1
|
Lu X, Lan X, Fu X, Li J, Wu M, Xiao L, Zeng Y. Screening Preeclampsia Genes and the Effects of CITED2 on Trophoblastic Function. Int J Gen Med 2024; 17:3493-3509. [PMID: 39161403 PMCID: PMC11330746 DOI: 10.2147/ijgm.s475310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose Preeclampsia (PE) is a serious complication of obstetrics and represents a significant challenge in terms of understanding its underlying mechanism. It has been shown that a number of disorders involve dysregulation of the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2). However, the relationship between PE and CITED2 is still mostly unclear. This work aimed to confirm the hub genes linked to PE and explore the roles of CITED2 in trophoblast using experimental and bioinformatic methods. Methods To determine the hub genes, bioinformatics research was performed on two datasets from the Gene Expression Omnibus (GEO) public database. Immune infiltration analysis and enrichment analysis were also used to identify the related pathways and immune cells. PCR and WB were then used to validate the mRNA and protein levels of CITED2 in the PE samples. Finally, the expression of CITED2 was knocked down using siRNA to investigate the function of CITED2 in trophoblast development in vitro. Results The study's findings showed that the NOTCH signaling pathways, glycolysis, and hypoxia were the main areas of enrichment for the six PE-related genes that were tested. The results of immune infiltration suggest that activated NK cells and regulatory T cells may play an important role in this process. CITED2 was significantly upregulated in the PE placenta. In functional tests, the knockdown of CITED2 may enhance apoptosis while suppressing migration, invasion, and proliferation of cells. Conclusion This study offers important proof that CITED2 influences trophoblast cell function and may one day be a therapeutic target for PE.
Collapse
Affiliation(s)
- Xiujing Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xi Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xiaoqian Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Jing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Min Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Lu Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yachang Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
2
|
Wiggins DA, Maxwell JN, Nelson DE. Exploring the role of CITED transcriptional regulators in the control of macrophage polarization. Front Immunol 2024; 15:1365718. [PMID: 38646545 PMCID: PMC11032013 DOI: 10.3389/fimmu.2024.1365718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Macrophages are tissue resident innate phagocytic cells that take on contrasting phenotypes, or polarization states, in response to the changing combination of microbial and cytokine signals at sites of infection. During the opening stages of an infection, macrophages adopt the proinflammatory, highly antimicrobial M1 state, later shifting to an anti-inflammatory, pro-tissue repair M2 state as the infection resolves. The changes in gene expression underlying these transitions are primarily governed by nuclear factor kappaB (NF-κB), Janus kinase (JAK)/signal transducer and activation of transcription (STAT), and hypoxia-inducible factor 1 (HIF1) transcription factors, the activity of which must be carefully controlled to ensure an effective yet spatially and temporally restricted inflammatory response. While much of this control is provided by pathway-specific feedback loops, recent work has shown that the transcriptional co-regulators of the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxy-terminal domain (CITED) family serve as common controllers for these pathways. In this review, we describe how CITED proteins regulate polarization-associated gene expression changes by controlling the ability of transcription factors to form chromatin complexes with the histone acetyltransferase, CBP/p300. We will also cover how differences in the interactions between CITED1 and 2 with CBP/p300 drive their contrasting effects on pro-inflammatory gene expression.
Collapse
Affiliation(s)
| | | | - David E. Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
3
|
Arriaga JM, Ronaldson-Bouchard K, Picech F, Nunes de Almeida F, Afari S, Chhouri H, Vunjak-Novakovic G, Abate-Shen C. In vivo genome-wide CRISPR screening identifies CITED2 as a driver of prostate cancer bone metastasis. Oncogene 2024; 43:1303-1315. [PMID: 38454137 PMCID: PMC11101692 DOI: 10.1038/s41388-024-02995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Most cancer deaths are due to metastatic dissemination to distant organs. Bone is the most frequently affected organ in metastatic prostate cancer and a major cause of prostate cancer deaths. Yet, our partial understanding of the molecular factors that drive bone metastasis has been a limiting factor for developing preventative and therapeutic strategies to improve patient survival and well-being. Although recent studies have uncovered molecular alterations that occur in prostate cancer metastasis, their functional relevance for bone metastasis is not well understood. Using genome-wide CRISPR activation and inhibition screens we have identified multiple drivers and suppressors of prostate cancer metastasis. Through functional validation, including an innovative organ-on-a-chip invasion platform for studying bone tropism, our study identifies the transcriptional modulator CITED2 as a novel driver of prostate cancer bone metastasis and uncovers multiple new potential molecular targets for bone metastatic disease.
