1
|
Naik A, Lattab B, Qasem H, Decock J. Cancer testis antigens: Emerging therapeutic targets leveraging genomic instability in cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200768. [PMID: 38596293 PMCID: PMC10876628 DOI: 10.1016/j.omton.2024.200768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer care has witnessed remarkable progress in recent decades, with a wide array of targeted therapies and immune-based interventions being added to the traditional treatment options such as surgery, chemotherapy, and radiotherapy. However, despite these advancements, the challenge of achieving high tumor specificity while minimizing adverse side effects continues to dictate the benefit-risk balance of cancer therapy, guiding clinical decision making. As such, the targeting of cancer testis antigens (CTAs) offers exciting new opportunities for therapeutic intervention of cancer since they display highly tumor specific expression patterns, natural immunogenicity and play pivotal roles in various biological processes that are critical for tumor cellular fitness. In this review, we delve deeper into how CTAs contribute to the regulation and maintenance of genomic integrity in cancer, and how these mechanisms can be exploited to specifically target and eradicate tumor cells. We review the current clinical trials targeting aforementioned CTAs, highlight promising pre-clinical data and discuss current challenges and future perspectives for future development of CTA-based strategies that exploit tumor genomic instability.
Collapse
Affiliation(s)
- Adviti Naik
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Boucif Lattab
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Hanan Qasem
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
2
|
Ma JJ, Xiang C, Wang JW. TTK is a potential regulator of tumor progression correlated with dedifferentiation and immune cell infiltration in papillary thyroid cancer. Aging (Albany NY) 2023; 15:10607-10626. [PMID: 37815894 PMCID: PMC10599754 DOI: 10.18632/aging.205100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE To investigate the role and clinical significance of threonine tyrosine kinase (TTK) in papillary thyroid cancer (PTC). METHODS TTK expression in PTC and normal groups were compared using TCGA data and in vitro experiments. The prognostic value of TTK and its possible role in PTC dedifferentiation was evaluated. Next, TTK involvement in PTC occurrence and progression was analyzed via in vitro experiments. Subsequently, analyses of enrichment and immune cell infiltration were conducted to reveal the possible mechanism. Finally, we predicted the target miRNAs followed by performing a luciferase reporter experiment. RESULTS TTK upregulation was observed in PTC, and its elevated level was significantly related to an unfavorable prognosis (P < 0.05). Interestingly, TTK negatively correlated with thyroid differentiation score (TDS), and patients with higher TDS showed longer survival (all P < 0.05). PTC cell growth, migration, and invasion were inhibited upon TTK knockdown. Besides, TTK was involved in metabolic processes and regulated cell adhesion molecules pathway. Its overexpression was positively associated with immune cell infiltrates (P < 0.05). Moreover, miR-582-5p was an upstream target of TTK. CONCLUSION TTK serves as a potential biomarker for tumorigenesis and prognosis in PTC, especially for those that may differentiate into more aggressive thyroid cancers.
Collapse
Affiliation(s)
- Jun-Jie Ma
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Cheng Xiang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Jian-Wei Wang
- The Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
3
|
Hu S, Jiang C, Gao M, Zhang D, Yao N, Zhang J, Jin Q. Discovery of pyrazolo[3,4-b]pyridine derivatives as novel and potent Mps1 inhibitors for the treatment of cancer. Eur J Med Chem 2023; 253:115334. [PMID: 37037136 DOI: 10.1016/j.ejmech.2023.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Monopolar spindle kinase 1 (Mps1) is a key element of the mitotic checkpoint and clinically evaluated as a target in the treatment of aggressive tumors. With this aim, a set of pyrazolo[3,4-b]pyridine-based compounds as new Mps1 inhibitors was investigated through a multidisciplinary approach, based on virtual screening, chemical synthesis and biological evaluation. One of the representative compounds, 31, exhibited strong kinase inhibitory potency against Mps1 with an IC50 value of 2.596 nM and significantly inhibited proliferation of cancer cells, especially MDA-MB-468 and MV4-11 cells. Compound 31 also displayed reasonable kinome selectivity against a panel of 606 wild-type kinases at 1 μM. Moreover, compound 31 exhibited suitable preclinical pharmacokinetic parameters and a promising pharmacodynamic profile. Further, compound 31 showed good antitumor efficacy in MDA-MB-468 xenograft model with no obvious toxicity. Overall, compound 31 was identified as a potential Mps1 inhibitor for cancer therapy and deserve further research.
Collapse
Affiliation(s)
- Shihe Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China; SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing, 210046, PR China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Nan Yao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| |
Collapse
|
4
|
Jiao Y, Li S, Gong J, Zheng K, Xie Y. Comprehensive analysis of the expression and prognosis for RAI2: A promising biomarker in breast cancer. Front Oncol 2023; 13:1134149. [PMID: 37064084 PMCID: PMC10090471 DOI: 10.3389/fonc.2023.1134149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionRetinoic acid-induced 2 (RAI2) was initially related to cell differentiation and induced by retinoic acid. RAI2 has been identified as an emerging tumor suppressor in breast cancer and colorectal cancer.MethodsIn this study, we performed systematic analyses of RAI2 in breast cancer. Meta-analysis and Kaplan-Meier survival curves were applied to identify the survival prediction potential of RAI2. Moreover, the association between RAI2 expression and the abundance of six tumor-infiltrating immune cells was investigated by TIMER, including B cells, CD8+ T cells, CD4+ T cells, B cells, dendritic cells, neutrophils, and macrophages. The expression profiles of high and low RAI2 mRNA levels in GSE7390 were compared to identify differentially expressed genes (DEGs) and the biological function of these DEGs was analyzed by R software, which was further proved in GSE7390.ResultsOur results showed that the normal tissues had more RAI2 expression than breast cancer tissues. Patients with high RAI2 expression were related to a favorable prognosis and more immune infiltrates. A total of 209 DEGs and 182 DEGs were identified between the expression profiles of high and low RAI2 mRNA levels in the GSE7390 and GSE21653 databases, respectively. Furthermore, Gene Ontology (GO) enrichment indicated that these DEGs from two datasets were both mainly distributed in “biological processes” (BP), including “organelle fission” and “nuclear division”. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis demonstrated that these DEGs from two datasets were both significantly enriched in the “cell cycle”. Common hub genes between the DEGs in GSE7390 and GSE21653 were negatively associated with RAI2 expression, including CCNA2, MAD2L1, MELK, CDC20, and CCNB2.DiscussionsThese results above suggested that RAI2 might play a pivotal role in preventing the initiation and progression of breast cancer. The present study may contribute to understanding the molecular mechanisms of RAI2 and enriching biomarkers to predict patient prognosis in breast cancer.
Collapse
Affiliation(s)
- Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Juejun Gong
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zheng
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ya Xie
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Ya Xie,
| |
Collapse
|
5
|
Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed Pharmacother 2023; 158:114126. [PMID: 36521246 DOI: 10.1016/j.biopha.2022.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is a standard cytotoxic therapy against solid cancers. It uses ionizing radiation to kill tumor cells through damage to DNA, either directly or indirectly. Radioresistance is often associated with dysregulated DNA damage repair processes. Most radiosensitizers enhance radiation-mediated DNA damage and reduce the rate of DNA repair ultimately leading to accumulation of DNA damages, cell-cycle arrest, and cell death. Recently, agents targeting key signals in DNA damage response such as DNA repair pathways and cell-cycle have been developed. This new class of molecularly targeted radiosensitizing agents is being evaluated in preclinical and clinical studies to monitor their activity in potentiating radiation cytotoxicity of tumors and reducing normal tissue toxicity. The molecular pathways of DNA damage response are reviewed with a focus on the repair mechanisms, therapeutic targets under current clinical evaluation including ATM, ATR, CDK1, CDK4/6, CHK1, DNA-PKcs, PARP-1, Wee1, & MPS1/TTK and potential new targets (BUB1, and DNA LIG4) for radiation sensitization.
Collapse
|
6
|
Li F, Liu C, Nong W, Lin L, Ge Y, Luo B, Xiao S, Zhang Q, Xie X. Identification of potential biomarkers in cancer testis antigens for glioblastoma. Am J Transl Res 2023; 15:799-816. [PMID: 36915736 PMCID: PMC10006807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/16/2022] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To screen and validate cancer testis antigens (CTAs) as potential biomarkers and explore their molecular mechanisms in glioblastoma (GBM). METHODS Ribonucleic acid sequencing (RNA-seq) and bioinformatics analyses were utilized to screen the highly expressed CTAs in GBM. Correlation analysis was used to identify potential biomarkers associated with tumor purity and prognosis. Immunohistochemistry was applied for detection of protein expression. Protein-protein interaction (PPI) network construction, functional enrichment analysis, and binding domain prediction were performed to investigate the underlying molecular mechanisms of GBM. RESULTS A total of 8 highly expressed CTAs were identified in GBM. One of them was PDZ-binding kinase (PBK). PBK messenger RNA (mRNA) was most highly expressed in GBM and associated with tumor purity and prognosis, PBK protein expression was also significantly increased in GBM tissues and correlated with p53 expression. Functional enrichment analysis revealed that the PBK related genes were predominantly enriched in cell cycle pathway with 38 genes enriched. The proteins encoding by these 38 genes were performed by binding domain prediction analysis, which demonstrated 15 proteins interacting with PBK. Most of these proteins were up regulated in GBM. CONCLUSION PBK is highly expressed in GBM. It may serve as a potential biomarker for GBM targeting therapy and the cell cycle modulator by interacting with certain key molecules of cell cycle in GBM.
