1
|
Iacobescu GL, Corlatescu AD, Serban B, Spiridonica R, Costin HP, Cirstoiu C. Genetics and Molecular Pathogenesis of the Chondrosarcoma: A Review of the Literature. Curr Issues Mol Biol 2024; 46:12658-12671. [PMID: 39590345 PMCID: PMC11593320 DOI: 10.3390/cimb46110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The chondrosarcoma, a cartilage-forming bone tumor, presents significant clinical challenges due to its resistance to chemotherapy and radiotherapy. Surgical excision remains the primary treatment, but high-grade chondrosarcomas are prone to recurrence and metastasis, necessitating the identification of reliable biomarkers for diagnosis and prognosis. This review explores the genetic alterations and molecular pathways involved in chondrosarcoma pathogenesis. These markers show promise in distinguishing between benign enchondromas and malignant chondrosarcomas, assessing tumor aggressiveness, and guiding treatment. While these advancements offer hope for more personalized and targeted therapeutic strategies, further clinical validation of these biomarkers is essential to improve prognostic accuracy and patient outcomes in chondrosarcoma management.
Collapse
Affiliation(s)
- Georgian-Longin Iacobescu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Bogdan Serban
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Razvan Spiridonica
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Horia Petre Costin
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Catalin Cirstoiu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
2
|
Noronha KJ, Lucas KN, Paradkar S, Edmonds J, Friedman S, Murray MA, Liu S, Sajed DP, Sachs C, Spurrier J, Raponi M, Liang J, Zeng H, Sundaram RK, Shuch B, Vasquez JC, Bindra RS. NAPRT Silencing in FH-Deficient Renal Cell Carcinoma Confers Therapeutic Vulnerabilities via NAD+ Depletion. Mol Cancer Res 2024; 22:973-988. [PMID: 38949523 PMCID: PMC11445649 DOI: 10.1158/1541-7786.mcr-23-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is caused by loss of function mutations in fumarate hydratase (FH) and results in an aggressive subtype of renal cell carcinoma with limited treatment options. Loss of FH leads to accumulation of fumarate, an oncometabolite that disrupts multiple cellular processes and drives tumor progression. High levels of fumarate inhibit alpha ketoglutarate-dependent dioxygenases, including the ten-eleven translocation (TET) enzymes, and can lead to global DNA hypermethylation. Here, we report patterns of hypermethylation in FH-mutant cell lines and tumor samples are associated with the silencing of nicotinate phosphoribosyl transferase (NAPRT), a rate-limiting enzyme in the Preiss-Handler pathway of NAD+ biosynthesis, in a subset of HLRCC cases. NAPRT is hypermethylated at a CpG island in the promoter in cell line models and patient samples, resulting in loss of NAPRT expression. We find that FH-deficient RCC models with loss of NAPRT expression, as well as other oncometabolite-producing cancer models that silence NAPRT, are extremely sensitive to nicotinamide phosphoribosyl transferase inhibitors (NAMPTi). NAPRT silencing was also associated with synergistic tumor cell killing with PARP inhibitors and NAMPTis, which was associated with effects on PAR-mediated DNA repair. Overall, our findings indicate that NAPRT silencing can be targeted in oncometabolite-producing cancers and elucidates how oncometabolite-associated hypermethylation can impact diverse cellular processes and lead to therapeutically relevant vulnerabilities in cancer cells. Implications: NAPRT is a novel biomarker for targeting NAD+ metabolism in FH-deficient HLRCCs with NAMPTis alone and targeting DNA repair processes with the combination of NAMPTis and PARP inhibitors.
Collapse
Affiliation(s)
- Katelyn J. Noronha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | - Karlie N. Lucas
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Sateja Paradkar
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Joseph Edmonds
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Sam Friedman
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Matthew A. Murray
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Samantha Liu
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Dipti P. Sajed
- Department of Pathology, University of California Los Angeles, Los Angeles, California.
| | - Chana Sachs
- Department of Pathology, University of California Los Angeles, Los Angeles, California.
| | | | | | - Jiayu Liang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Ranjini K. Sundaram
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Brian Shuch
- Institute of Urologic Oncology, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California.
| | - Juan C. Vasquez
- Department of Pediatric Hematology and Oncology, Yale University, New Haven, Connecticut.
