal of attention. However, there is still a substantial gap between the current understanding of the potential roles of HuR in the progression of liver disease and whether HuR can be targeted for the treatment of liver diseases. In this review, we introduce the function and mechanistic characterization of HuR, and then focus on the physiopathological roles of HuR in the development of different liver diseases, including hepatic inflammation, alcoholic liver diseases, non-alcoholic fatty liver diseases, viral hepatitis, liver fibrosis and liver cancers. We also summarize existing approaches targeting HuR function. In conclusion, although characterizing the liver-specific HuR function and demonstrating the multi-level regulative networks of HuR in the liver are still required, emerging evidence supports the notion that HuR represents a potential therapeutic target for the treatment of chronic liver diseases.
Collapse
|
24
|
Schultz CW, Preet R, Dhir T, Dixon DA, Brody JR. Understanding and targeting the disease-related RNA binding protein human antigen R (HuR). WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1581. [PMID: 31970930 DOI: 10.1002/wrna.1581] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023]
Abstract
Altered gene expression is a characteristic feature of many disease states such as tumorigenesis, and in most cancers, it facilitates cancer cell survival and adaptation. Alterations in global gene expression are strongly impacted by post-transcriptional gene regulation. The RNA binding protein (RBP) HuR (ELAVL1) is an established regulator of post-transcriptional gene regulation and is overexpressed in most human cancers. In many cancerous settings, HuR is not only overexpressed, but it is "overactive" as denoted by increased subcellular localization within the cytoplasm. This dysregulation of HuR expression and cytoplasmic localization allows HuR to stabilize and increase the translation of various prosurvival messenger RNA (mRNAs) involved in the pathogenesis of numerous cancers and various diseases. Based on almost 20 years of work, HuR is now recognized as a therapeutic target. Herein, we will review the role HuR plays in the pathophysiology of different diseases and ongoing therapeutic strategies to target HuR. We will focus on three ongoing-targeted strategies: (1) inhibiting HuR's translocation from the nucleus to the cytoplasm; (2) inhibiting the ability of HuR to bind target RNA; and (3) silencing HuR expression levels. In an oncologic setting, HuR has been demonstrated to be critical for a cancer cell's ability to survive a variety of cancer relevant stressors (including drugs and elements of the tumor microenvironment) and targeting this protein has been shown to sensitize cancer cells further to insult. We strongly believe that targeting HuR could be a powerful therapeutic target to treat different diseases, particularly cancer, in the near future. This article is categorized under: RNA in Disease and Development > RNA in Disease NRA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation.
Collapse
Affiliation(s)
- Christopher W Schultz
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Teena Dhir
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jonathan R Brody
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Mariotti B, Calabretto G, Rossato M, Teramo A, Castellucci M, Barilà G, Leoncin M, Vicenzetto C, Facco M, Semenzato G, Bazzoni F, Zambello R. Identification of a miR-146b-Fas ligand axis in the development of neutropenia in T large granular lymphocyte leukemia. Haematologica 2019; 105:1351-1360. [PMID: 31467122 PMCID: PMC7193483 DOI: 10.3324/haematol.2019.225060] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Tlarge granular lymphocyte leukemia (T-LGLL) is characterized by the expansion of several large granular lymphocyte clones, among which a subset of large granular lymphocytes showing constitutively activated STAT3, a specific CD8+/CD4- phenotype and the presence of neutropenia has been identified. Although STAT3 is an inducer of transcription of a large number of oncogenes, so far its relationship with miRNAs has not been evaluated in T-LGLL patients. Here, we investigated whether STAT3 could carry out its pathogenetic role in T-LGLL through an altered expression of miRNAs. The expression level of 756 mature miRNA was assessed on purified T large granular lymphocytes (T-LGLs) by using a TaqMan Human microRNA Array. Hierarchical Clustering Analysis of miRNA array data shows that the global miRNome clusters with CD8 T-LGLs. Remarkably, CD8 T-LGLs exhibit a selective and STAT3-dependent repression of miR-146b expression, that significantly correlated with the absolute neutrophil counts and inversely correlated with the expression of Fas ligand (FasL), that is regarded as the most relevant factor in the pathogenesis of neutropenia. Experimental evidence demonstrates that the STAT3-dependent reduction of miR-146b expression in CD8 T-LGLs occurs as a consequence of miR-146b promoter hypermethylation and results in the disruption of the HuR-mediated post-transcriptional machinery controlling FasL mRNA stabilization. Restoring miR-146b expression in CD8 T-LGLs lead to a reduction of HuR protein and, in turn, of FasL mRNA expression, thus providing mechanistic insights for the existence of a STAT3-miR146b-FasL axis and neutropenia in T-LGLL.