Collapse
Affiliation(s)
- Juan M Arriaga
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Oncological Sciences, Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | | | - Florencia Picech
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Francisca Nunes de Almeida
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Stephanie Afari
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Houssein Chhouri
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Guan H, Zhang W, Liu H, Jiang Y, Li F, Wang D, Liu Y, He F, Wu M, Ivan Neil Waterhouse G, Sun-Waterhouse D, Li D. Simultaneous binding of quercetin and catechin to FOXO3 enhances IKKα transcription inhibition and suppression of oxidative stress-induced acute alcoholic liver injury in rats. J Adv Res 2024:S2090-1232(24)00043-2. [PMID: 38286301 DOI: 10.1016/j.jare.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Oxidative stress is one of the major contributors to acute alcoholic liver injury (AALI), which is a common alcoholic liver disease. Quercetin and catechin are flavonoid antioxidants present in plant foods and possess chemopreventive and chemotherapeutic activities. Quercetin and catechin are often included in the same meal and ingested together. While they show cooperative actions against oxidative damage, the underlying mechanisms behind their counteracting effects against oxidative stress-induced AALI remain poorly understood. OBJECTIVES The aim of this study was to understand the mechanism underlying the enhanced antioxidant effect of quercetin-catechin combination to alleviate AALI in rats. METHODS The ethanol (EtOH)-treated rats and H2O2-treated liver cells were used to demonstrate the enhanced antioxidant effect of quercetin and catechin. Then we used RNA-sequencing to compare quercetin alone, catechin alone and quercetin-catechin combination and then identified the critical role of IKKα combining with gene silencing and overexpression techniques. Its transcription factor, FOXO3 was found through yeast one-hybrid assay, luciferase reporter assay, EMSA and ChIP assay. Finally, the interaction between quercetin, catechin and FOXO3 was verified through molecular docking, UV-Vis absorption spectroscopy, fluorescence spectroscopy, and CD spectroscopy. RESULTS The study demonstrated the enhanced antioxidant effect of a quercetin-catechin combination in EtOH-treated rats and in H2O2-treated liver cells. Quercetin and catechin cooperatively inhibited IKKα/p53 pathway and activated Nrf2 signaling pathway. IKKα was a critical negative regulator in their joint action. FOXO3 bound to IKKα promoter to regulate IKKα transcription. Quercetin and catechin influenced FOXO3-IKKα binding through attaching directly to FOXO3 at different sites and altering FOXO3's secondary structures. CONCLUSION Our study revealed the mechanism of quercetin and catechin against oxidative stress-induced AALI through jointly interacting with transcription factor. This research opens new vistas for examining the joint effect of therapeutics towards functional proteins and confirms the chemopreventive effects of multiple flavonoids via co-regulation.