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| |
Collapse
|
3
|
Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD + Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci 2024; 25:2092. [PMID: 38396769 PMCID: PMC10889166 DOI: 10.3390/ijms25042092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promising antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase (NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies show that NAD+ biosynthesis through the so-called "Preiss-Handler (PH) pathway", which utilizes nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases (NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging targets in cancer drug discovery, summarizing their reported inhibitors and describing their current or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus become viable targets for drug discovery.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
4
|
Suh J, Kim H, Min J, Yeon HJ, Hemberg M, Scimeca L, Wu MR, Kang HG, Kim YJ, Kim JH. Decoupling NAD + metabolic dependency in chondrosarcoma by targeting the SIRT1-HIF-2α axis. Cell Rep Med 2024; 5:101342. [PMID: 38128534 PMCID: PMC10829737 DOI: 10.1016/j.xcrm.2023.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Chondrosarcomas represent the second most common primary bone malignancy. Despite the vulnerability of chondrosarcoma cells to nicotinamide adenine dinucleotide (NAD+) depletion, targeting the NAD+ synthesis pathway remains challenging due to broad implications in biological processes. Here, we establish SIRT1 as a central mediator reinforcing the dependency of chondrosarcoma cells on NAD+ metabolism via HIF-2α-mediated transcriptional reprogramming. SIRT1 knockdown abolishes aggressive phenotypes of chondrosarcomas in orthotopically transplanted tumors in mice. Chondrosarcoma cells thrive under glucose starvation by accumulating NAD+ and subsequently activating the SIRT1-HIF-2α axis. Decoupling this link via SIRT1 inhibition unleashes apoptosis and suppresses tumor progression in conjunction with chemotherapy. Unsupervised clustering analysis identifies a high-risk chondrosarcoma patient subgroup characterized by the upregulation of NAD+ biosynthesis genes. Finally, SIRT1 inhibition abolishes HIF-2α transcriptional activity and sensitizes chondrosarcoma cells to doxorubicin-induced cytotoxicity, irrespective of underlying pathways to accumulate intracellular NAD+. We provide system-level guidelines to develop therapeutic strategies for chondrosarcomas.
Collapse
Affiliation(s)
- Jooyeon Suh
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyeonkyeong Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea; Liflex Science, Cheongju 28160, South Korea
| | - Jiyun Min
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyun Ju Yeon
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Martin Hemberg
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Luca Scimeca
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Mila, The Quebec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Ming-Ru Wu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyun Guy Kang
- Orthopaedic Oncology Clinic, Research Institute and Hospital, National Cancer Center, Goyang 10408, South Korea
| | - Yi-Jun Kim
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul 07804, South Korea; Department of Radiation Oncology, College of Medicine, Ewha Womans University, Seoul 07804, South Korea; Graduate Program in System Health Science and Engineering, College of Medicine, Ewha Womans University, Seoul 07804, South Korea.
| | - Jin-Hong Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, South Korea; Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
5
|
Kim YJ, Kang HG, Kim JH. Hunting for the vulnerability in chondrosarcoma by tracing metabolic and genetic links. Cell Rep Med 2024; 5:101385. [PMID: 38232691 PMCID: PMC10829863 DOI: 10.1016/j.xcrm.2023.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
In this Backstory, we narrate our journey in establishing a multidisciplinary team for sarcoma research and uncovering vulnerabilities in chondrosarcoma cells associated with their NAD+ dependencies for survival.1 Our findings hold promise for exploitation, yielding a synergistic cytotoxic effect when combined with systemic therapy.
Collapse
Affiliation(s)
- Yi-Jun Kim
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul 07804, South Korea; Department of Radiation Oncology, College of Medicine, Ewha Womans University, Seoul 07804, South Korea
| | - Hyun Guy Kang
- Orthopaedic Oncology Clinic, Research Institute and Hospital, National Cancer Center, Goyang 10408, South Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea.