Collapse
Affiliation(s)
- Barbara Mariotti
- Department of Medicine, Division of General Pathology, University of Verona, Verona
| | - Giulia Calabretto
- Department of Medicine, Hematology and Clinical Immunology section, University of Padua, Padua.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Marzia Rossato
- Department of Medicine, Division of General Pathology, University of Verona, Verona
| | - Antonella Teramo
- Department of Medicine, Hematology and Clinical Immunology section, University of Padua, Padua.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Monica Castellucci
- Department of Medicine, Division of General Pathology, University of Verona, Verona
| | - Gregorio Barilà
- Department of Medicine, Hematology and Clinical Immunology section, University of Padua, Padua.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Matteo Leoncin
- Department of Medicine, Hematology and Clinical Immunology section, University of Padua, Padua.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Cristina Vicenzetto
- Department of Medicine, Hematology and Clinical Immunology section, University of Padua, Padua.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Monica Facco
- Department of Medicine, Hematology and Clinical Immunology section, University of Padua, Padua.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology section, University of Padua, Padua.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Flavia Bazzoni
- Department of Medicine, Division of General Pathology, University of Verona, Verona
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology section, University of Padua, Padua.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| |
Collapse
|
26
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
27
|
Jian W, Fang S, Chen T, Fang J, Mo Y, Li D, Xiong S, Liu W, Song L, Shen J, Xia Y, Wang Q, Hong H. A novel role of HuR in -Epigallocatechin-3-gallate (EGCG) induces tumour cells apoptosis. J Cell Mol Med 2019; 23:3767-3771. [PMID: 30793483 PMCID: PMC6484420 DOI: 10.1111/jcmm.14249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/30/2023] Open
Affiliation(s)
- Wenxuan Jian
- DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Shuhuan Fang
- DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Tongkai Chen
- DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jiansong Fang
- DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yousheng Mo
- DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dongli Li
- DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Sha Xiong
- DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wei Liu
- DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Lei Song
- DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jiangang Shen
- DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.,School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yong Xia
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qi Wang
- DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
28
|
Yao Y, Chu H, Wang J, Wang B. Decreased human antigen R expression confers resistance to tyrosine kinase inhibitors in epidermal growth factor receptor-mutant lung cancer by inhibiting Bim expression. Int J Mol Med 2018; 42:2930-2942. [PMID: 30226552 DOI: 10.3892/ijmm.2018.3835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 08/14/2018] [Indexed: 11/06/2022] Open
Abstract
Primary resistance to epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) is an obstacle for the treatment of non‑small cell lung cancer (NSCLC); however, the associated mechanisms are not well understood. Studies have reported that Bim expression levels may be associated with the efficacy of EGFR‑TKI treatment in NSCLC patients harboring EGFR mutations. Human antigen R (HuR) regulates the mRNA and protein expression of target genes, including certain B‑cell lymphoma 2 family members. The present study investigated whether HuR mediates resistance to EGFR‑TKIs via the regulation of Bim. The results demonstrated that decreased levels of HuR and Bim protein expression are associated with primary resistance to EGFR‑TKIs and reduced median progression‑free survival in NSCLC patients. In vitro assays also revealed that knockdown of HuR resulted in primary EGFR‑TKI resistance and reduced gefitinib‑induced apoptosis in HCC827 cells by decreasing Bim expression. Furthermore, elevated HuR expression restored gefitinib sensitivity and enhanced gefitinib‑induced apoptosis in H1650 cells by increasing Bim expression. In vivo, it was further demonstrated that overexpression of HuR was able to restore the gefitinib sensitivity of H1650 cells. Therefore, altered HuR/Bim expression is proposed to be a novel mechanism of EGFR‑TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Yunfeng Yao