Collapse
Affiliation(s)
- Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Wenyuan Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Dan Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Yang Liu
- College of Life Sciences, Shandong Agricultural University, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Fatao He
- Jinan Fruit Research Institute of All China Federation of Supply & Marketing Cooperatives, 16001 East Road Jingshi, Jinan 250220, Shandong, People's Republic of China
| | - Maoyu Wu
- Jinan Fruit Research Institute of All China Federation of Supply & Marketing Cooperatives, 16001 East Road Jingshi, Jinan 250220, Shandong, People's Republic of China
| | | | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Yang J, Wang C, Zhang Y, Cheng S, Xu Y, Wang Y. A Novel pyroptosis-related signature for predicting prognosis and evaluating tumor immune microenvironment in ovarian cancer. J Ovarian Res 2023; 16:196. [PMID: 37730669 PMCID: PMC10512632 DOI: 10.1186/s13048-023-01275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/03/2023] [Indexed: 09/22/2023] Open
Abstract
Ovarian cancer (OV) is the most fatal gynecological malignant tumor worldwide, with high recurrence rates and great heterogeneity. Pyroptosis is a newly-acknowledged inflammatory form of cell death with an essential role in cancer progression, though studies focusing on prognostic patterns of pyroptosis in OV are still lacking. Our research filtered 106 potential pyroptosis-related genes (PRGs) among the 6406 differentially expressed genes (DEGs) between the 376 TCGA-OV samples and 180 normal controls. Through the LASSO-Cox analysis, the 6-gene prognostic signature, namely CITED2, EXOC6B, MIA2, NRAS, SETBP1, and TRPV46, was finally distinguished. Then, the K-M survival analysis and time-dependent ROC curves demonstrated the promising prognostic value of the 6-gene signature (p-value < 0.0001). Furthermore, based on the signature and corresponding clinical features, we constructed and validated a nomogram model for 1-year, 2-year, and 3-year OV survival, with reliable prognostic values in TCGA-OV (p-value < 0.001) and ICGC-OV cohort (p-value = 0.040). Pathway analysis enriched several critical pathways in cancer, refer to the pyroptosis-related signature, while the m6A analysis indicated greater m6A level in high-risk group. We assessed tumor immune microenvironment through the CIBERSORT algorithm, which demonstrated the upregulation of M1 Macrophages and activated DCs and high expression of key immune checkpoint molecules (CTLA4, PDCD1LG2, and HAVCR2) in high-risk group. Interestingly, the high-risk group exhibited poor sensitivity towards immunotherapy and better sensitivity towards chemotherapies, including Vinblastine, Docetaxel, and Sorafenib. Briefly, the pyroptosis-related signature was a promising tool to predict prognosis and evaluate immune responses, in order to assist decision-making for OV patients in the realm of precision medicine.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chao Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yue Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanna Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Zhang J, Hu Z, Chung HH, Tian Y, Lau KW, Ser Z, Lim YT, Sobota RM, Leong HF, Chen BJ, Yeo CJ, Tan SYX, Kang J, Tan DEK, Sou IF, McClurg UL, Lakshmanan M, Vaiyapuri TS, Raju A, Wong ESM, Tergaonkar V, Rajarethinam R, Pathak E, Tam WL, Tan EY, Tee WW. Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis. Nat Commun 2023; 14:2439. [PMID: 37117180 PMCID: PMC10147683 DOI: 10.1038/s41467-023-38132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG. Accordingly, loss of NELF-E leads to impaired SLUG binding on chromatin. Through integrative transcriptomic and genomic analyses, we identify the histone acetyltransferase, KAT2B, as a key functional target of NELF-E-SLUG. Genetic and pharmacological inactivation of KAT2B ameliorate the expression of EMT markers, phenocopying NELF ablation. Elevated expression of NELF-E and KAT2B is associated with poorer prognosis in breast cancer patients, highlighting the clinical relevance of our findings. Taken together, we uncover a crucial role of the NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore
| | - Zhenhua Hu
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwa Hwa Chung
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yun Tian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210004, Nanjing, People's Republic of China
| | - Kah Weng Lau
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwei Fen Leong
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Benjamin Jieming Chen
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Clarisse Jingyi Yeo
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jian Kang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Dennis Eng Kiat Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Ieng Fong Sou
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Thamil Selvan Vaiyapuri
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Anandhkumar Raju
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Esther Sook Miin Wong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Vinay Tergaonkar
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Elina Pathak
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
| | - Wai Leong Tam
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Ern Yu Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, 308433, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Republic of Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
7
|