| |
Collapse
|
6
|
Nomura M, Ohuchi M, Sakamoto Y, Kudo K, Yaku K, Soga T, Sugiura Y, Morita M, Hayashi K, Miyahara S, Sato T, Yamashita Y, Ito S, Kikuchi N, Sato I, Saito R, Yaegashi N, Fukuhara T, Yamada H, Shima H, Nakayama KI, Hirao A, Kawasaki K, Arai Y, Akamatsu S, Tanuma SI, Sato T, Nakagawa T, Tanuma N. Niacin restriction with NAMPT-inhibition is synthetic lethal to neuroendocrine carcinoma. Nat Commun 2023; 14:8095. [PMID: 38092728 PMCID: PMC10719245 DOI: 10.1038/s41467-023-43630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a major role in NAD biosynthesis in many cancers and is an attractive potential cancer target. However, factors dictating therapeutic efficacy of NAMPT inhibitors (NAMPTi) are unclear. We report that neuroendocrine phenotypes predict lung and prostate carcinoma vulnerability to NAMPTi, and that NAMPTi therapy against those cancers is enhanced by dietary modification. Neuroendocrine differentiation of tumor cells is associated with down-regulation of genes relevant to quinolinate phosphoribosyltransferase-dependent de novo NAD synthesis, promoting NAMPTi susceptibility in vitro. We also report that circulating nicotinic acid riboside (NAR), a non-canonical niacin absent in culture media, antagonizes NAMPTi efficacy as it fuels NAMPT-independent but nicotinamide riboside kinase 1-dependent NAD synthesis in tumors. In mouse transplantation models, depleting blood NAR by nutritional or genetic manipulations is synthetic lethal to tumors when combined with NAMPTi. Our findings provide a rationale for simultaneous targeting of NAR metabolism and NAMPT therapeutically in neuroendocrine carcinoma.
Collapse
Affiliation(s)
- Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Ohuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Yoshimi Sakamoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kei Kudo
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
- Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mami Morita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kayoko Hayashi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Shuko Miyahara
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
- Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Sato
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Shigemi Ito
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Naohiko Kikuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center Hospital, Natori, Japan
| | - Rintaro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuro Fukuhara
- Department of Respiratory Medicine, Miyagi Cancer Center Hospital, Natori, Japan
| | - Hidekazu Yamada
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyusyu University, Fukuoka, Japan
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute and WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Kenta Kawasaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoichi Arai
- Department of Urology, Miyagi Cancer Center Hospital, Natori, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sei-Ichi Tanuma
- Meikai University Research Institute of Odontology, Sakado, Japan
- University of Human Arts and Sciences, Saitama, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan.
- Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
7
|
Venneker S, Bovée JVMG. IDH Mutations in Chondrosarcoma: Case Closed or Not? Cancers (Basel) 2023; 15:3603. [PMID: 37509266 PMCID: PMC10377514 DOI: 10.3390/cancers15143603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Chondrosarcomas are malignant cartilage-producing tumours that frequently harbour isocitrate dehydrogenase 1 and -2 (IDH) gene mutations. Several studies have confirmed that these mutations are key players in the early stages of cartilage tumour development, but their role in later stages remains ambiguous. The prognostic value of IDH mutations remains unclear and preclinical studies have not identified effective treatment modalities (in)directly targeting these mutations. In contrast, the IDH mutation status is a prognostic factor in other cancers, and IDH mutant inhibitors as well as therapeutic strategies targeting the underlying vulnerabilities induced by IDH mutations seem effective in these tumour types. This discrepancy in findings might be ascribed to a difference in tumour type, elevated D-2-hydroxyglutarate levels, and the type of in vitro model (endogenous vs. genetically modified) used in preclinical studies. Moreover, recent studies suggest that the (epi)genetic landscape in which the IDH mutation functions is an important factor to consider when investigating potential therapeutic strategies or patient outcomes. These findings imply that the dichotomy between IDH wildtype and mutant is too simplistic and additional subgroups indeed exist within chondrosarcoma. Future studies should focus on the identification, characterisation, and tailoring of treatments towards these biological subgroups within IDH wildtype and mutant chondrosarcoma.
Collapse
Affiliation(s)
- Sanne Venneker
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
8
|
Epigenetic Abnormalities in Chondrosarcoma. Int J Mol Sci 2023; 24:ijms24054539. [PMID: 36901967 PMCID: PMC10003547 DOI: 10.3390/ijms24054539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
In recent years, our understanding of the epigenetic mechanisms involved in tumor pathology has improved greatly. DNA and histone modifications, such as methylation, demethylation, acetylation, and deacetylation, can lead to the up-regulation of oncogenic genes, as well as the suppression of tumor suppressor genes. Gene expression can also be modified on a post-transcriptional level by microRNAs that contribute to carcinogenesis. The role of these modifications has been already described in many tumors, e.g., colorectal, breast, and prostate cancers. These mechanisms have also begun to be investigated in less common tumors, such as sarcomas. Chondrosarcoma (CS) is a rare type of tumor that belongs to sarcomas and is the second most common malignant bone tumor after osteosarcoma. Due to unknown pathogenesis and resistance to chemo- and radiotherapies of these tumors, there is a need to develop new potential therapies against CS. In this review, we summarize current knowledge on the influence of epigenetic alterations in the pathogenesis of CS by discussing potential candidates for future therapies. We also emphasize ongoing clinical trials that use drugs targeting epigenetic modifications in CS treatment.