Collapse
Affiliation(s)
- Feng Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, China.,Postdoctoral Research Station, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China
| | - Weixia Nong
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Lina Lin
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China
| | - Yingying Ge
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Shaowen Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| |
Collapse
|
7
|
Degorre C, Sutton IC, Lehman SL, Shankavaram UT, Camphausen K, Tofilon PJ. Glioblastoma cells have increased capacity to repair radiation-induced DNA damage after migration to the olfactory bulb. Cancer Cell Int 2022; 22:389. [PMID: 36482431 PMCID: PMC9733339 DOI: 10.1186/s12935-022-02819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The invasive nature of GBM combined with the diversity of brain microenvironments creates the potential for a topographic heterogeneity in GBM radioresponse. Investigating the mechanisms responsible for a microenvironment-induced differential GBM response to radiation may provide insights into the molecules and processes mediating GBM radioresistance. METHODS Using a model system in which human GBM stem-like cells implanted into the right striatum of nude mice migrate throughout the right hemisphere (RH) to the olfactory bulb (OB), the radiation-induced DNA damage response was evaluated in each location according to γH2AX and 53BP1 foci and cell cycle phase distribution as determined by flow cytometry and immunohistochemistry. RNAseq was used to compare transcriptomes of tumor cells growing in the OB and the RH. Protein expression and neuron-tumor interaction were defined by immunohistochemistry and confocal microscopy. RESULTS After irradiation, there was a more rapid dispersal of γH2AX and 53BP1 foci in the OB versus in the RH, indicative of increased double strand break repair capacity in the OB and consistent with the OB providing a radioprotective niche. With respect to the cell cycle, by 6 h after irradiation there was a significant loss of mitotic tumor cells in both locations suggesting a similar activation of the G2/M checkpoint. However, by 24 h post-irradiation there was an accumulation of G2 phase cells in the OB, which continued out to at least 96 h. Transcriptome analysis showed that tumor cells in the OB had higher expression levels of DNA repair genes involved in non-homologous end joining and genes related to the spindle assembly checkpoint. Tumor cells in the OB were also found to have an increased frequency of soma-soma contact with neurons. CONCLUSION GBM cells that have migrated to the OB have an increased capacity to repair radiation-induced double strand breaks and altered cell cycle regulation. These results correspond to an upregulation of genes involved in DNA damage repair and cell cycle control. Because the murine OB provides a source of radioresistant tumor cells not evident in other experimental systems, it may serve as a model for investigating the mechanisms mediating GBM radioresistance.
Collapse
Affiliation(s)
- Charlotte Degorre
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| | - Ian C. Sutton
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| | - Stacey L. Lehman
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| | - Uma T. Shankavaram
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| | - Kevin Camphausen
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| | - Philip J. Tofilon
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| |
Collapse
|
8
|
Pugh L, Pancholi A, Purat PC, Agudo-Alvarez S, Benito-Arenas R, Bastida A, Bolanos-Garcia VM. Computational Biology Dynamics of Mps1 Kinase Molecular Interactions with Isoflavones Reveals a Chemical Scaffold with Potential to Develop New Therapeutics for the Treatment of Cancer. Int J Mol Sci 2022; 23:ijms232214228. [PMID: 36430712 PMCID: PMC9692432 DOI: 10.3390/ijms232214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
The protein kinase Mps1 (monopolar spindle 1) is an important regulator of the Spindle Assembly Checkpoint (SAC), the evolutionary conserved checkpoint system of higher organisms that monitors the proper bipolar attachment of all chromosomes to the mitotic spindle during cell division. Defects in the catalytic activity and the transcription regulation of Mps1 are associated with genome instability, aneuploidy, and cancer. Moreover, multiple Mps1 missense and frameshift mutations have been reported in a wide range of types of cancer of different tissue origin. Due to these features, Mps1 arises as one promising drug target for cancer therapy. In this contribution, we developed a computational biology approach to study the dynamics of human Mps1 kinase interaction with isoflavones, a class of natural flavonoids, and compared their predicted mode of binding with that observed in the crystal structure of Mps1 in complex with reversine, a small-sized inhibitor of Mps1 and Aurora B kinases. We concluded that isoflavones define a chemical scaffold that can be used to develop new Mps1 inhibitors for the treatment of cancer associated with Mps1 amplification and aberrant chromosome segregation. In a broader context, the present report illustrates how modern chemoinformatics approaches can accelerate drug development in oncology.
Collapse
Affiliation(s)
- Lauren Pugh
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Alisha Pancholi
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Priscila Celeste Purat
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Sandra Agudo-Alvarez
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Raúl Benito-Arenas
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Agatha Bastida
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| | - Victor M. Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| |
Collapse
|
9
|
Li X, Wei W, Tao L, Zeng J, Zhu Y, Yang T, Wang Q, Tang M, Liu Z, Yu L. Design, synthesis and biological evaluation of a new class of 7H-pyrrolo[2,3-d]pyrimidine derivatives as Mps1 inhibitors for the treatment of breast cancer. Eur J Med Chem 2022; 245:114887. [DOI: 10.1016/j.ejmech.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
|
10
|
Erol A. Genotoxicity-Stimulated and CYLD-Driven Malignant Transformation. Cancer Manag Res 2022; 14:2339-2356. [PMID: 35958947 PMCID: PMC9362849 DOI: 10.2147/cmar.s373557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress, which can cause DNA damage, can both activate TNF-R1 directly in the absence of TNF stimulation and phosphorylate c-Abl, thus promoting its cytoplasmic translocation. Persistent cytoplasmic localization of c-Abl has been associated with cellular transformation. c-Abl phosphorylates OTULIN at tyrosine 56, thereby disrupting its relationship with LUBAC. OTULIN-released LUBAC interacts with SPATA2 and is recruited to the TNF-R1sc, facilitating SPATA2-CYLD interaction. All these interactions are required for the activation of IKKβ to stimulate NF-κB transcriptional activity following genotoxic stress. IKKβ also induces the critical phosphorylation of CYLD at serine 568 to increase its deubiquitinating (DUB) activity required for the termination of signaling cascades. Contrary to the widespread belief that CYLD is an absolute tumor suppressor, CYLD initiates and terminates NF-κB activity by alternately using its oncoprotein and tumor suppressor activities, respectively. If IKKβ fails to achieve the DUB activity-inducing phosphorylation at serine 568, CYLD would operate in a sustained mode of oncogenic activity. The resulting dysregulated NF-κB activation and other accompanying pathologies will disrupt cellular homeostasis in favor of transformation.
Collapse
Affiliation(s)
- Adnan Erol
- Independent Researcher, Istanbul, Turkey
| |
Collapse
|
11
|
Yu J, Gao G, Wei X, Wang Y. TTK Protein Kinase promotes temozolomide resistance through inducing autophagy in glioblastoma. BMC Cancer 2022; 22:786. [PMID: 35850753 PMCID: PMC9290216 DOI: 10.1186/s12885-022-09899-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Temozolomide (TMZ) resistance remains the main therapy challenge in patients with glioblastoma multiforme (GBM). TTK Protein Kinase (TTK) contributes to the radioresistance and chemoresistance in many malignancies. However, the role of TTK in the TMZ resistance of GBM cells remains unknown. Methods The expression of TTK was measured by western blot. The proliferation of GBM cells was assessed through MTT assay and clonogenic assay. Cell apoptosis was evaluated using western blot. LC3B puncta were detected using immunohistochemistry staining. The mouse xenograft model was used to investigate the role of TTK in vivo. Results Knockdown of TTK increased the sensitivity of GBM cells to TMZ treatment, while overexpression of TTK induced TMZ resistance. Two specific TTK inhibitors, BAY-1217389 and CFI-402257, significantly inhibited GBM cell proliferation and improved the growth-suppressive effect of TMZ. In addition, the knockdown of TTK decreased the autophagy levels of GBM cells. Inhibition of TTK using specific inhibitors could also suppress the autophagy process. Blocking autophagy using chloroquine (CQ) abolished the TMZ resistance function of TTK in GBM cells and in the mouse model. Conclusions We demonstrated that TTK promotes the TMZ resistance of GBM cells by inducing autophagy in vitro and in vivo. The use of a TTK inhibitor in combination with TMZ might help to overcome TMZ resistance and improve therapy efficiency in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09899-1.