Kwantwi LB, Wang S, Sheng Y, Wu Q. Multifaceted roles of CCL20 (C-C motif chemokine ligand 20): mechanisms and communication networks in breast cancer progression. Bioengineered 2021; 12:6923-6934. [PMID: 34569432 PMCID: PMC8806797 DOI: 10.1080/21655979.2021.1974765] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging studies have demonstrated notable roles of CCL20 in breast cancer progression. Based on these findings, CCL20 has become a potential therapeutic target for cancer immunotherapy. Accordingly, studies utilizing monoclonal antibodies to target CCL20 are currently being experimented. However, the existence of cytokine network in the tumor microenvironment collectively regulates tumor progression. Hence, a deeper understanding of the role of CCL20 and the underlying signaling pathways regulating the functions of CCL20 may provide a novel strategy for therapeutic interventions. This review provides the current knowledge on how CCL20 interacts with breast cancer cells to influence tumor progression via immunosuppression, angiogenesis, epithelial to mesenchymal transition, migration/invasion and chemoresistance. As a possible candidate biomarker, we also reviewed signal pathways and other factors in the tumor microenvironment regulating the tumor-promoting functions of CCL20.These new insights may be useful to design new potent and selective CCL20 inhibitors against breast cancer in the future.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Shujing Wang
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Youjing Sheng
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Qiang Wu
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
8
|
Zhang L, Wang Y, Sha Y, Zhang B, Zhang R, Zhang H, Xu S, Wang H, Xu Y, Chen Y, Zhao X, Zhu J, Zhang Z, Wang C. CITED4 enhances the metastatic potential of lung adenocarcinoma. Thorac Cancer 2021; 12:1291-1302. [PMID: 33759374 PMCID: PMC8088925 DOI: 10.1111/1759-7714.13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND CITED4 belongs to the CBP/p300-interacting transactivator with glutamic acid and aspartic acid-rich tail (CITED) family which is induced by various cytokines and participates in cytokine-induced proliferation and differentiation. CITED4 is induced by HB-EGF in lung cancer cells. However, it is unclear whether and how CITED4 contributes to the invasion and metastasis of lung adenocarcinoma (ADC). METHODS CITED4 expression in lung adenocarcinoma and its association with disease-free survival (DFS) and overall survival were analyzed based on a cohort of 261 patients. The roles of CITED4 were validated via loss-of-function and gain-of-function experiments. The relationship between CITED4 and CLDN3 was validated by immunohistochemistry, Western blotting, and luciferase reporter assays. The function of the CITED4-CTNNB1-CLDN3 complex was fully validated and described. RESULTS CITED4 expression was significantly upregulated in ADC tissues and cells and a predictor for DFS. Downregulation of CITED4 attenuated the proliferation and invasion, whereas CITED4 overexpression enhanced these effects. Overexpression and knockdown of CITED4 resulted in the upregulation and downregulation of CLDN3, respectively. Moreover, CITED4 downregulation suppressed CLDN3-mediated ADC cell metastasis in vivo. CITED4 was highly expressed and positively correlated with CLDN3. Mechanistically, CITED4 interacted with CTNNB1 and functioned synergistically to enhance CLDN3 transcription. Importantly, CITED4 induced ADC invasion via a CLDN3-dependent pathway. CITED4 determined the level of CLDN3, which in turn affected the sensitivity of tumors to Clostridium perfringens enterotoxin treatment. CONCLUSIONS The CITED4-CTNNB1-CLDN3 axis plays a key role in the invasion and metastasis of ADC and provides a novel therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Lianmin Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yuan Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yongsheng Sha
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bin Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rui Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hua Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shilei Xu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hailong Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yue Xu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yulong Chen
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoliang Zhao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianquan Zhu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhenfa Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Changli Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
9
|
Deng Y, Ma G, Gao F, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, He H, Miao Z. SOX9 Knockdown-Mediated FOXO3 Downregulation Confers Neuroprotection Against Ischemic Brain Injury. Front Cell Dev Biol 2021; 8:555175. [PMID: 33791290 PMCID: PMC8006459 DOI: 10.3389/fcell.2020.555175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background Evidence exists uncovering that SRY-box transcription factor 9 (SOX9) plays a role in ischemic brain injury (IBI). Thus, the current study was conducted to elucidate the specific role of SOX9 and the mechanism by which SOX9 influenced IBI. Methods The IBI-associated regulatory factors were searched by bioinformatics analysis. The rat model of IBI was generated using middle cerebral artery occlusion (MCAO) treatment. Neuronal cells were exposed to oxygen-glucose deprivation (OGD). The expressions of SOX9, forkhead box O3 (FOXO3), transcription of Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2), and IκB kinase α (IKKα) in OGD-treated neuronal cells were characterized using reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. The interaction among CITED2, IKKα, and FOXO3 was identified by chromatin immunoprecipitation (ChIP) and dual luciferase reporter gene assays. Gain- and loss-of-function experiments were performed to verify the relationship among SOX9, FOXO3, CITED2, and IKKα and to investigate their functional effects on apoptosis and the inflammatory response of OGD-treated neuronal cells as well as neurological deficit and infarct area of the rat brain. Results SOX9, FOXO3, CITED2, and IKKα were highly expressed in OGD-treated neuronal cells. Silencing of SOX9 inhibited OGD-induced neuronal apoptosis and inflammatory response and reduced the neurological deficit and infarct area of the brain in the rats, which were caused by MCAO but were reversed by overexpressing FOXO3, CITED2, or IKKα. Conclusion Taken together, our study suggested that upregulation of SOX9 promoted IBI though upregulation of the FOXO3/CITED2/IKKα axis, highlighting a basic therapeutic consideration for IBI treatment.