Collapse
|
9
|
Visfatin-Induced Inhibition of miR-1264 Facilitates PDGF-C Synthesis in Chondrosarcoma Cells and Enhances Endothelial Progenitor Cell Angiogenesis. Cells 2022; 11:cells11213470. [PMID: 36359873 PMCID: PMC9656973 DOI: 10.3390/cells11213470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
New treatments for chondrosarcoma are extremely important. Chondrosarcoma is a primary malignant bone tumor with a very unfavorable prognosis. High-grade chondrosarcoma has a high potential to metastasize to any organ in the body. Platelet-derived growth factor (PDGF) is a potent angiogenic factor that promotes tumor angiogenesis and metastasis. The adipocytokine visfatin promotes metastatic potential of chondrosarcoma; however, the role of visfatin in angiogenesis in human chondrosarcoma is unclear. We report that the levels of PDGF-C expression were positively correlated with tumor stages, significantly higher than the levels of expression in normal cartilage. Visfatin increased PDGF-C expression and endothelial progenitor cell (EPC) angiogenesis through the PI3K/Akt/mTOR signaling pathway, and dose-dependently down-regulated the synthesis of miR-1264, which targets the 3′-UTR of PDGF-C. Additionally, we discovered inhibition of visfatin or PDGF-C in chondrosarcoma tumors significantly reduced tumor angiogenesis and size. Our results indicate that visfatin inhibits miR-1264 production through the PI3K/Akt/mTOR signaling cascade, and thereby promotes PDGF-C expression and chondrosarcoma angiogenesis. Visfatin may be worth targeting in the treatment of chondrosarcoma angiogenesis.
Collapse
|
10
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
11
|
Navas LE, Carnero A. Nicotinamide Adenine Dinucleotide (NAD) Metabolism as a Relevant Target in Cancer. Cells 2022; 11:cells11172627. [PMID: 36078035 PMCID: PMC9454445 DOI: 10.3390/cells11172627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
NAD+ is an important metabolite in cell homeostasis that acts as an essential cofactor in oxidation–reduction (redox) reactions in various energy production processes, such as the Krebs cycle, fatty acid oxidation, glycolysis and serine biosynthesis. Furthermore, high NAD+ levels are required since they also participate in many other nonredox molecular processes, such as DNA repair, posttranslational modifications, cell signalling, senescence, inflammatory responses and apoptosis. In these nonredox reactions, NAD+ is an ADP-ribose donor for enzymes such as sirtuins (SIRTs), poly-(ADP-ribose) polymerases (PARPs) and cyclic ADP-ribose (cADPRs). Therefore, to meet both redox and nonredox NAD+ demands, tumour cells must maintain high NAD+ levels, enhancing their synthesis mainly through the salvage pathway. NAMPT, the rate-limiting enzyme of this pathway, has been identified as an oncogene in some cancer types. Thus, NAMPT has been proposed as a suitable target for cancer therapy. NAMPT inhibition causes the depletion of NAD+ content in the cell, leading to the inhibition of ATP synthesis. This effect can cause a decrease in tumour cell proliferation and cell death, mainly by apoptosis. Therefore, in recent years, many specific inhibitors of NAMPT have been developed, and some of them are currently in clinical trials. Here we review the NAD metabolism as a cancer therapy target.
Collapse
Affiliation(s)
- Lola E. Navas
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
12
|
Li W, Wang G, Wu R, Dong S, Wang H, Xu C, Wang B, Li W, Hu Z, Chen Q, Yin C. Dynamic Predictive Models With Visualized Machine Learning for Assessing Chondrosarcoma Overall Survival. Front Oncol 2022; 12:880305. [PMID: 35936720 PMCID: PMC9351692 DOI: 10.3389/fonc.2022.880305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Chondrosarcoma is a malignant bone tumor with a low incidence rate. Accurate risk evaluation is crucial for chondrosarcoma treatment. Due to the limited reliability of existing predictive models, we intended to develop a credible predictor for clinical chondrosarcoma based on the Surveillance, Epidemiology, and End Results data and four Chinese medical institutes. Three algorithms (Best Subset Regression, Univariate and Cox regression, and Least Absolute Shrinkage and Selector Operator) were used for the joint training. A nomogram predictor including eight variables—age, sex, grade, T, N, M, surgery, and chemotherapy—is constructed. The predictor provides good performance in discrimination and calibration, with area under the curve ≥0.8 in the receiver operating characteristic curves of both internal and external validations. The predictor especially had very good clinical utility in terms of net benefit to patients at the 3- and 5-year points in both North America and China. A convenient web calculator based on the prediction model is available at https://drwenle029.shinyapps.io/CHSSapp, which is free and open to all clinicians.