- Institute of Post‑Graduate, The Second Military Medical University, People's Liberation Army, Shanghai 200433, P.R. China
| | - Huili Chu
- Department of Oncology, General Hospital, Jinan Command of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Jun Wang
- Department of Oncology, General Hospital, Jinan Command of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Baocheng Wang
- Institute of Post‑Graduate, The Second Military Medical University, People's Liberation Army, Shanghai 200433, P.R. China
| |
Collapse
|
29
|
Delgado TC, Barbier-Torres L, Zubiete-Franco I, Lopitz-Otsoa F, Varela-Rey M, Fernández-Ramos D, Martínez-Chantar ML. Neddylation, a novel paradigm in liver cancer. Transl Gastroenterol Hepatol 2018; 3:37. [PMID: 30050997 DOI: 10.21037/tgh.2018.06.05] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
Liver cancer is the sixth most prevailing cancer worldwide. Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, has a rather heterogeneous pathogenesis making it highly refractive to current therapeutic approaches. Hence, HCC patients have a poor and gloomy prognosis making liver cancer the second leading cause of global cancer-related deaths. On this basis, a more global mechanism, such as post-translational modifications (PTMs) of proteins, may provide a valuable therapeutic approach for HCC clinical management by simultaneously regulating multiple disrupted signaling pathways. In the last years, the ubiquitin-like molecule NEDD8 (Neural precursor cell-expressed developmentally downregulated-8) conjugation pathway, neddylation, was shown to be aberrant in HCC patients with a significant positive correlation found among global levels of neddylation and poorer prognosis. Even though the best-established role for NEDD8 is the activation of ubiquitin E3 ligase family of cullin-RING ligases, the putative role for other NEDD8 substrates has been explored in recent years leading to the identification of novel neddylation targets in HCC. Importantly, treatment with the small pharmacological inhibitor Pevonedistat (MLN4924) (Millennium Pharmaceuticals, Takeda Pharmaceutical), currently in clinical trials for the treatment of some types of leukemias and other advanced solid tumors, was shown to suppress the outgrowth of hepatoma cells and liver cancer in pre-clinical mouse models. Overall, considering that the neddylation inhibitor Pevonedistat was well-tolerated and displayed a significant antitumor effect in pre-clinical models, combinatory pharmacological treatment based on Pevonedistat are highly recommended to enter clinical trials targeting advanced HCC.
Collapse
Affiliation(s)
- Teresa Cardoso Delgado
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Lúcia Barbier-Torres
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain.,Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Imanol Zubiete-Franco
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Fernando Lopitz-Otsoa
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - María-Luz Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| |
Collapse
|
30
|
Yu J, Huang WL, Xu QG, Zhang L, Sun SH, Zhou WP, Yang F. Overactivated neddylation pathway in human hepatocellular carcinoma. Cancer Med 2018; 7:3363-3372. [PMID: 29846044 PMCID: PMC6051160 DOI: 10.1002/cam4.1578] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of the neddylation pathway is related to various cancers. However, the specific role of the neddylation pathway in human hepatocellular carcinoma (HCC) remains largely unclear. In this study, the neddylation pathway in HCC and adjacent noncancerous liver (ANL) tissues was evaluated by immunohistochemistry (IHC), Western blotting, and qRT‐PCR (quantitative real‐time polymerase chain reaction). The results showed that the entire neddylation pathway, including NEDD8 (the IHC staining of NEDD8 represents the global‐protein neddylation), E1 NEDD8‐activating enzymes (NAE1 and UBA3), E2 NEDD8‐conjugating enzymes (UBE2F and UBE2M), E3 NEDD8‐ligases (MDM2, RBX1 and RNF7), and deneddylation enzymes (COPS5, UCHL1 and USP21), was overactivated in HCC. Furthermore, the upregulation of NEDD8 in HCC was correlated with aggressive characteristics and was an independent risk factor for overall survival (OS) and recurrence‐free survival (RFS) in patients with HCC after hepatectomy. The upregulation of NAE1, UBE2M, and UCHL1 in HCC was associated with aggressive characteristics and poor OS and RFS in patients with HCC after hepatectomy. In conclusion, our research reveals that the entire neddylation pathway is overactivated in HCC and associated with clinical characteristics and prognosis of patients with HCC.