Collapse
Affiliation(s)
- Yiming Deng
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Gaoting Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Feng Gao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xuan Sun
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Lian Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Dapeng Mo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Ligang Song
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiaochuan Huo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Hongwei He
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhongrong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
10
|
Abstract
Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a transcription co-factor that interacts with several other transcription factors and co-factors, and serves critical roles in fundamental cell processes, including proliferation, apoptosis, differentiation, migration and autophagy. The interacting transcription factors or co-factors of CITED2 include LIM homeobox 2, transcription factor AP-2, SMAD2/3, peroxisome proliferator-activated receptor γ, oestrogen receptor, MYC, Nucleolin and p300/CBP, which regulate downstream gene expression, and serve important roles in the aforementioned fundamental cell processes. Emerging evidence has demonstrated that CITED2 serves an essential role in embryonic and adult tissue stem cells, including hematopoietic stem cells and tendon-derived stem/progenitor cells. Additionally, CITED2 has been reported to function in different types of cancer. Although the functions of CITED2 in different tissues vary depending on the interaction partner, altered CITED2 expression or altered interactions with transcription factors or co-factors result in alterations of fundamental cell processes, and may affect stem cell maintenance or cancer cell survival. The aim of this review is to summarize the molecular mechanisms of CITED2 function and how it serves a role in stem cells and different types of cancer based on the currently available literature.
Collapse
|
11
|
Fernandes MT, Calado SM, Mendes-Silva L, Bragança J. CITED2 and the modulation of the hypoxic response in cancer. World J Clin Oncol 2020; 11:260-274. [PMID: 32728529 PMCID: PMC7360518 DOI: 10.5306/wjco.v11.i5.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
CITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Mónica T Fernandes
- School of Health, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Sofia M Calado
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| | - José Bragança
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
12
|
CDK7 Inhibition is Effective in all the Subtypes of Breast Cancer: Determinants of Response and Synergy with EGFR Inhibition. Cells 2020; 9:cells9030638. [PMID: 32155786 PMCID: PMC7140476 DOI: 10.3390/cells9030638] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
CDK7, a transcriptional cyclin-dependent kinase, is emerging as a novel cancer target. Triple-negative breast cancers (TNBC) but not estrogen receptor-positive (ER+) breast cancers have been reported to be uniquely sensitive to the CDK7 inhibitor THZ1 due to the inhibition of a cluster of TNBC-specific genes. However, bioinformatic analysis indicates that CDK7 RNA expression is associated with negative prognosis in all the major subtypes of breast cancer. To further elucidate the effects of CDK7 inhibition in breast cancer, we profiled a panel of cell lines representing different breast cancer subtypes. THZ1 inhibited cell growth in all subtypes (TNBC, HER2+, ER+, and HER2+/ER+) with no apparent subtype selectivity. THZ1 inhibited CDK7 activity and induced G1 arrest and apoptosis in all the tested cell lines, but THZ1 sensitivity did not correlate with CDK7 inhibition or CDK7 expression levels. THZ1 sensitivity across the cell line panel did not correlate with TNBC-specific gene expression but it was found to correlate with the differential inhibition of three genes: CDKN1B, MYC and transcriptional coregulator CITED2. Response to THZ1 also correlated with basal CITED2 protein expression, a potential marker of CDK7 inhibitor sensitivity. Furthermore, all of the THZ1-inhibited genes examined were inducible by EGF but THZ1 prevented this induction. THZ1 had synergistic or additive effects when combined with the EGFR inhibitor erlotinib, with no outward selectivity for a particular subtype of breast cancer. These results suggest a potential broad utility for CDK7 inhibitors in breast cancer therapy and the potential for combining CDK7 and EGFR inhibitors.