Collapse
Affiliation(s)
- Wenle Li
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, China
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Gui Wang
- Department of Orthopaedics, Hainan Western Central Hospital, Danzhou, China
| | - Rilige Wu
- Faculty of Science Beijing University of Posts and Telecommunications, Beijing, China
| | - Shengtao Dong
- Department of Spine Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haosheng Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China
| | - Chan Xu
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Bing Wang
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Wanying Li
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Zhaohui Hu
- Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China
| | - Qi Chen
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chengliang Yin, ; Qi Chen,
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- *Correspondence: Chengliang Yin, ; Qi Chen,
| |
Collapse
|
13
|
Identification of NAPRT Inhibitors with Anti-Cancer Properties by In Silico Drug Discovery. Pharmaceuticals (Basel) 2022; 15:ph15070848. [PMID: 35890147 PMCID: PMC9318686 DOI: 10.3390/ph15070848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Depriving cancer cells of sufficient NAD levels, mainly through interfering with their NAD-producing capacity, has been conceived as a promising anti-cancer strategy. Numerous inhibitors of the NAD-producing enzyme, nicotinamide phosphoribosyltransferase (NAMPT), have been developed over the past two decades. However, their limited anti-cancer activity in clinical trials raised the possibility that cancer cells may also exploit alternative NAD-producing enzymes. Recent studies show the relevance of nicotinic acid phosphoribosyltransferase (NAPRT), the rate-limiting enzyme of the Preiss–Handler NAD-production pathway for a large group of human cancers. We demonstrated that the NAPRT inhibitor 2-hydroxynicotinic acid (2-HNA) cooperates with the NAMPT inhibitor FK866 in killing NAPRT-proficient cancer cells that were otherwise insensitive to FK866 alone. Despite this emerging relevance of NAPRT as a potential target in cancer therapy, very few NAPRT inhibitors exist. Starting from a high-throughput virtual screening approach, we were able to identify and annotate two additional chemical scaffolds that function as NAPRT inhibitors. These compounds show comparable anti-cancer activity to 2-HNA and improved predicted aqueous solubility, in addition to demonstrating favorable drug-like profiles.
Collapse
|
14
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
15
|
NAPRT Expression Regulation Mechanisms: Novel Functions Predicted by a Bioinformatics Approach. Genes (Basel) 2021; 12:genes12122022. [PMID: 34946971 PMCID: PMC8700865 DOI: 10.3390/genes12122022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The nicotinate phosphoribosyltransferase (NAPRT) gene has gained relevance in the research of cancer therapeutic strategies due to its main role as a NAD biosynthetic enzyme. NAD metabolism is an attractive target for the development of anti-cancer therapies, given the high energy requirements of proliferating cancer cells and NAD-dependent signaling. A few studies have shown that NAPRT expression varies in different cancer types, making it imperative to assess NAPRT expression and functionality status prior to the application of therapeutic strategies targeting NAD. In addition, the recent finding of NAPRT extracellular form (eNAPRT) suggested the involvement of NAPRT in inflammation and signaling. However, the mechanisms regulating NAPRT gene expression have never been thoroughly addressed. In this study, we searched for NAPRT gene expression regulatory mechanisms in transcription factors (TFs), RNA binding proteins (RBPs) and microRNA (miRNAs) databases. We identified several potential regulators of NAPRT transcription activation, downregulation and alternative splicing and performed GO and expression analyses. The results of the functional analysis of TFs, RBPs and miRNAs suggest new, unexpected functions for the NAPRT gene in cell differentiation, development and neuronal biology.
Collapse
|
16
|
Hameed M. Malignant Cartilage-Forming Tumors. Surg Pathol Clin 2021; 14:605-617. [PMID: 34742483 DOI: 10.1016/j.path.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chondrosarcomas are heterogeneous matrix-producing cartilaginous neoplasms with variable clinical behavior. Subtypes include conventional (75%), dedifferentiated (10%), clear cell (2%), mesenchymal (2%), and periosteal chondrosarcoma (<1%). Tumor location and primary vs secondary also play a role. In conventional chondrosarcoma, histologic grading (I, II, and III) remains the gold standard for predicting recurrence and metastases. Due to the locally aggressive but overall nonmetastatic behavior, grade I chondrosarcomas (primary and secondary) of long and short tubular bones have been reclassified as atypical cartilaginous tumor. In this review, the pathologic features of malignant cartilage tumors are discussed with updates on recent genetic findings.