Collapse
Affiliation(s)
- Jian Yu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Xiangpin Wei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China.
| |
Collapse
|
12
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
13
|
Waenphimai O, Mahalapbutr P, Vaeteewoottacharn K, Wongkham S, Sawanyawisuth K. Multiple actions of NMS-P715, the monopolar spindle 1 (MPS1) mitotic checkpoint inhibitor in liver fluke-associated cholangiocarcinoma cells. Eur J Pharmacol 2022; 922:174899. [PMID: 35337815 DOI: 10.1016/j.ejphar.2022.174899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
AIM NMS-P715 is a potent inhibitor of monopolar spindle 1 (MPS1) mitotic checkpoint kinase. Overexpression of MPS1 is associated with short survival times in patients with cholangiocarcinoma (CCA). This study investigated the anti-cancer effects of NMS-P715 in human CCA cell lines. MAIN METHODS KKU-100 and KKU-213A CCA cell lines were treated with NMS-P715 and cell viability was determined using MTT and colony formation assays. Inhibitory effects of NMS-P715 on cell cycle and apoptosis were evaluated using flow cytometry. Expression of underlying mechanism-related proteins was examined by Western blotting. Mitotic catastrophe was assessed by counting abnormal nuclei. Transwell assays were used to examine cell migration and invasion. KEY FINDINGS Molecular docking showed that the NMS-P715/MPS1 complex was driven by an induced-fit mechanism. We provide new evidence that NMS-P715 potently inhibited cell proliferation and colony formation in both CCA cell lines. This was accompanied by induction of G2/M arrest and the consequent induction of mitotic catastrophe, a process that occurs during defective mitosis. The recent study showed that NMS-P715 activated caspase-dependent apoptosis and autophagosome formation with an increase of LC3 A/B-II protein expression in CCA cell lines. NMS-P715 also greatly impeded cell migration and invasion in CCA cell lines. The combination of NMS-P715 and gemcitabine or cisplatin showed synergistic effects on CCA cell proliferation. SIGNIFICANCE This study revealed for the first time that NMS-P715 is a promising candidate for combating CCA owing via multiple actions and may be suitable for further development in a clinical study.
Collapse
Affiliation(s)
- Orawan Waenphimai
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
14
|
Chen K, Xing J, Yu W, Xia Y, Zhang Y, Cheng F, Rao T. Identification and Validation of Hub Genes Associated with Bladder Cancer by Integrated Bioinformatics and Experimental Assays. Front Oncol 2022; 11:782981. [PMID: 34988018 PMCID: PMC8721040 DOI: 10.3389/fonc.2021.782981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is the most common malignant tumor of the urinary system and is associated with high morbidity and mortality; however, the molecular mechanism underlying its occurrence is not clear. In this study, the gene expression profile and related clinical information of GSE13507 were downloaded from the Gene Expression Omnibus (GEO) database. RNA sequencing (RNA-seq) expression data and related clinical information were retrieved from The Cancer Genome Atlas (TCGA) database. Overlapping genes were identified by differential gene expression analysis and weighted gene co-expression network analysis (WGCNA). Then, we carried out functional enrichment analysis to understand the potential biological functions of these co-expressed genes. Finally, we performed a protein-protein interaction (PPI) analysis combined with survival analysis. Using the CytoHubba plug-in of Cytoscape, TROAP, CENPF, PRC1, AURKB, CCNB2, CDC20, TTK, CEP55, ASPM, and CDCA8 were identified as candidate central genes. According to the survival analysis, the high expression of TTK was related to the poor overall survival (OS) of patients with BC. TTK may also affect the bladder tumor microenvironment (TME) by affecting the number of immune cells. The expression level of TTK was verified by immunohistochemistry (IHC) and real-time quantitative polymerase chain reaction (RT-qPCR), and the tumor-promoting effect of TTK in BC cells was confirmed in vitro. Our results also identified the MSC-AS1/hsa-miR-664b-3p/TTK regulatory axis, which may also play an important role in the progression of BC, but further research is needed to verify this result. In summary, our results provide a new idea for accurate early diagnosis, clinical treatment, and prognosis of BC.
Collapse
Affiliation(s)
- Kang Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji Xing
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunlong Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Qi G, Ma H, Li Y, Peng J, Chen J, Kong B. TTK inhibition increases cisplatin sensitivity in high-grade serous ovarian carcinoma through the mTOR/autophagy pathway. Cell Death Dis 2021; 12:1135. [PMID: 34876569 PMCID: PMC8651821 DOI: 10.1038/s41419-021-04429-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy. However, the molecular mechanisms underlying HGSOC development, progression, chemotherapy insensitivity and resistance remain unclear. Two independent GEO datasets, including the gene expression profile of primary ovarian carcinoma and normal controls, were analyzed to identify genes related to HGSOC development and progression. A KEGG pathway analysis of the differentially expressed genes (DEGs) revealed that the cell cycle pathway was the most enriched pathway, among which TTK protein kinase (TTK) was the only gene with a clinical-grade inhibitor that has been investigated in a clinical trial but had not been studied in HGSOC. TTK was also upregulated in cisplatin-resistant ovarian cancer cells from two other datasets. TTK is a regulator of spindle assembly checkpoint signaling, playing an important role in cell cycle control and tumorigenesis in various cancers. However, the function and regulatory mechanism of TTK in HGSOC remain to be determined. In this study, we observed TTK upregulation in patients with HGSOC. High TTK expression was related to a poor prognosis. Genetic and pharmacological inhibition of TTK impeded the proliferation of ovarian cancer cells by disturbing cell cycle progression and increasing apoptosis. TTK silencing increased cisplatin sensitivity by activating the mammalian target of rapamycin (mTOR) complex to further suppress cisplatin-induced autophagy in vitro. In addition, the enhanced sensitivity was partially diminished by rapamycin-mediated inhibition of mTOR in TTK knockdown cells. Furthermore, TTK knockdown increased the toxicity of cisplatin in vivo by decreasing autophagy. These findings suggest that the administration of TTK inhibitors in combination with cisplatin may lead to improved response rates to cisplatin in patients with HGSOC presenting high TTK expression. In summary, our study may provide a theoretical foundation for using the combination therapy of cisplatin and TTK inhibitors as a treatment for HGSOC in the future.
Collapse
Affiliation(s)
- Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Jingying Chen
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China.
| |
Collapse
|
16
|
Edwards DM, Speers C, Wahl DR. Targeting Noncanonical Regulators of the DNA Damage Response to Selectively Overcome Cancer Radiation Resistance. Semin Radiat Oncol 2021; 32:64-75. [PMID: 34861997 DOI: 10.1016/j.semradonc.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Donna M Edwards
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; Department of Radiation Oncology, Rogel Cancer Center, Ann Arbor, MI
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; Department of Radiation Oncology, Rogel Cancer Center, Ann Arbor, MI
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; Department of Radiation Oncology, Rogel Cancer Center, Ann Arbor, MI.
| |
Collapse
|
17
|
Studies of Interaction Mechanism between Pyrido [3,4- d] Pyrimidine Inhibitors and Mps1. Molecules 2021; 26:molecules26165075. [PMID: 34443663 PMCID: PMC8401005 DOI: 10.3390/molecules26165075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022] Open
Abstract
Monopolar spindle 1 (Mps1), a dual-specific kinase, is related to the proper execution of chromosome biorientation and mitotic checkpoint signaling. The overexpression of Mps1 promotes the occurrence of cancer or the survival of aneuploid cancer cells, in other words, the reduction of Mps1 will severely reduce the viability of human cancer cells. Therefore, Mps1 is a potential target for cancer treatment. Recently, a series of novel pyrido [3,4-d] pyrimidine derivatives targeting Mps1 with high biological activity were synthesized. The crystal structure of Mps1 in complex with pyrido [3,4-d] pyrimidine derivatives was also reported, but there were no specific mechanism studies for this series of small molecule inhibitors. In this study, complexes binding modes were probed by molecular docking and further validated by molecular dynamics simulations and the molecular mechanics/generalized Born surface area (MM/GBSA) method. The results indicated that the van der Waals interactions and the nonpolar solvation energies were responsible to the basis for favorable binding free energies, all inhibitors interacted with residues I531, V539, M602, C604, N606, I607, L654, I663, and P673 of Mps1. By analyzing the hydrogen bonds, we found the residues G605 and K529 in Mps1 formed stable hydrogen bonds with compounds, it was more conducive to activities of Mps1 inhibitors. According to the above analysis, we further designed five new compounds. We found that compounds IV and V were better potential Mps1 inhibitors through docking and ADMET prediction. The obtained new insights not only were helpful in understanding the binding mode of inhibitors in Mps1, but also provided important references for further rational design of Mps1 inhibitors.
Collapse
|
18
|
TTK inhibitor promotes radiosensitivity of liver cancer cells through p21. Biochem Biophys Res Commun 2021; 550:84-91. [PMID: 33689884 DOI: 10.1016/j.bbrc.2021.01.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 01/04/2023]
Abstract
The monopolar spindle 1 ((hMps1/TTK) is a serine/threonine kinase that plays an important role in spindle assembly checkpoint signaling. To explore the possible relationship between TTK inhibition and radiosensitivity, we examined whether TTK inhibition influences cellular susceptibility of radiation. And we further revealed its mechanisms. We found that the expression of TTK was obviously higher in liver cancer tissues compared to the normal liver tissues. Kaplan-Meier Plotter demonstrated that patients with low TTK expression levels had a longer overall survival than patients with high TTK expression levels. TTK inhibitor AZ3146 could simulated liver cancer cells to accumulate in the G2/M phase, which ultimately enhances DNA damage with more γ-H2AX foci and more apoptosis and necrosis induced by radiation, which prompted that TTK inhibition sensitized liver cancer cells to radiation. In addition, TTK inhibition altered cell-cycle progression and exacerbated centrosome abnormalities, resulting in enhanced mitotic catastrophe (MC) induced by radiation in a p21-mediated manner. In this study, we present evidences that the TTK inhibitor promotes the radiosensitivity of liver cancer cells through regulating cell cycle in p21-mediated manner in vitro, indicating that TTK inhibitor may be an attractive radiosensitizer for the patients with liver cancer.