Collapse
Affiliation(s)
- Jian Yu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China
| | - Wei-Long Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China
| | - Qing-Guo Xu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China
| | - Ling Zhang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Shu-Han Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| |
Collapse
|
31
|
Liu L, Yue H, Liu Q, Yuan J, Li J, Wei G, Chen X, Lu Y, Guo M, Luo J, Chen R. LncRNA MT1JP functions as a tumor suppressor by interacting with TIAR to modulate the p53 pathway. Oncotarget 2017; 7:15787-800. [PMID: 26909858 PMCID: PMC4941277 DOI: 10.18632/oncotarget.7487] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/05/2016] [Indexed: 01/13/2023] Open
Abstract
Accumulating evidence suggests that long noncoding RNAs (lncRNAs) play important roles in transcriptional regulation, whereas the extent to which the lncRNAs also function at the posttranscriptional level is less known. In the present study, we report a lncRNA named MT1JP which acts as a tumor suppressor through a posttranscriptional mechanism. We found that MT1JP is differentially expressed in tumor tissues by analyzing data from a customized microarray applied to 76 pairs of matched normal and cancer tissue samples. By associating with the RNA-binding protein TIAR, MT1JP enhanced the translation of the master transcription factor p53, thereby regulating a series of pathways involving p53, such as the cell cycle, apoptosis and proliferation. When MT1JP was down-regulated, the protein level of p53 declined, which in turn accelerated cell deterioration and tumor formation. Moreover, differential expression of MT1JP in cancerous and normal tissues suggests that it may be a promising prognostic marker and a therapeutic target. Taken together, we identified MT1JP as a critical factor in restraining cell transformation by modulating p53 translation through interactions with TIAR, and this finding is likely to shed new light on future investigations about posttranscriptional or translational effects of lncRNAs during cell transformation.
Collapse
Affiliation(s)
- Lihui Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Yue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiao Yuan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Guifeng Wei
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomin Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Research Network of Computational Biology, RNCB, Beijing 100101, China
| |
Collapse
|
32
|
Wang J, Zhao L, Li Y, Feng S, Lv G. HuR induces inflammatory responses in HUVECs and murine sepsis via binding to HMGB1. Mol Med Rep 2017; 17:1049-1056. [PMID: 29115544 DOI: 10.3892/mmr.2017.8010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/20/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to explore the roles of human antigen R (HuR) in sepsis. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses demonstrated that overexpression of HuR increased the expression of high‑mobility group box 1 (HMGB1) in human umbilical vein endothelial cells (HUVECs). HMGB1 was investigated as a potential target of HuR through bioinformatics and RNA‑immunoprecipitation assays. Furthermore, treatment with HuR small interfering (si)RNA suppressed the lipopolysaccharide (LPS)‑mediated release of HMGB1 and reduced HMGB1‑mediated hyperpermeability and leukocyte migration in HUVECs and in septic mice. In addition, HuR‑siRNA injection reduced cecal ligation and puncture (CLP)‑induced HMGB1 release, reduced production of interleukin 6 and lowered mortality rates. Notably, the promotive effects of HuR overexpression on the inflammatory response were attenuated when HUVECs were co‑treated with HMGB1 short hairpin RNA. Therefore, the present results indicated that the ectopic expression of HuR may induce inflammatory responses and thus sepsis by activating the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Jian Wang
- Department of Emergency, The Cangzhou Central Hospital, Hebei 061001, P.R. China
| | - Ling Zhao
- Department of The Second Osteology, The Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei 061001, P.R. China
| | - Yong Li
- Department of Emergency, The Cangzhou Central Hospital, Hebei 061001, P.R. China
| | - Shunyi Feng
- Department of Emergency, The Cangzhou Central Hospital, Hebei 061001, P.R. China
| | - Guangxin Lv
- Department of Emergency, The Cangzhou Central Hospital, Hebei 061001, P.R. China
| |
Collapse
|
33
|