Collapse
Affiliation(s)
- Meera Hameed
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
17
|
Targeting the NAD Salvage Synthesis Pathway as a Novel Therapeutic Strategy for Osteosarcomas with Low NAPRT Expression. Int J Mol Sci 2021; 22:ijms22126273. [PMID: 34200964 PMCID: PMC8230647 DOI: 10.3390/ijms22126273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
For osteosarcoma (OS), the most common primary malignant bone tumor, overall survival has hardly improved over the last four decades. Especially for metastatic OS, novel therapeutic targets are urgently needed. A hallmark of cancer is aberrant metabolism, which justifies targeting metabolic pathways as a promising therapeutic strategy. One of these metabolic pathways, the NAD+ synthesis pathway, can be considered as a potential target for OS treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the classical salvage pathway for NAD+ synthesis, and NAMPT is overexpressed in OS. In this study, five OS cell lines were treated with the NAMPT inhibitor FK866, which was shown to decrease nuclei count in a 2D in vitro model without inducing caspase-driven apoptosis. The reduction in cell viability by FK866 was confirmed in a 3D model of OS cell lines (n = 3). Interestingly, only OS cells with low nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1) RNA expression were sensitive to NAMPT inhibition. Using a publicly available (Therapeutically Applicable Research to Generate Effective Treatments (TARGET)) and a previously published dataset, it was shown that in OS cell lines and primary tumors, low NAPRT1 RNA expression correlated with NAPRT1 methylation around the transcription start site. These results suggest that targeting NAMPT in osteosarcoma could be considered as a novel therapeutic strategy, where low NAPRT expression can serve as a biomarker for the selection of eligible patients.
Collapse
|
18
|
Abstract
Bone tumors are a rare and heterogeneous group of neoplasms that occur in the bone. The diversity and considerable morphologic overlap of bone tumors with other mesenchymal and nonmesenchymal bone lesions can complicate diagnosis. Accurate histologic diagnosis is crucial for appropriate management and prognostication. Since the publication of the fourth edition of the World Health Organization (WHO) classification of tumors of soft tissue and bone in 2013, significant advances have been made in our understanding of bone tumor molecular biology, classification, prognostication, and treatment. Detection of tumor-specific molecular alterations can facilitate the accurate diagnosis of histologically challenging cases. The fifth edition of the 2020 WHO classification of tumors of soft tissue and bone tumors provides an updated classification scheme and essential diagnostic criteria for bone tumors. Herein, we summarize these updates, focusing on major changes in each category of bone tumor, the newly described tumor entities and subtypes of existing tumor types, and newly described molecular and genetic data.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jae Y Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College of Cornell University, Houston, TX
| |
Collapse
|
19
|
Haas RL, Floot BGJ, Scholten AN, van der Graaf WTA, van Houdt W, Schrage Y, van de Ven M, Bovée JVMG, van Coevorden F, Vens C. Cellular Radiosensitivity of Soft Tissue Sarcoma. Radiat Res 2021; 196:23-30. [PMID: 33914890 DOI: 10.1667/rade-20-00226.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/19/2021] [Indexed: 11/03/2022]
Abstract
Currently, all soft tissue sarcomas (STS) are irradiated by the same regimen, disregarding possible subtype-specific radiosensitivities. To gain further insight, cellular radiosensitivity was investigated in a panel of sarcoma cell lines. Fourteen sarcoma cell lines, derived from synovial sarcoma, leiomyosarcoma, fibrosarcoma and liposarcoma origin, were submitted to clonogenic survival assays. Cells were irradiated with single doses from 1-8 Gy and surviving fraction (SF) was calculated from the resulting response data. Alpha/beta (α/β) ratios were inferred from radiation-response curves using the linear-quadratic (LQ)-model. Cellular radiosensitivities varied largely in this panel, indicating a considerable degree of heterogeneity. Surviving fraction after 2 Gy (SF2) ranged from 0.27 to 0.76 with evidence of a particular radiosensitive phenotype in only few cell lines. D37% on the mean data was 3.4 Gy and the median SF2 was 0.52. The median α/β was 4.9 Gy and in six cell lines the α/β was below 4 Gy. A fairly homogeneous radiation response was observed in myxoid liposarcoma cell lines with SF2 between 0.64 and 0.67. Further comparing sarcomas of different origin, synovial sarcomas, as a group, showed the lowest SF2 values (mean 0.35) and was significantly more radiosensitive than myxoid liposarcomas and leiomyosarcomas (P = 0.0084 and 0.024, respectively). This study demonstrates a broad spectrum of radiosensitivities across STS cell lines and reveals subtype-specific radiation responses. The particular cellular radiosensitivity of synovial sarcoma cells supports consideration of the different sarcoma entities in clinical studies that aim to optimize sarcoma radiotherapy.