Collapse
|
13
|
Plasterer C, Tsaih SW, Peck AR, Chervoneva I, O’Meara C, Sun Y, Lemke A, Murphy D, Smith J, Ran S, Kovatich AJ, Hooke JA, Shriver CD, Hu H, Mitchell EP, Bergom C, Joshi A, Auer P, Prokop J, Rui H, Flister MJ. Neuronatin is a modifier of estrogen receptor-positive breast cancer incidence and outcome. Breast Cancer Res Treat 2019; 177:77-91. [DOI: 10.1007/s10549-019-05307-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
|
14
|
Tang J, Cui Q, Zhang D, Liao X, Zhu J, Wu G. An estrogen receptor (ER)-related signature in predicting prognosis of ER-positive breast cancer following endocrine treatment. J Cell Mol Med 2019; 23:4980-4990. [PMID: 31124293 PMCID: PMC6652714 DOI: 10.1111/jcmm.14338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/26/2019] [Accepted: 04/04/2019] [Indexed: 12/26/2022] Open
Abstract
Quite a few estrogen receptor (ER)‐positive breast cancer patients receiving endocrine therapy are at risk of disease recurrence and death. ER‐related genes are involved in the progression and chemoresistance of breast cancer. In this study, we identified an ER‐related gene signature that can predict the prognosis of ER‐positive breast cancer patient receiving endocrine therapy. We collected RNA expression profiling from Gene Expression Omnibus database. An ER‐related signature was developed to separate patients into high‐risk and low‐risk groups. Patients in the low‐risk group had significantly better survival than those in the high‐risk group. ROC analysis indicated that this signature exhibited good diagnostic efficiency for the 1‐, 3‐ and 5‐year disease‐relapse events. Moreover, multivariate Cox regression analysis demonstrated that the ER‐related signature was an independent risk factor when adjusting for several clinical signatures. The prognostic value of this signature was validated in the validation sets. In addition, a nomogram was built and the calibration plots analysis indicated the good performance of this nomogram. In conclusion, combining with ER status, our results demonstrated that the ER‐related prognostic signature is a promising method for predicting the prognosis of ER‐positive breast cancer patients receiving endocrine therapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Zhu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Huang T, González YR, Qu D, Huang E, Safarpour F, Wang E, Joselin A, Im DS, Callaghan SM, Boonying W, Julian L, Dunwoodie SL, Slack RS, Park DS. The pro-death role of Cited2 in stroke is regulated by E2F1/4 transcription factors. J Biol Chem 2019; 294:8617-8629. [PMID: 30967472 DOI: 10.1074/jbc.ra119.007941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the cell cycle-related cyclin-dependent kinase 4-retinoblastoma (RB) transcriptional corepressor pathway is essential for stroke-induced cell death both in vitro and in vivo However, how this signaling pathway induces cell death is unclear. Previously, we found that the cyclin-dependent kinase 4 pathway activates the pro-apoptotic transcriptional co-regulator Cited2 in vitro after DNA damage. In the present study, we report that Cited2 protein expression is also dramatically increased following stroke/ischemic insult. Critically, utilizing conditional knockout mice, we show that Cited2 is required for neuronal cell death, both in culture and in mice after ischemic insult. Importantly, determining the mechanism by which Cited2 levels are regulated, we found that E2F transcription factor (E2F) family members participate in Cited2 regulation. First, E2F1 expression induced Cited2 transcription, and E2F1 deficiency reduced Cited2 expression. Moreover, determining the potential E2F-binding regions on the Cited2 gene regulatory sequence by ChIP analysis, we provide evidence that E2F1/4 proteins bind to this DNA region. A luciferase reporter assay to probe the functional outcomes of this interaction revealed that E2F1 activates and E2F4 inhibits Cited2 transcription. Moreover, we identified the functional binding motif for E2F1 in the Cited2 gene promoter by demonstrating that mutation of this site dramatically reduces E2F1-mediated Cited2 transcription. Finally, E2F1 and E2F4 regulated Cited2 expression in neurons after stroke-related insults. Taken together, these results indicate that the E2F-Cited2 regulatory pathway is critically involved in stroke injury.