Collapse
|
19
|
Huang M, Huang Y, Guo J, Yu L, Chang Y, Wang X, Luo J, Huang Y, Tu Z, Lu X, Xu Y, Zhang Z, Zhang Z, Ding K. Pyrido[2, 3-d]pyrimidin-7(8H)-ones as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors. Eur J Med Chem 2020; 211:113023. [PMID: 33248853 DOI: 10.1016/j.ejmech.2020.113023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 11/10/2020] [Indexed: 01/12/2023]
Abstract
A series of pyrido [2, 3-d]pyrimidin-7(8H)-ones were designed and synthesized as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors. One of the representative compounds, 5o, exhibited strong binding affinity with a Kd value of 0.15 nM, but was significantly less potent against a panel of 402 wild-type kinases at 100 nM. The compound also potently inhibited the kinase activity of TTK with an IC50 value of 23 nM, induced chromosome missegregation and aneuploidy, and suppressed proliferation of a panel of human cancer cell lines with low μM IC50 values. Compound 5o demonstrated good oral pharmacokinetic properties with a bioavailability value of 45.3% when administered at a dose of 25 mg/kg in rats. Moreover, a combination therapy of 5o with paclitaxel displayed promising in vivo efficacy against the HCT-116 human colon cancer xenograft model in nude mice with a Tumor Growth Inhibition (TGI) value of 78%. Inhibitor 5o may provide a new research tool for further validating therapeutic potential of TTK inhibition.
Collapse
Affiliation(s)
- Minhao Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Yongjun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lei Yu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yu Chang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaolu Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Yanhui Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zhengchao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yong Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zhimin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
20
|
Simon Serrano S, Sime W, Abassi Y, Daams R, Massoumi R, Jemaà M. Inhibition of mitotic kinase Mps1 promotes cell death in neuroblastoma. Sci Rep 2020; 10:11997. [PMID: 32686724 PMCID: PMC7371706 DOI: 10.1038/s41598-020-68829-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
Neuroblastoma is the most common paediatric cancer type. Patients diagnosed with high-risk neuroblastoma have poor prognosis and occasionally tumours relapse. As a result, novel treatment strategies are needed for relapse and refractory neuroblastoma patients. Here, we found that high expression of Mps1 kinase (mitotic kinase Monopolar Spindle 1) was associated with relapse-free neuroblastoma patient outcomes and poor overall survival. Silencing and inhibition of Mps1 in neuroblastoma or PDX-derived cells promoted cell apoptosis via the caspase-dependent mitochondrial apoptotic pathway. The mechanism of cell death upon Mps1 inhibition was dependent on the polyploidization/aneuploidization of the cells before undergoing mitotic catastrophe. Furthermore, tumour growth retardation was confirmed in a xenograft mouse model after Mps1-inhibitor treatment. Altogether, these results suggest that Mps1 expression and inhibition can be considered as a novel prognostic marker as well as a therapeutic strategy for the treatment of high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Sonia Simon Serrano
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Wondossen Sime
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Yasmin Abassi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Renée Daams
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden.
| | - Mohamed Jemaà
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden.
| |
Collapse
|
21
|
Monopolar Spindle 1 Kinase (MPS1/TTK) mRNA Expression is Associated with Earlier Development of Clinical Symptoms, Tumor Aggressiveness and Survival of Glioma Patients. Biomedicines 2020; 8:biomedicines8070192. [PMID: 32635204 PMCID: PMC7399822 DOI: 10.3390/biomedicines8070192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022] Open
Abstract
Inhibition of the protein kinase MPS1, a mitotic spindle-checkpoint regulator, reinforces the effects of multiple therapies against glioblastoma multiforme (GBM) in experimental settings. We analyzed MPS1 mRNA-expression in gliomas WHO grade II, III and in clinical subgroups of GBM. Data were obtained by qPCR analysis of tumor and healthy brain specimens and correlated with the patients’ clinical data. MPS1 was overexpressed in all gliomas on an mRNA level (ANOVA, p < 0.01) and correlated with tumor aggressiveness. We explain previously published conflicting results on survival: high MPS1 was associated with poorer long term survival when all gliomas were analyzed combined in one group (Cox regression: t < 24 months, p = 0.009, Hazard ratio: 8.0, 95% CI: 1.7–38.4), with poorer survival solely in low-grade gliomas (LogRank: p = 0.02, Cox regression: p = 0.06, Hazard-Ratio: 8.0, 95% CI: 0.9–66.7), but not in GBM (LogRank: p > 0.05). This might be due to their lower tumor volume at the therapy start. GBM patients with high MPS1 mRNA-expression developed clinical symptoms at an earlier stage. This, however, did not benefit their overall survival, most likely due to the more aggressive tumor growth. Since MPS1 mRNA-expression in gliomas was enhanced with increasing tumor aggressiveness, patients with the worst outcome might benefit best from a treatment directed against MPS1.
Collapse
|
22
|
Chandler BC, Moubadder L, Ritter CL, Liu M, Cameron M, Wilder-Romans K, Zhang A, Pesch AM, Michmerhuizen AR, Hirsh N, Androsiglio M, Ward T, Olsen E, Niknafs YS, Merajver S, Thomas DG, Brown PH, Lawrence TS, Nyati S, Pierce LJ, Chinnaiyan A, Speers C. TTK inhibition radiosensitizes basal-like breast cancer through impaired homologous recombination. J Clin Invest 2020; 130:958-973. [PMID: 31961339 PMCID: PMC6994133 DOI: 10.1172/jci130435] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Increased rates of locoregional recurrence are observed in patients with basal-like breast cancer (BC) despite the use of radiation therapy (RT); therefore, approaches that result in radiosensitization of basal-like BC are critically needed. Using patients' tumor gene expression data from 4 independent data sets, we correlated gene expression with recurrence to find genes significantly correlated with early recurrence after RT. The highest-ranked gene, TTK, was most highly expressed in basal-like BC across multiple data sets. Inhibition of TTK by both genetic and pharmacologic methods enhanced radiosensitivity in multiple basal-like cell lines. Radiosensitivity was mediated, at least in part, through persistent DNA damage after treatment with TTK inhibition and RT. Inhibition of TTK impaired homologous recombination (HR) and repair efficiency, but not nonhomologous end-joining, and decreased the formation of Rad51 foci. Reintroduction of wild-type TTK rescued both radioresistance and HR repair efficiency after TTK knockdown; however, reintroduction of kinase-dead TTK did not. In vivo, TTK inhibition combined with RT led to a significant decrease in tumor growth in both heterotopic and orthotopic, including patient-derived xenograft, BC models. These data support the rationale for clinical development of TTK inhibition as a radiosensitizing strategy for patients with basal-like BC, and efforts toward this end are currently underway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dafydd G. Thomas
- Rogel Cancer Center
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Powel H. Brown
- Department of Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Shyam Nyati
- Department of Radiation Oncology
- Rogel Cancer Center
| | | | - Arul Chinnaiyan
- Rogel Cancer Center
- Michigan Center for Translation Pathology
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Corey Speers
- Department of Radiation Oncology
- Rogel Cancer Center
- Cancer Biology Program
| |
Collapse
|
23
|
Nguyen P, Shukla S, Liu R, Abbineni G, Smart DK. Sirt2 Regulates Radiation-Induced Injury. Radiat Res 2019; 191:398-412. [PMID: 30835165 DOI: 10.1667/rr15282.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sirtuin 2 (SIRT2) plays a major role in aging, carcinogenesis and neurodegeneration. While it has been shown that SIRT2 is a mediator of stress-induced cell death, the mechanism remains unclear. In this study, we report the role of SIRT2 in mediating radiation-induced cell death and DNA damage using mouse embryonic fibroblasts (MEFs), progenitor cells and tissues from Sirt2 wild-type and genomic knockout mice, and human tumor and primary cell lines as models. The presence of Sirt2 in cells and tissues significantly enhanced the cell's sensitivity to radiation-induced cytotoxicity by delaying the dispersion of radiation-induced γ-H2AX and 53BP1 foci. This enhanced cellular radiosensitivity correlated with reduced expression of pro-survival and DNA repair proteins, and decreased DNA repair capacities involving both homologous repair and non-homologous end joining DNA repair mechanisms compared to those in Sirt2 knockout (KO) and knockdown (KD) phenotypes. Together, these data suggest SIRT2 plays a critical role in mediating the radiation-induced DNA damage response, thus regulating radiation-induced cell death and survival.