Collapse
Affiliation(s)
- R L Haas
- Department of Radiotherapy, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - B G J Floot
- Department of Surgical Oncology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - A N Scholten
- Department of Radiotherapy, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - W T A van der Graaf
- Division of Cell Biology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - W van Houdt
- Department of Medical Oncology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - Y Schrage
- Department of Medical Oncology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - M van de Ven
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - J V M G Bovée
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - F van Coevorden
- Department of Medical Oncology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| | - C Vens
- Department of Radiotherapy, The Netherlands Cancer Insititute, Amsterdam, The Netherlands.,Department of Surgical Oncology, The Netherlands Cancer Insititute, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Rather GM, Pramono AA, Szekely Z, Bertino JR, Tedeschi PM. In cancer, all roads lead to NADPH. Pharmacol Ther 2021; 226:107864. [PMID: 33894275 DOI: 10.1016/j.pharmthera.2021.107864] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells require increased levels of NADPH for increased nucleotide synthesis and for protection from ROS. Recent studies show that increased NADPH is generated in several ways. Activated AKT phosphorylates NAD kinase (NADK), increasing its activity. NADP formed, is rapidly converted to NADPH by glucose 6-phosphate dehydrogenase and malic enzymes, overexpressed in tumor cells with mutant p53. Calmodulin, overexpressed in some cancers, also increases NADK activity. Also, in IDH1/2 mutant cancer, NADPH serves as the cofactor to generate D-2 hydroxyglutarate, an oncometabolite. The requirement of cancer cells for elevated levels of NADPH provides an opportunity to target its synthesis for cancer treatment.
Collapse
Affiliation(s)
- Gulam Mohmad Rather
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Alvinsyah Adhityo Pramono
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Zoltan Szekely
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Joseph R Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Department of Medicine and Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| | - Philip Michael Tedeschi
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
21
|
Zając A, Król SK, Rutkowski P, Czarnecka AM. Biological Heterogeneity of Chondrosarcoma: From (Epi) Genetics through Stemness and Deregulated Signaling to Immunophenotype. Cancers (Basel) 2021; 13:1317. [PMID: 33804155 PMCID: PMC8001927 DOI: 10.3390/cancers13061317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.
Collapse
Affiliation(s)
- Agnieszka Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Sylwia K. Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| |
Collapse
|
22
|
Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021; 6:2. [PMID: 33384409 PMCID: PMC7775471 DOI: 10.1038/s41392-020-00354-w] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
NAD+ was discovered during yeast fermentation, and since its discovery, its important roles in redox metabolism, aging, and longevity, the immune system and DNA repair have been highlighted. A deregulation of the NAD+ levels has been associated with metabolic diseases and aging-related diseases, including neurodegeneration, defective immune responses, and cancer. NAD+ acts as a cofactor through its interplay with NADH, playing an essential role in many enzymatic reactions of energy metabolism, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, and the TCA cycle. NAD+ also plays a role in deacetylation by sirtuins and ADP ribosylation during DNA damage/repair by PARP proteins. Finally, different NAD hydrolase proteins also consume NAD+ while converting it into ADP-ribose or its cyclic counterpart. Some of these proteins, such as CD38, seem to be extensively involved in the immune response. Since NAD cannot be taken directly from food, NAD metabolism is essential, and NAMPT is the key enzyme recovering NAD from nicotinamide and generating most of the NAD cellular pools. Because of the complex network of pathways in which NAD+ is essential, the important role of NAD+ and its key generating enzyme, NAMPT, in cancer is understandable. In the present work, we review the role of NAD+ and NAMPT in the ways that they may influence cancer metabolism, the immune system, stemness, aging, and cancer. Finally, we review some ongoing research on therapeutic approaches.