Schultheiss CS, Laggai S, Czepukojc B, Hussein UK, List M, Barghash A, Tierling S, Hosseini K, Golob-Schwarzl N, Pokorny J, Hachenthal N, Schulz M, Helms V, Walter J, Zimmer V, Lammert F, Bohle RM, Dandolo L, Haybaeck J, Kiemer AK, Kessler SM. The long non-coding RNA H19 suppresses carcinogenesis and chemoresistance in hepatocellular carcinoma. Cell Stress 2017; 1:37-54. [PMID: 31225433 PMCID: PMC6551655 DOI: 10.15698/cst2017.10.105] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The long non-coding RNA (lncRNA) H19 represents a maternally expressed and epigenetically regulated imprinted gene product and is discussed to have either tumor-promoting or tumor-suppressive actions. Recently, H19 was shown to be regulated under inflammatory conditions. Therefore, aim of this study was to determine the function of H19 in hepatocellular carcinoma (HCC), an inflammation-associated type of tumor. In four different human HCC patient cohorts H19 was distinctly downregulated in tumor tissue compared to normal or non-tumorous adjacent tissue. We therefore determined the action of H19 in three different human hepatoma cell lines (HepG2, Plc/Prf5, and Huh7). Clonogenicity and proliferation assays showed that H19 overexpression could suppress tumor cell survival and proliferation after treatment with either sorafenib or doxorubicin, suggesting chemosensitizing actions of H19. Since HCC displays a highly chemoresistant tumor entity, cell lines resistant to doxorubicin or sorafenib were established. In all six chemoresistant cell lines H19 expression was significantly downregulated. The promoter methylation of the H19 gene was significantly different in chemoresistant cell lines compared to their sensitive counterparts. Chemoresistant cells were sensitized after H19 overexpression by either increasing the cytotoxic action of doxorubicin or decreasing cell proliferation upon sorafenib treatment. An H19 knockout mouse model (H19Δ3) showed increased tumor development and tumor cell proliferation after treatment with the carcinogen diethylnitrosamine (DEN) independent of the reciprocally imprinted insulin-like growth factor 2 (IGF2). In conclusion, H19 suppresses hepatocarcinogenesis, hepatoma cell growth, and HCC chemoresistance. Thus, mimicking H19 action might be a potential target to overcome chemoresistance in future HCC therapy.
Collapse
Affiliation(s)
| | - Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Beate Czepukojc
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Usama K Hussein
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.,Faculty of Science, Beni-Suef University, Bani Suwaif, Egypt
| | - Markus List
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Ahmad Barghash
- School of Electrical Engineering and Information Technology, German Jordanian University, Amman, Jordan
| | - Sascha Tierling
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Kevan Hosseini
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | | | - Juliane Pokorny
- Institute of Pathology, Saarland University, Campus Homburg, Homburg (Saar), Germany
| | - Nina Hachenthal
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Marcel Schulz
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,Cluster of Excellence in Multimodal Computing and Interaction, Saarland Informatics Campus, Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Vincent Zimmer
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg (Saar), Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg (Saar), Germany
| | - Rainer M Bohle
- Institute of Pathology, Saarland University, Campus Homburg, Homburg (Saar), Germany
| | - Luisa Dandolo
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, Graz, Austria.,Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.,Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
34
|
Romeo C, Weber MC, Zarei M, DeCicco D, Chand SN, Lobo AD, Winter JM, Sawicki JA, Sachs JN, Meisner-Kober N, Yeo CJ, Vadigepalli R, Tykocinski ML, Brody JR. HuR Contributes to TRAIL Resistance by Restricting Death Receptor 4 Expression in Pancreatic Cancer Cells. Mol Cancer Res 2016; 14:599-611. [PMID: 27053682 PMCID: PMC5312260 DOI: 10.1158/1541-7786.mcr-15-0448] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/22/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal cancers, in part, due to resistance to both conventional and targeted therapeutics. TRAIL directly induces apoptosis through engagement of cell surface Death Receptors (DR4 and DR5), and has been explored as a molecular target for cancer treatment. Clinical trials with recombinant TRAIL and DR-targeting agents, however, have failed to show overall positive outcomes. Herein, we identify a novel TRAIL resistance mechanism governed by Hu antigen R (HuR, ELAV1), a stress-response protein abundant and functional in PDA cells. Exogenous HuR overexpression in TRAIL-sensitive PDA cell lines increases TRAIL resistance whereas silencing HuR in TRAIL-resistant PDA cells, by siRNA oligo-transfection, decreases TRAIL resistance. PDA cell exposure to soluble TRAIL induces HuR translocation from the nucleus to the cytoplasm. Furthermore, it is demonstrated that HuR interacts with the 3'-untranslated region (UTR) of DR4 mRNA. Pre-treatment of PDA cells with MS-444 (Novartis), an established small molecule inhibitor of HuR, substantially increased DR4 and DR5 cell surface levels and enhanced TRAIL sensitivity, further validating HuR's role in affecting TRAIL apoptotic resistance. NanoString analyses on the transcriptome of TRAIL-exposed PDA cells identified global HuR-mediated increases in antiapoptotic processes. Taken together, these data extend HuR's role as a key regulator of TRAIL-induced apoptosis. IMPLICATIONS Discovery of an important new HuR-mediated TRAIL resistance mechanism suggests that tumor-targeted HuR inhibition increases sensitivity to TRAIL-based therapeutics and supports their re-evaluation as an effective treatment for PDA patients. Mol Cancer Res; 14(7); 599-611. ©2016 AACR.