Collapse
Affiliation(s)
- Phuongmai Nguyen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sudhanshu Shukla
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ryan Liu
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gopal Abbineni
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - DeeDee K Smart
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
TTK promotes mesenchymal signaling via multiple mechanisms in triple negative breast cancer. Oncogenesis 2018; 7:69. [PMID: 30206215 PMCID: PMC6133923 DOI: 10.1038/s41389-018-0077-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/16/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormal expression of TTK kinase has been associated with the initiation, progression, and therapeutic resistance of breast and other cancers, but its roles remain to be clarified. In this study, we examined the role of TTK in triple negative breast cancer (TNBC), and found that higher TTK expression correlated with mesenchymal and proliferative phenotypes in TNBC cells. Pharmacologic inhibition and genomic silencing of TTK not only reversed the epithelial-to-mesenchymal transition (EMT) in TNBC cells, but also increased the expression of KLF5, an effector of TGF-β signaling and inhibitor of EMT. In addition, TTK inhibition decreased the expression of EMT-associated micro-RNA miR-21 but increased the expression of miR-200 family members and suppressed TGF-β signaling. To test if upregulation of KLF5 plays a role in TTK-induced EMT, TTK and KLF5 were silenced simultaneously, which reversed the decreased EMT caused by loss of TTK. Consistently, the decrease in miR-21 expression and increase in miR-200 expression caused by TTK silencing were rescued by loss of KLF5. Altogether, this study highlights a novel role and signaling pathway for TTK in regulating EMT of TN breast cancer cells through TGF-β and KLF5 signaling, highlighting targetable signaling pathways for TTK inhibitors in aggressive breast cancer.
Collapse
|
25
|
Abstract
This review by Levine and Holland reviews the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. They discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy and survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically. Mitosis is a delicate event that must be executed with high fidelity to ensure genomic stability. Recent work has provided insight into how mitotic errors shape cancer genomes by driving both numerical and structural alterations in chromosomes that contribute to tumor initiation and progression. Here, we review the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. We discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy. Finally, we survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically.
Collapse
Affiliation(s)
- Michelle S Levine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
26
|
Li H, Cui Y, Li F, Shi W, Gao W, Wang X, Zeng Q. Measuring the lactate-to-creatine ratio via 1H NMR spectroscopy can be used to noninvasively evaluate apoptosis in glioma cells after X-ray irradiation. Cell Mol Biol Lett 2018; 23:27. [PMID: 29946338 PMCID: PMC6003206 DOI: 10.1186/s11658-018-0092-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Radiotherapy is among the commonly applied treatment options for glioma, which is one of the most common types of primary brain tumor. To evaluate the effect of radiotherapy noninvasively, it is vital for oncologists to monitor the effects of X-ray irradiation on glioma cells. Preliminary research had showed that PKC-ι expression correlates with tumor cell apoptosis induced by X-ray irradiation. It is also believed that the lactate-to-creatine (Lac/Cr) ratio can be used as a biomarker to evaluate apoptosis in glioma cells after X-ray irradiation. In this study, we evaluated the relationships between the Lac/Cr ratio, apoptotic rate, and protein kinase C iota (PKC-ι) expression in glioma cells. METHODS Cells of the glioma cell lines C6 and U251 were randomly divided into 4 groups, with every group exposed to X-ray irradiation at 0, 1, 5, 10 and 15 Gy. Single cell gel electrophoresis (SCGE) was conducted to evaluate the DNA damage. Flow cytometry was performed to measure the cell cycle blockage and apoptotic rates. Western blot analysis was used to detect the phosphorylated PKC-ι (p-PKC-ι) level. 1H NMR spectroscopy was employed to determine the Lac/Cr ratio. RESULTS The DNA damage increased in a radiation dose-dependent manner (p < 0.05). With the increase in X-ray irradiation, the apoptotic rate also increased (C6, p < 0.01; U251, p < 0.05), and the p-PKC-ι level decreased (C6, p < 0.01; U251, p < 0.05). The p-PKC-ι level negatively correlated with apoptosis, whereas the Lac/Cr ratio positively correlated with the p-PKC-ι level. CONCLUSION The Lac/Cr ratio decreases with an increase in X-ray irradiation and thus can be used as a biomarker to reflect the effects of X-ray irradiation in glioma cells.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Radiology, the Second Hospital of Shandong University, Jinan, China
| | - Yi Cui
- Department of Radiology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Fuyan Li
- Department of Radiology, Shandong Medical Imaging Research Institute, Jinan, China
| | - Wenqi Shi
- Department of Radiology, the Third Affiliated Hospital, Sun Yat- Sen University, Guangzhou, China
| | - Wenjing Gao
- Department of Radiology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Xiao Wang
- Department of Radiology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| | - Qingshi Zeng
- Department of Radiology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 China
| |
Collapse
|
27
|
Zhu D, Xu S, Deyanat-Yazdi G, Peng SX, Barnes LA, Narla RK, Tran T, Mikolon D, Ning Y, Shi T, Jiang N, Raymon HK, Riggs JR, Boylan JF. Synthetic Lethal Strategy Identifies a Potent and Selective TTK and CLK1/2 Inhibitor for Treatment of Triple-Negative Breast Cancer with a Compromised G 1-S Checkpoint. Mol Cancer Ther 2018; 17:1727-1738. [PMID: 29866747 DOI: 10.1158/1535-7163.mct-17-1084] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/13/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
Abstract
Historically, phenotypic-based drug discovery has yielded a high percentage of novel drugs while uncovering new tumor biology. CC-671 was discovered using a phenotypic screen for compounds that preferentially induced apoptosis in triple-negative breast cancer cell lines while sparing luminal breast cancer cell lines. Detailed in vitro kinase profiling shows CC-671 potently and selectively inhibits two kinases-TTK and CLK2. Cellular mechanism of action studies demonstrate that CC-671 potently inhibits the phosphorylation of KNL1 and SRp75, direct TTK and CLK2 substrates, respectively. Furthermore, CC-671 causes mitotic acceleration and modification of pre-mRNA splicing leading to apoptosis, consistent with cellular TTK and CLK inhibition. Correlative analysis of genomic and potency data against a large panel of breast cancer cell lines identifies breast cancer cells with a dysfunctional G1-S checkpoint as more sensitive to CC-671, suggesting synthetic lethality between G1-S checkpoint and TTK/CLK2 inhibition. Furthermore, significant in vivo CC-671 efficacy was demonstrated in two cell line-derived and one patient tumor-derived xenograft models of triple-negative breast cancer (TNBC) following weekly dosing. These findings are the first to demonstrate the unique inhibitory combination activity of a dual TTK/CLK2 inhibitor that preferably kills TNBC cells and shows synthetic lethality with a compromised G1-S checkpoint in breast cancer cell lines. On the basis of these data, CC-671 was moved forward for clinical development as a potent and selective TTK/CLK2 inhibitor in a subset of patients with TNBC. Mol Cancer Ther; 17(8); 1727-38. ©2018 AACR.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Oncology Research, Celgene Corporation, San Diego, California.
| | - Shuichan Xu
- Department of Oncology Research, Celgene Corporation, San Diego, California
| | | | - Sophie X Peng
- Department of Pharmacology, Celgene Corporation, San Diego, California
| | - Leo A Barnes
- Department of Pharmacology, Celgene Corporation, San Diego, California
| | | | - Tam Tran
- Department of Oncology Research, Celgene Corporation, San Diego, California
| | - David Mikolon
- Department of Oncology Research, Celgene Corporation, San Diego, California
| | - Yuhong Ning
- Informatics and Knowledge Utilization Department, Celgene Corporation, San Diego, California
| | - Tao Shi
- Informatics and Knowledge Utilization Department, Celgene Corporation, San Diego, California
| | - Ning Jiang
- Department of Oncology Research, Celgene Corporation, San Diego, California
| | - Heather K Raymon
- Department of Pharmacology, Celgene Corporation, San Diego, California
| | - Jennifer R Riggs
- Department of Chemistry, Celgene Corporation, San Diego, California
| | - John F Boylan
- Department of Oncology Research, Celgene Corporation, San Diego, California
| |
Collapse
|
28
|
Maachani UB, Shankavaram U, Kramp T, Tofilon PJ, Camphausen K, Tandle AT. FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells. Oncotarget 2018; 7:77365-77377. [PMID: 27764801 PMCID: PMC5340228 DOI: 10.18632/oncotarget.12670] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/28/2016] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) continues to be the most frequently diagnosed and lethal primary brain tumor. Adjuvant chemo-radiotherapy remains the standard of care following surgical resection. In this study, using reverse phase protein arrays (RPPAs), we assessed the biological effects of radiation on signaling pathways to identify potential radiosensitizing molecular targets. We identified subsets of proteins with clearly concordant/discordant behavior between irradiated and non-irradiated GBM cells in vitro and in vivo. Moreover, we observed high expression of Forkhead box protein M1 (FOXM1) in irradiated GBM cells both in vitro and in vivo. Recent evidence of FOXM1 as a master regulator of metastasis and its important role in maintaining neural, progenitor, and GBM stem cells, intrigued us to validate it as a radiosensitizing target. Here we show that FOXM1 inhibition radiosensitizes GBM cells by abrogating genes associated with cell cycle progression and DNA repair, suggesting its role in cellular response to radiation. Further, we demonstrate that radiation induced stimulation of FOXM1 expression is dependent on STAT3 activation. Co-immunoprecipitation and co-localization assays revealed physical interaction of FOXM1 with phosphorylated STAT3 under radiation treatment. In conclusion, we hypothesize that FOXM1 regulates radioresistance via STAT3 in GBM cells. We also, show GBM patients with high FOXM1 expression have poor prognosis. Collectively our observations might open novel opportunities for targeting FOXM1 for effective GBM therapy.