Collapse
Affiliation(s)
- Tianwen Huang
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Neurology, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian, China
| | - Yasmilde Rodríguez González
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Dianbo Qu
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - En Huang
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Farzaneh Safarpour
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Eugene Wang
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Alvin Joselin
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Doo Soon Im
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Wassamon Boonying
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Lisa Julian
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia; Faculties of Medicine and Science University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Ruth S Slack
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - David S Park
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
16
|
Elevated expression of GNAS promotes breast cancer cell proliferation and migration via the PI3K/AKT/Snail1/E-cadherin axis. Clin Transl Oncol 2019; 21:1207-1219. [PMID: 30767161 DOI: 10.1007/s12094-019-02042-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Although it has been well established that G protein plays pivotal roles in physiologic or pathologic conditions, including cancer formation, its role in breast cancer, especially specific subunits, remains largely unknown. Our work aimed to evaluate the correlation of the G protein alpha subunit (GNAS) with breast cancer and to investigate the underlying molecular mechanism. METHODS The expression of GNAS was determined by breast tumor tissue microarray of 150 patients with complete follow-up information. The correlation between GNAS expression and clinical features was assessed. CCK8, EdU incorporation, flow cytometry, wound healing, transwell, western blot and tumor formation assays were carried out in nude mice to study the biological function of GNAS and the underlying molecular mechanism in breast cancer by silencing GNAS using a specific siRNA. RESULTS High GNAS expression showed a close correlation with a reduced overall survival (p = 0.021), frequent distal metastasis (p = 0.026), advanced clinical stage (p = 0.001), stronger cell proliferation (ki67+ positive cell rate, p = 0.0351) and enhanced cancer cell migration, which was further confirmed by in vitro and in vivo assays and might be dependent on the PI3K/AKT/Snail1/E-cadherin axis. CONCLUSION The data suggested that GNAS promoted breast cancer cell proliferation and migration (EMT) through the PI3K/AKT/Snail1/E-cadherin signaling pathway. These findings also indicate that GNAS can serve as a potential prognostic indicator and novel therapeutic target in breast cancer.
Collapse
|
17
|
Argyle D, Kitamura T. Targeting Macrophage-Recruiting Chemokines as a Novel Therapeutic Strategy to Prevent the Progression of Solid Tumors. Front Immunol 2018; 9:2629. [PMID: 30483271 PMCID: PMC6243037 DOI: 10.3389/fimmu.2018.02629] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/25/2018] [Indexed: 12/28/2022] Open
Abstract
Solid tumors are initiated by genetic mutations in non-hematopoietic cells and progress into invasive malignant tumors. This tumor progression often culminates in metastatic disease that is largely refractory to current therapeutic modalities and thus dramatically reduces survival of tumor patients. As solid tumors account for more than 80% of cancer-related deaths, it is necessary to develop novel therapeutic strategies to treat the diseases. An attractive strategy is to target macrophages in both primary tumors [known as tumor-associated macrophages (TAMs)] and metastatic tumors [called metastasis-associated macrophages (MAMs)]. TAMs and MAMs are abundant in most solid tumors and can promote tumor metastasis. Several studies in various models of solid tumors suggest that the accumulation of TAMs, MAMs, and their progenitor cells is regulated by chemokine ligands released by tumor and stromal cells. Consequently, these macrophage-recruiting chemokines could be potential therapeutic targets to prevent malignant tumor development through disruption of the accumulation of pro-metastatic macrophages. This review will discuss the role of chemokine ligands and their receptors in TAM and MAM accumulation in primary and secondary tumor sites, and finally discuss the therapeutic potential of inhibitors against these macrophage-recruiting chemokines.