Collapse
Affiliation(s)
- Carmella Romeo
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary, and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew C Weber
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mahsa Zarei
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary, and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Danielle DeCicco
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saswati N Chand
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary, and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Angie D Lobo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jordan M Winter
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary, and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Janet A Sawicki
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | | | - Charles J Yeo
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary, and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mark L Tykocinski
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jonathan R Brody
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary, and Related Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
35
|
Khabar KSA. Hallmarks of cancer and AU-rich elements. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27251431 PMCID: PMC5215528 DOI: 10.1002/wrna.1368] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Post‐transcriptional control of gene expression is aberrant in cancer cells. Sustained stabilization and enhanced translation of specific mRNAs are features of tumor cells. AU‐rich elements (AREs), cis‐acting mRNA decay determinants, play a major role in the posttranscriptional regulation of many genes involved in cancer processes. This review discusses the role of aberrant ARE‐mediated posttranscriptional processes in each of the hallmarks of cancer, including sustained cellular growth, resistance to apoptosis, angiogenesis, invasion, and metastasis. WIREs RNA 2017, 8:e1368. doi: 10.1002/wrna.1368 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Khalid S A Khabar
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Ranjan A, Bera K, Iwakuma T. Murine double minute 2, a potential p53-independent regulator of liver cancer metastasis. HEPATOMA RESEARCH 2016; 2:114-121. [PMID: 28944296 PMCID: PMC5609474 DOI: 10.20517/2394-5079.2015.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the mechanisms underlying HCC progression remain unclear. Unlike other cancers, systematic chemotherapy is not effective for HCC patients, while surgical resection and liver transplantation are the most viable treatment options. Thus, identifying factors or pathways that suppress HCC progression would be crucial for advancing treatment strategies for HCC. The murine double minute 2 (MDM2)-p53 pathway is impaired in most of the cancer types, including HCC, and MDM2 is overexpressed in approximately 30% of HCC. Overexpression of MDM2 is reported to be well correlated with metastasis, drug resistance, and poor prognosis of multiple cancer types, including HCC. Importantly, these correlations are observed even when p53 is mutated. Indeed, p53-independent functions of overexpressed MDM2 in cancer progression have been suitably demonstrated. In this review article, we summarize potential effectors of MDM2 that promote or suppress cancer metastasis and discuss the p53-independent roles of MDM2 in liver cancer metastasis from clinical as well as biological perspectives.
Collapse
Affiliation(s)
- Atul Ranjan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kaustav Bera
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
37
|
Essential Roles of RNA-binding Protein HuR in Activation of Hepatic Stellate Cells Induced by Transforming Growth Factor-β1. Sci Rep 2016; 6:22141. [PMID: 26912347 PMCID: PMC4766441 DOI: 10.1038/srep22141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/08/2016] [Indexed: 11/08/2022] Open
Abstract
RNA-binding protein HuR mediates transforming growth factor (TGF)-β1-induced profibrogenic actions. Up-regulation of Sphingosine kinase 1 (SphK1) is involved in TGF-β1-induced activation of hepatic stellate cells (HSCs) in liver fibrogenesis. However, the molecular mechanism of TGF-β1 regulates SphK1 remains unclear. This study was designed to investigate the role of HuR in TGF-β1-induced SphK1 expression and identify a new molecular mechanism in liver fibrogenensis. In vivo, HuR expression was increased, translocated to cytoplasm, and bound to SphK1 mRNA in carbon tetrachloride- and bile duct ligation-induced mouse fibrotic liver. HuR mRNA expression had a positive correlation with mRNA expressions of SphK1 and fibrotic markers, α-smooth muscle actin (α-SMA) and Collagen α1(I), respectively. In vitro, up-regulation of SphK1 and activation of HSCs stimulated by TGF-β1 depended on HuR cytoplasmic accumulation. The effects of TGF-β1 were diminished when HuR was silenced or HuR cytoplasmic translocation was blocked. Meanwhile, overexpression of HuR mimicked the effects of TGF-β1. Furthermore, TGF-β1 prolonged half-life of SphK1 mRNA by promoting its binding to HuR. Pharmacological or siRNA-induced SphK1 inhibition abrogated HuR-mediated HSC activation. In conclusion, our data suggested that HuR bound to SphK1 mRNA and played a crucial role in TGF-β1-induced HSC activation.