Collapse
Affiliation(s)
- Uday B Maachani
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamalee Kramp
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita T Tandle
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Maachani UB, Tandle A, Shankavaram U, Kramp T, Camphausen K. Modulation of miR-21 signaling by MPS1 in human glioblastoma. Oncotarget 2018; 7:52912-52927. [PMID: 25991676 PMCID: PMC5288158 DOI: 10.18632/oncotarget.4143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/11/2015] [Indexed: 12/14/2022] Open
Abstract
Monopolar spindle 1 (MPS1) is an essential spindle assembly checkpoint (SAC) kinase involved in determining spindle integrity. Beyond its mitotic functions, it has been implicated in several other signaling pathways. Our earlier studies have elaborated on role of MPS1 in glioblastoma (GBM) radiosensitization. In this study using reverse phase protein arrays (RPPAs), we assessed MPS1 mediated cell signaling pathways and demonstrated that inhibiting MPS1 could upregulate the expression of the tumor suppressor PDCD4 and MSH2 genes, by down regulating micro RNA-21 (miR-21). In GBMs miR-21 expression is significantly elevated and is associated with chemo and radioresistance. Both MPS1 and miR-21 depletion suppressed GBM cell proliferation, whereas, ectopic expression of miR-21 rescued GBM cell growth from MPS1 inhibition. Further, we demonstrate that MPS1 mediates phosphorylation of SMAD3 but not SMAD2 in GBM cells; A possible mechanism behind miR-21 modulation by MPS1. Collectively, our results shed light onto an important role of MPS1 in TGF-β/SMAD signaling via miR-21 regulation. We also, show the prognostic effect of miR-21, PDCD4 and MSH2 levels to patient survival across different GBM molecular subtypes. This scenario in which miR-21 is modulated by MPS1 inhibition may be exploited as a potential target for effective GBM therapy.
Collapse
Affiliation(s)
- Uday B Maachani
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita Tandle
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamalee Kramp
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Lee M, Rivera-Rivera Y, Moreno CS, Saavedra HI. The E2F activators control multiple mitotic regulators and maintain genomic integrity through Sgo1 and BubR1. Oncotarget 2017; 8:77649-77672. [PMID: 29100415 PMCID: PMC5652806 DOI: 10.18632/oncotarget.20765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/14/2017] [Indexed: 02/01/2023] Open
Abstract
The E2F1, E2F2, and E2F3a transcriptional activators control proliferation. However, how the E2F activators regulate mitosis to maintain genomic integrity is unclear. Centrosome amplification (CA) and unregulated spindle assembly checkpoint (SAC) are major generators of aneuploidy and chromosome instability (CIN) in cancer. Previously, we showed that overexpression of single E2F activators induced CA and CIN in mammary epithelial cells, and here we show that combined overexpression of E2F activators did not enhance CA. Instead, the E2F activators elevated expression of multiple mitotic regulators, including Sgo1, Nek2, Hec1, BubR1, and Mps1/TTK. cBioPortal analyses of the TCGA database showed that E2F overexpression in lobular invasive breast tumors correlates with overexpression of multiple regulators of chromosome segregation, centrosome homeostasis, and the SAC. Kaplan-Meier plots identified correlations between individual or combined overexpression of E2F1, E2F3a, Mps1/TTK, Nek2, BubR1, or Hec1 and poor overall and relapse-free survival of breast cancer patients. In MCF10A normal mammary epithelial cells co-overexpressing E2Fs, transient Sgo1 knockdown induced CA, high percentages of premature sister chromatid separation, chromosome losses, increased apoptosis, and decreased cell clonogenicity. BubR1 silencing resulted in chromosome losses without CA, demonstrating that Sgo1 and BubR1 maintain genomic integrity through two distinct mechanisms. Our results suggest that deregulated activation of the E2Fs in mammary epithelial cells is counteracted by activation of a Sgo1-dependent mitotic checkpoint.
Collapse
Affiliation(s)
- Miyoung Lee
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Program of Pharmacology, Ponce Health Sciences University-School of Medicine/Ponce Research Institute, Ponce, 00716-2348 Puerto Rico
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Program of Pharmacology, Ponce Health Sciences University-School of Medicine/Ponce Research Institute, Ponce, 00716-2348 Puerto Rico
| |
Collapse
|
31
|
Xie Y, Lin JZ, Wang AQ, Xu WY, Long JY, Luo YF, Shi J, Liang ZY, Sang XT, Zhao HT. Threonine and tyrosine kinase may serve as a prognostic biomarker for gallbladder cancer. World J Gastroenterol 2017; 23:5787-5797. [PMID: 28883705 PMCID: PMC5569294 DOI: 10.3748/wjg.v23.i31.5787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of threonine and tyrosine kinase (TTK) in gallbladder cancer (GBC) specimens and analyze the associations between TTK expression and clinicopathological parameters and clinical prognosis.
METHODS A total of 68 patients with GBC who underwent surgical resection were enrolled in this study. The expression of TTK in GBC tissues was detected by immunohistochemistry. The assessment of TTK expression was conducted using the H-scoring system. H-score was calculated by the multiplication of the overall staining intensity with the percentage of positive cells. The expression of TTK in the cytoplasm and nucleus was scored separately to achieve respective H-score values. The correlations between TTK expression and clinicopathological parameters and clinical prognosis were analyzed using Chi-square test, Kaplan-Meier method and Cox regression.
RESULTS In both the nucleus and cytoplasm, the expression of TTK in tumor tissues was significantly lower than that in normal tissues (P < 0.001 and P = 0.026, respectively). Using the median H-score as the cutoff value, it was discovered that, GBC patients with higher levels of TTK expression in the nucleus, but not the cytoplasm, had favorable overall survival (P < 0.001), and it was still statistically meaningful in Cox regression analysis. Further investigation indicated that there were close negative correlations between TTK expression and tumor differentiation (P = 0.041), CA 19-9 levels (P = 0.016), T stage (P < 0.001), nodal involvement (P < 0.001), distant metastasis (P = 0.024) and TNM stage (P < 0.001).
CONCLUSION The expression of TTK in GBC is lower than that in normal tissues. Higher levels of TTK expression in GBC are concomitant with longer overall survival. TTK is a favorable prognostic biomarker for patients with GBC.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jian-Zhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - An-Qiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei-Yu Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jun-Yu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu-Feng Luo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
32
|
Zhang J, Jiang Y, Zhao Y, Wang W, Xie Y, Wang H, Yang Y. Downregulation of tyrosine threonine kinase inhibits tumor growth via G2/M arrest in human endometrioid endometrial adenocarcinoma. Tumour Biol 2017; 39:1010428317712444. [PMID: 28718377 DOI: 10.1177/1010428317712444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy, about 80% of which is endometrial endometrioid carcinoma. Dysregulation of spindle assembly checkpoint plays a vital role in endometrial endometrioid carcinoma tumorigenesis and progression. The purpose of this study was to explore how tyrosine threonine kinase, a spindle assembly checkpoint-related protein, promotes the endometrial endometrioid carcinoma progression. We found that both messenger RNA and protein levels of tyrosine threonine kinase in endometrial endometrioid carcinoma tissues are higher than those in normal endometrial tissues, and its expression is associated with tumor stages. Genetic depletion of tyrosine threonine kinase by RNA interference in two endometrial endometrioid carcinoma cell lines significantly inhibits cell proliferation and induces apoptosis. Mechanistically, depletion of tyrosine threonine kinase induces G2/M cell cycle arrest and triggers caspase-dependent cell apoptosis. Collectively, tyrosine threonine kinase is significantly upregulated in endometrial endometrioid carcinoma, and downregulation of tyrosine threonine kinase can suppress endometrial endometrioid carcinoma cell proliferation and promote apoptosis via G2/M cell cycle arrest. Our study demonstrates that tyrosine threonine kinase can be a potential therapeutic target for endometrial endometrioid carcinoma treatment.