Collapse
Affiliation(s)
- David Argyle
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Takanori Kitamura
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Brook N, Brook E, Dharmarajan A, Dass CR, Chan A. Breast cancer bone metastases: pathogenesis and therapeutic targets. Int J Biochem Cell Biol 2018; 96:63-78. [DOI: 10.1016/j.biocel.2018.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 01/03/2023]
|
19
|
Jayaraman S, Doucet M, Kominsky SL. Down-regulation of CITED2 attenuates breast tumor growth, vessel formation and TGF-β-induced expression of VEGFA. Oncotarget 2018; 8:6169-6178. [PMID: 28008154 PMCID: PMC5351621 DOI: 10.18632/oncotarget.14048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
While we previously demonstrated that CITED2 expression in primary breast tumor tissues is elevated relative to normal mammary epithelium and inversely correlated with patient survival, its functional impact on primary tumor development and progression remained unknown. To address this issue, we examined the effect of CITED2 silencing on the growth of human breast cancer cell lines MDA-MB-231 and MDA-MB-468 following orthotopic administration in vivo. Here, we show that CITED2 silencing significantly attenuated MDA-MB-231 primary tumor growth concordant with reduced tumor vascularization, while MDA-MB-468 primary tumor growth and tumor vascularization remained unaffected. Correspondingly, expression of VEGFA was significantly reduced in shCITED2-expressing MDA-MB-231, but not MDA-MB-468 tumors. Consistent with the observed pattern of vascularization and VEGFA expression, we found that TGF-β stimulation induced expression of VEGFA and enhanced CITED2 recruitment to the VEGFA promoter in MDA-MA-231 cells, while failing to induce VEGFA expression in MDA-MB-468 cells. Further supporting its involvement in TGF-β-induced expression of VEGFA, CITED2 silencing prevented TGF-β induction of VEGFA expression in MDA-MB-231 cells. Collectively, these data indicate that CITED2 regulates primary breast tumor growth, likely by influencing tumor vasculature via TGF-β-dependent regulation of VEGFA.
Collapse
Affiliation(s)
- Swaathi Jayaraman
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michele Doucet
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott L Kominsky
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Jayaraman S, Doucet M, Kominsky SL. CITED2 attenuates macrophage recruitment concordant with the downregulation of CCL20 in breast cancer cells. Oncol Lett 2017; 15:871-878. [PMID: 29399152 PMCID: PMC5772916 DOI: 10.3892/ol.2017.7420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
The transcriptional co-regulator Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain-2 (CITED2) may promote breast tumor growth; however, the mechanisms by which its effects are mediated remain to be fully elucidated. Tumor-associated macrophages serve an important function in tumor development and progression and are recruited by chemotactic factors produced by cells within the tumor microenvironment. The present study assessed the effects of CITED2 silencing on macrophage recruitment in two xenograft mouse models of human breast cancer, one in which tumor growth was sensitive to CITED2 silencing (MDA-MB-231) and one in which it was insensitive (MDA-MB-468). The present study identified that silencing CITED2 significantly attenuated macrophage infiltration in MDA-MB-231 but not MDA-MB-468 orthotopic tumors, concordant with its effect on tumor growth. Correspondingly, conditioned media obtained from CITED2-silenced MDA-MB-231 cells exhibited a significantly decreased ability to induce macrophage recruitment by Transwell migration assay, whereas the chemotactic effect of MDA-MB-468 conditioned media was unaffected. Examining the expression of macrophage chemoattractants within orthotopic tumors and tumor cell-conditioned media revealed a significant decrease in C-C motif chemokine ligand (CCL)20 mRNA and protein expression following CITED2-silencing in MDA-MB-231 cells, compared with that in cells transfected with scramble shRNA. However, mRNA and protein expression was unaffected by CITED2-silencing in MDA-MB-468 cells. Furthermore, chromatin immunoprecipitation analysis revealed that CITED2 was localized to the CCL20 promoter in MDA-MB-231 cells, suggesting that it serves a direct function in its regulation, which is consistent with the effect of CITED2 silencing on CCL20 expression. Lastly, neutralizing CCL20 in the conditioned media of MDA-MB-231 cells significantly inhibited macrophage recruitment. Collectively, these results suggest that CITED2 is involved in modulating macrophage recruitment, representing a novel mechanism through which it may influence tumor growth. This may be partly mediated by regulating tumor cell production of the chemokine CCL20.
Collapse
Affiliation(s)
- Swaathi Jayaraman
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michele Doucet
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Scott L Kominsky
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|