Collapse
|
38
|
Abstract
Hepatocellular carcinoma (HCC) is a major health problem. In human hepatocarcinogenesis, the balance between cell death and proliferation is deregulated, tipping the scales for a situation where antiapoptotic signals are overpowering the death-triggering stimuli. HCC cells harbor a wide variety of mutations that alter the regulation of apoptosis and hence the response to chemotherapeutical drugs, making them resistant to the proapoptotic signals. Considering all these modifications found in HCC cells, therapeutic approaches need to be carefully studied in order to specifically target the antiapoptotic signals. This review deals with the recent relevant contributions reporting molecular alterations for HCC that lead to a deregulation of apoptosis, as well as the challenge of death-inducing chemotherapeutics in current HCC treatment.
Collapse
Affiliation(s)
- Joaquim Moreno-Càceres
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, University of Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, University of Barcelona, Spain
| |
Collapse
|
39
|
Blanco FF, Jimbo M, Wulfkuhle J, Gallagher I, Deng J, Enyenihi L, Meisner-Kober N, Londin E, Rigoutsos I, Sawicki JA, Risbud MV, Witkiewicz AK, McCue PA, Jiang W, Rui H, Yeo CJ, Petricoin E, Winter JM, Brody JR. The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells. Oncogene 2015; 35:2529-41. [PMID: 26387536 DOI: 10.1038/onc.2015.325] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022]
Abstract
Previously, it has been shown that pancreatic ductal adenocarcinoma (PDA) tumors exhibit high levels of hypoxia, characterized by low oxygen pressure (pO2) and decreased O2 intracellular perfusion. Chronic hypoxia is strongly associated with resistance to cytotoxic chemotherapy and chemoradiation in an understudied phenomenon known as hypoxia-induced chemoresistance. The hypoxia-inducible, pro-oncogenic, serine-threonine kinase PIM1 (Proviral Integration site for Moloney murine leukemia virus 1) has emerged as a key regulator of hypoxia-induced chemoresistance in PDA and other cancers. Although its role in therapeutic resistance has been described previously, the molecular mechanism behind PIM1 overexpression in PDA is unknown. Here, we demonstrate that cis-acting AU-rich elements (ARE) present within a 38-base pair region of the PIM1 mRNA 3'-untranslated region mediate a regulatory interaction with the mRNA stability factor HuR (Hu antigen R) in the context of tumor hypoxia. Predominantly expressed in the nucleus in PDA cells, HuR translocates to the cytoplasm in response to hypoxic stress and stabilizes the PIM1 mRNA transcript, resulting in PIM1 protein overexpression. A reverse-phase protein array revealed that HuR-mediated regulation of PIM1 protects cells from hypoxic stress through phosphorylation and inactivation of the apoptotic effector BAD and activation of MEK1/2. Importantly, pharmacological inhibition of HuR by MS-444 inhibits HuR homodimerization and its cytoplasmic translocation, abrogates hypoxia-induced PIM1 overexpression and markedly enhances PDA cell sensitivity to oxaliplatin and 5-fluorouracil under physiologic low oxygen conditions. Taken together, these results support the notion that HuR has prosurvival properties in PDA cells by enabling them with growth advantages in stressful tumor microenvironment niches. Accordingly, these studies provide evidence that therapeutic disruption of HuR's regulation of PIM1 may be a key strategy in breaking an elusive chemotherapeutic resistance mechanism acquired by PDA cells that reside in hypoxic PDA microenvironments.
Collapse
Affiliation(s)
- F F Blanco
- Department of Pharmacology and Experimental Therapeutics, Division of Clinical Pharmacology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - M Jimbo
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - I Gallagher
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - J Deng
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - L Enyenihi
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - N Meisner-Kober
- Novartis Institutes for Biomedical Research, Novartis, Switzerland
| | - E Londin
- Center for Computational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - I Rigoutsos
- Center for Computational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - J A Sawicki
- Lankenau Institute for Medical Research, Philadelphia, PA, USA
| | - M V Risbud
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - A K Witkiewicz
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - P A McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - W Jiang
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - H Rui
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - C J Yeo
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - E Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - J M Winter
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - J R Brody
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|