Collapse
Affiliation(s)
- Jiamiao Zhang
- 1 Reproductive Medicine Center of the Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Yan Jiang
- 2 Department of Obstetrics and Gynecology of The Zhong Kang Hospital in Zhengzhou, Zhengzhou, China
| | - Yu Zhao
- 3 Li Ka Shing Institute of Health Sciences and Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong
| | - Wanxue Wang
- 1 Reproductive Medicine Center of the Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Yiran Xie
- 1 Reproductive Medicine Center of the Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Huating Wang
- 3 Li Ka Shing Institute of Health Sciences and Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong
| | - Yihua Yang
- 1 Reproductive Medicine Center of the Affiliated Hospital, Guilin Medical University, Guilin, China
| |
Collapse
|
33
|
[Study on the expression of TRIP13 mRNA in chronic lymphocytic leukemia B lymphocyte and the molecular mechanism of TRIP13 mediated JVM-2 cell proliferation and apoptosis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:618-622. [PMID: 28810332 PMCID: PMC7342273 DOI: 10.3760/cma.j.issn.0253-2727.2017.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the clinical significance of expression level of thyroid hormone receptor interactors 13 (TRIP13) gene to probe its function and downstream molecular mechanism in chronic lymphocytic leukemia (CLL) . Methods: Real-time quantitative PCR method was used to detect the expression levels of TRIP13 mRNA of CD19(+) B lymphocytes in 30 cases of patients with CLL and 12 cases of peripheral blood hematopoietic stem cell donors (normal control group) . Lentivirus mediated shRNA was used to interference the mRNA and TRIP13 protein in CLL cells JVM-2. Scramble sequence was used as control. Methyl thiazolyl tetrazolium colorimetric assay (MTT) and flow cytometry was used to detect the cell proliferation and apoptosis in TRIP13 knocked-down and negative control JVM-2 cells. Results: TRIP13 mRNA level was significantly higher in 30 cases of CLL patients (2(-△Ct)= 0.014 89) compared with 12 healthy donors (2(-△Ct)= 0.000 19) (P<0.001) . Validated TRIP13 shRNA target was achieved in JVM2 cell. Compared with the control group, down-regulation of TRIP13 expression could significantly inhibit the proliferation of JVM-2 cells and induce apoptosis. The expressions of Myc and Bcl-2 protein in JVM-2 cells decreased significantly after interference with TRIP13 (P<0.001) , and the expressions of Bax, caspase 3 and Bad protein increased significantly (P<0.001) . Conclusion: TRIP13 mRNA significantly over-expressed in CLL patients CD19(+) B lymphocytes. TRIP13 could influence JVM2 cell proliferation and apoptosis through proliferation- and apoptosis-related proteins.
Collapse
|
34
|
Choi M, Min YH, Pyo J, Lee CW, Jang CY, Kim JE. TC Mps1 12, a novel Mps1 inhibitor, suppresses the growth of hepatocellular carcinoma cells via the accumulation of chromosomal instability. Br J Pharmacol 2017; 174:1810-1825. [PMID: 28299790 DOI: 10.1111/bph.13782] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Chromosomal instability is not only a hallmark of cancer but also an attractive therapeutic target. A diverse set of mitotic kinases maintains chromosomal stability. One of these is monopolar spindle 1 (Mps1, also known as TTK), which is essential for chromosome alignment and for the spindle assembly checkpoint (SAC). Pharmacological inhibition of Mps1 has been suggested as a cancer therapeutic; however, despite the existence of a novel Mps1 inhibitor, TC Mps1 12, no such studies have been performed. EXPERIMENTAL APPROACH The effects of TC Mps1 12 on cell viability, chromosome alignment, centrosome number, mitotic duration, apoptosis and SAC were determined in hepatocellular carcinoma (HCC) cells. In addition, the association of Mps1 expression with the overall survival of HCC patients was analysed. KEY RESULTS Treatment of human HCC cells with TC Mps1 12 led to chromosome misalignment and missegregation, and disorganization of centrosomes. Even in the presence of these errors, TC Mps1 12-treated cells overrode the SAC, resulting in a shortened mitotic duration and mitotic slippage. This mitotic catastrophe triggered apoptosis and, finally, inhibited the growth of HCC cells. In addition, the expression of the Mps1-encoding TTK gene was associated with poor overall survival of HCC patients. CONCLUSION AND IMPLICATIONS TC Mps1 12 results in the accumulation of chromosomal instabilities and mitotic catastrophe in HCC cells. Overall, these data demonstrate that the inhibition of Mps1 kinase using TC Mps1 12 is a promising therapeutic approach for liver cancer.
Collapse
Affiliation(s)
- Minji Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yoo Hong Min
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jaehyuk Pyo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang-Young Jang
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Genetic and pharmacological inhibition of TTK impairs pancreatic cancer cell line growth by inducing lethal chromosomal instability. PLoS One 2017; 12:e0174863. [PMID: 28380042 PMCID: PMC5381904 DOI: 10.1371/journal.pone.0174863] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma, which accounts for the majority of pancreatic cancers, is a lethal disease with few therapeutic options. Genomic profiling of pancreatic ductal adenocarcinoma has identified a complex and heterogeneous landscape. Understanding the molecular characteristics of pancreatic ductal adenocarcinoma will facilitate the identification of potential therapeutic strategies. We analyzed the gene expression profiles of primary tumors from patients compared to normal pancreas and identified high co-overexpression of core components of the spindle assembly checkpoint, including the protein kinase TTK (also known as MPS-1). We found overexpression of TTK protein in a subset of pancreatic ductal adenocarcinoma primary tumors and cell lines. siRNA-mediated depletion or catalytic inhibition of TTK resulted in an aberrant cell cycle profile, multi- and micro-nucleation, induction of apoptosis, and decreased cell proliferation and transformed growth. Selective catalytic inhibition of TTK caused override of the spindle assembly checkpoint-induced cell cycle arrest. Interestingly, we identified ubiquitin specific peptidase 16 (Usp16), an ubiquitin hydrolase, as a phosphorylation substrate of TTK. Usp16 regulates chromosomal condensation and G2/M progression by deubiquitinating histone H2A and polo-like kinase 1. Phosphomimetic mutants of Usp16 show enhanced proteosomal degradation and may prolong the G2/M transition allowing for correction of replication errors. Taken together, our results suggest a critical role for TTK in preventing aneuploidy-induced cell death in pancreatic cancer.
Collapse
|
36
|
Li H, Xu Y, Shi W, Li F, Zeng Q, Yi C. Assessment of alterations in X-ray irradiation-induced DNA damage of glioma cells by using proton nuclear magnetic resonance spectroscopy. Int J Biochem Cell Biol 2017; 84:109-118. [PMID: 28122253 DOI: 10.1016/j.biocel.2017.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 12/25/2022]
Abstract
Glioma is one of the most common types of brain tumors. DNA damage is closely associated with glioma cell apoptosis induced by X-ray irradiation. Alterations of metabolites in glioma can be detected noninvasively by proton nuclear magnetic resonance (1H NMR) spectroscopy. To noninvasively explore the micro mechanism in X-ray irradiation-induced apoptosis, the relationship between metabolites and DNA damage in glioma cells was investigated. Three glioma cell lines (C6, U87 and U251) were randomly designated as control (0Gy) and treatment groups (1, 5, 10, 15Gy). After X-ray exposure, each group was separated into four parts: (i) to detect metabolites by 1H NMR spectroscopy; (ii) to make cell colonies; (iii) to detect cell cycle distribution and apoptosis rate by flow cytometry; and (iv) to measure DNA damage by comet assay. The metabolite ratios of lactate/creatine and succinate/creatine decreased (lactate/creatine: C6, 22.17-66.27%; U87, 15.93-44.56%; U251, 26.27-74.48%. succinate/creatine: C6, 14.41-48.35%; U87, 22.03-70.62%; U251, 17.33-60.06%) and choline/creatine increased (C6, 52.22-389.68%; U87, 56.15-82.36%; U251, 31.87-278.62%) in the treatment groups compared with the control group (each P<0.05), which linearly depended on DNA damage. An increasing dose of X-ray irradiation increased numbers of apoptotic cells (P<0.01), and the DNA damage parameters were dose-dependent (P<0.05). The colony-forming rate declined (P<0.01) and the percentage of cells at G1 stage increased when exposed to 1Gy X-ray (three cell lines, P<0.05). Metabolite alterations detected by 1H NMR spectroscopy can be used to determine DNA damage induced by X-ray irradiation. 1H NMR spectroscopy is a noninvasive method to predict DNA damage of glioma cell at the micro level.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yanjie Xu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqi Shi
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fuyan Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qingshi Zeng
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Cui Yi
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
37
|
Xie Y, Wang A, Lin J, Wu L, Zhang H, Yang X, Wan X, Miao R, Sang X, Zhao H. Mps1/TTK: a novel target and biomarker for cancer. J Drug Target 2016; 25:112-118. [PMID: 27819146 DOI: 10.1080/1061186x.2016.1258568] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Monopolar spindle1 (Mps1, also known as TTK) is the core component of the spindle assembly checkpoint, which functions to ensure proper distribution of chromosomes to daughter cells. Mps1 is hardly detectable in normal organs except the testis and placenta. However, high levels of Mps1 are found in many types of human malignancies, including glioblastoma, thyroid carcinoma, breast cancer, and other cancers. Several Mps1 inhibitors can inhibit the proliferation of cancer cells and exhibit demonstrable survival benefits. Mps1 can be utilized as a new immunogenic epitope, which is able to induce potent cytotoxic T lymphocyte activity against cancer cells while sparing normal cells. Some clinical trials have validated its safety, immunogenicity and clinical response. Thus, Mps1 may be a novel target for cancer therapy. Mps1 is differentially expressed between normal and malignant tissues, indicating its potential as a molecular biomarker for diagnosis. Meanwhile, the discovery that it clearly correlates with recurrence and survival time suggests it may serve as an independent prognostic biomarker as well.
Collapse
Affiliation(s)
- Yuan Xie
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Anqiang Wang
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Jianzhen Lin
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Liangcai Wu
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Haohai Zhang
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Xiaobo Yang
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Xueshuai Wan
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Ruoyu Miao
- b Liver Center and The Transplant Institute, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Xinting Sang
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Haitao Zhao
- a Department of Liver Surgery , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| |
Collapse
|
38
|
Jemaà M, Manic G, Lledo G, Lissa D, Reynes C, Morin N, Chibon F, Sistigu A, Castedo M, Vitale I, Kroemer G, Abrieu A. Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition. Oncotarget 2016; 7:885-901. [PMID: 26637805 PMCID: PMC4808040 DOI: 10.18632/oncotarget.6432] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
Several lines of evidence indicate that whole-genome duplication resulting in tetraploidy facilitates carcinogenesis by providing an intermediate and metastable state more prone to generate oncogenic aneuploidy. Here, we report a novel strategy to preferentially kill tetraploid cells based on the abrogation of the spindle assembly checkpoint (SAC) via the targeting of TTK protein kinase (better known as monopolar spindle 1, MPS1). The pharmacological inhibition as well as the knockdown of MPS1 kills more efficiently tetraploid cells than their diploid counterparts. By using time-lapse videomicroscopy, we show that tetraploid cells do not survive the aborted mitosis due to SAC abrogation upon MPS1 depletion. On the contrary diploid cells are able to survive up to at least two more cell cycles upon the same treatment. This effect might reflect the enhanced difficulty of cells with whole-genome doubling to tolerate a further increase in ploidy and/or an elevated level of chromosome instability in the absence of SAC functions. We further show that MPS1-inhibited tetraploid cells promote mitotic catastrophe executed by the intrinsic pathway of apoptosis, as indicated by the loss of mitochondrial potential, the release of the pro-apoptotic cytochrome c from mitochondria, and the activation of caspases. Altogether, our results suggest that MPS1 inhibition could be used as a therapeutic strategy for targeting tetraploid cancer cells.
Collapse
Affiliation(s)
- Mohamed Jemaà
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| | | | - Gwendaline Lledo
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| | - Delphine Lissa
- Université Paris-Sud/Paris XI, Le Kremlin-Bicêtre, France.,INSERM, UMRS1138, Paris, France.,Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Christelle Reynes
- EA 2415, Laboratoire de Biostatistique, d'Epidémiologie et de Recherche Clinique, Université de Montpellier, Montpellier, France
| | - Nathalie Morin
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| | - Frédéric Chibon
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France.,INSERM U916, Bordeaux, France
| | | | - Maria Castedo
- Université Paris-Sud/Paris XI, Le Kremlin-Bicêtre, France.,INSERM, UMRS1138, Paris, France.,Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- INSERM, UMRS1138, Paris, France.,Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ariane Abrieu
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| |
Collapse
|
39
|
TRIP13 is expressed in colorectal cancer and promotes cancer cell invasion. Oncol Lett 2016; 12:5240-5246. [PMID: 28105232 DOI: 10.3892/ol.2016.5332] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/19/2016] [Indexed: 01/07/2023] Open
Abstract
Thyroid hormone receptor interactor 13 (TRIP13) is a member of the ATPases associated with various cellular activities family of proteins and is highly conserved in a wide range of species. Recent studies have demonstrated that TRIP13 is critical for the inactivation of the spindle assembly checkpoint and is associated with the progression of certain cancers. In the present study, the role of TRIP13 in colorectal cancer (CRC) was examined. Reverse transcription-quantitative polymerase chain reaction analysis revealed that TRIP13 messenger RNA was highly expressed in multiple CRC tissues. The depletion of TRIP13 in CRC cells suppressed cell proliferation, migration and invasion. To determine whether the catalytic activity of TRIP13 was critical for cancer progression, an inactive mutant of TRIP13 was expressed in CRC cells. The invasion of cancer cells that expressed the mutant TRIP13 was significantly reduced compared with that of the wild type TRIP13-expressing cancer cells. These results indicate that TRIP13 could be a potential target for CRC treatment.
Collapse
|
40
|
Knudsen KE. There and Back Again: The Middle Earth of DNA Repair. Mol Cancer Res 2016; 14:895-897. [PMID: 27742842 DOI: 10.1158/1541-7786.mcr-16-0298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/16/2022]
|
41
|
Difference Makers: Chromosomal Instability versus Aneuploidy in Cancer. Trends Cancer 2016; 2:561-571. [DOI: 10.1016/j.trecan.2016.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/26/2016] [Accepted: 09/01/2016] [Indexed: 01/06/2023]
|
42
|
Alimova I, Ng J, Harris P, Birks D, Donson A, Taylor MD, Foreman NK, Venkataraman S, Vibhakar R. MPS1 kinase as a potential therapeutic target in medulloblastoma. Oncol Rep 2016; 36:2633-2640. [PMID: 27633003 PMCID: PMC5055207 DOI: 10.3892/or.2016.5085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/27/2016] [Indexed: 12/23/2022] Open
Abstract
Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma.
Collapse
Affiliation(s)
- Irina Alimova
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - June Ng
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter Harris
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Diane Birks
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew Donson
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael D Taylor
- Division of Neurosurgery, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Makinde AY, Eke I, Aryankalayil MJ, Ahmed MM, Coleman CN. Exploiting Gene Expression Kinetics in Conventional Radiotherapy, Hyperfractionation, and Hypofractionation for Targeted Therapy. Semin Radiat Oncol 2016; 26:254-60. [PMID: 27619247 DOI: 10.1016/j.semradonc.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The dramatic changes in the technological delivery of radiation therapy, the repertoire of molecular targets for which pathway inhibitors are available, and the cellular and immunologic responses that can alter long-term clinical outcome provide a potentially unique role for using the radiation-inducible changes as therapeutic targets. Various mathematical models of dose and fractionation are extraordinarily useful in guiding treatment regimens. However, although the model may fit the clinical outcome, a deeper understanding of the molecular and cellular effect of the individual dose size and the adaptation to repeated exposure, called multifraction (MF) adaptation, may provide new therapeutic targets for use in combined modality treatments using radiochemotherapy and radioimmunotherapy. We discuss the potential of using different radiation doses and MF adaptation for targeting transcription factors, immune and inflammatory response, and cell "stemness." Given the complex genetic composition of tumors before treatment and their adaptation to drug treatment, innovative combinations using both the pretreatment molecular data and also the MF-adaptive response to radiation may provide an important role for focused radiation therapy as an integral part of precision medicine and immunotherapy.
Collapse
Affiliation(s)
- Adeola Y Makinde
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Iris Eke
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mansoor M Ahmed
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - C Norman Coleman
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
44
|
Tandle A, Camphausen K. Mitotic Protein Kinase 1: Role in Spindle Assembly Checkpoint Revisited. JOURNAL OF CANCER CLINICAL TRIALS 2016; 1:111. [PMID: 27885363 PMCID: PMC5119518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anita Tandle
- Corresponding author: Anita Tandle, Radiation Oncology Branch, National Cancer Institute Building 10, Room B3B100, Bethesda, MD 20892, USA, Tel: 301-443-4402; Fax: 301-480-1434;
| | | |
Collapse
|
45
|
Shankavaram U, Maachani UB, Zhao S, Camphausen K, Tandle A. Molecular profiling of MPS1 gene silencing in U251 glioma cell line. GENOMICS DATA 2015; 6:36-39. [PMID: 26392922 PMCID: PMC4573457 DOI: 10.1016/j.gdata.2015.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Aneuploidy has been recognized as a common characteristic of cancers. Aneuploidy frequently results from errors of the mitotic checkpoint, the major cell cycle control mechanism that acts to prevent chromosome missegregation. Mutation of the genes that control chromosome segregation during mitosis may explain the high rate of chromosomal instability and aneuploidy, a characteristic of most solid tumors, including glioblastoma (GBM) (Gordon et al., 2012 [1]; Singh et al., 2012 [2]). Monopolar spindle 1 (MPS1) is an essential spindle assembly checkpoint kinase that is overexpressed in several human cancers (Kilpinen et al., 2010 [3]; Mills et al., 1992 [4]; Yuan et al., 2006 [5]). In our previous publication, we have shown the role of MPS1 kinase in DNA repair and enhanced radiosensitivity in GBM (Maachani et al., 2015 [6]). Here, we provide methodological and analytical details of that study, to compare mRNA expression profile of siMPS1-silenced U251 cells with untransfected control, and siRNA control (siNeg) at 6, 24, and 48 h after transfection. The raw data of this study is deposited in Gene Expression Omnibus under the accession number GSE57091.
Collapse
Affiliation(s)
- Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Uday Bhanu Maachani
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shuping Zhao
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Anita Tandle
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|