Collapse
Affiliation(s)
- Lola E Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, Sevilla, Spain.
| |
Collapse
|
23
|
Venneker S, Kruisselbrink AB, Baranski Z, Palubeckaite I, Briaire-de Bruijn IH, Oosting J, French PJ, Danen EHJ, Bovée JVMG. Beyond the Influence of IDH Mutations: Exploring Epigenetic Vulnerabilities in Chondrosarcoma. Cancers (Basel) 2020; 12:E3589. [PMID: 33266275 PMCID: PMC7760027 DOI: 10.3390/cancers12123589] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Mutations in the isocitrate dehydrogenase (IDH1 or IDH2) genes are common in enchondromas and chondrosarcomas, and lead to elevated levels of the oncometabolite D-2-hydroxyglutarate causing widespread changes in the epigenetic landscape of these tumors. With the use of a DNA methylation array, we explored whether the methylome is altered upon progression from IDH mutant enchondroma towards high-grade chondrosarcoma. High-grade tumors show an overall increase in the number of highly methylated genes, indicating that remodeling of the methylome is associated with tumor progression. Therefore, an epigenetics compound screen was performed in five chondrosarcoma cell lines to therapeutically explore these underlying epigenetic vulnerabilities. Chondrosarcomas demonstrated high sensitivity to histone deacetylase (HDAC) inhibition in both 2D and 3D in vitro models, independent of the IDH mutation status or the chondrosarcoma subtype. siRNA knockdown and RNA expression data showed that chondrosarcomas rely on the expression of multiple HDACs, especially class I subtypes. Furthermore, class I HDAC inhibition sensitized chondrosarcoma to glutaminolysis and Bcl-2 family member inhibitors, suggesting that HDACs define the metabolic state and apoptotic threshold in chondrosarcoma. Taken together, HDAC inhibition may represent a promising targeted therapeutic strategy for chondrosarcoma patients, either as monotherapy or as part of combination treatment regimens.
Collapse
Affiliation(s)
- Sanne Venneker
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| | - Alwine B. Kruisselbrink
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| | - Zuzanna Baranski
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (Z.B.); (E.H.J.D.)
| | - Ieva Palubeckaite
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| | - Inge H. Briaire-de Bruijn
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| | - Pim J. French
- Department of Neurology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Erik H. J. Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (Z.B.); (E.H.J.D.)
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| |
Collapse
|
24
|
Roche ME, Lin Z, Whitaker-Menezes D, Zhan T, Szuhai K, Bovee JVMG, Abraham JA, Jiang W, Martinez-Outschoorn U, Basu-Mallick A. Translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20) facilitates cancer aggressiveness and therapeutic resistance in chondrosarcoma. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165962. [PMID: 32920118 DOI: 10.1016/j.bbadis.2020.165962] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
Chondrosarcoma is the second most common primary bone malignancy, representing one fourth of all primary bone sarcomas. It is typically resistant to radiation and chemotherapy treatments. However, the molecular mechanisms that contribute to cancer aggressiveness in chondrosarcomas remain poorly characterized. Here, we studied the role of mitochondrial transporters in chondrosarcoma aggressiveness including chemotherapy resistance. Histological grade along with stage are the most important prognostic biomarkers in chondrosarcoma. We found that high-grade human chondrosarcoma tumors have higher expression of the mitochondrial protein, translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20), compared to low-grade tumors. TOMM20 overexpression in human chondrosarcoma cells induces chondrosarcoma tumor growth in vivo. TOMM20 drives proliferation, resistance to apoptosis and chemotherapy resistance. Also, TOMM20 induces markers of epithelial to mesenchymal transition (EMT) and metabolic reprogramming in these mesenchymal tumors. In conclusion, TOMM20 drives chondrosarcoma aggressiveness and resistance to chemotherapy.
Collapse
Affiliation(s)
- Megan E Roche
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Zhao Lin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Tingting Zhan
- Department of Pharmacology, Division of Biostatistics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Karoly Szuhai
- Department of Pathology, Leiden University, the Netherlands
| | | | - John A Abraham
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Wei Jiang
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, USA
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA.
| | - Atrayee Basu-Mallick
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
25
|
Pramono AA, Rather GM, Herman H, Lestari K, Bertino JR. NAD- and NADPH-Contributing Enzymes as Therapeutic Targets in Cancer: An Overview. Biomolecules 2020; 10:biom10030358. [PMID: 32111066 PMCID: PMC7175141 DOI: 10.3390/biom10030358] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Actively proliferating cancer cells require sufficient amount of NADH and NADPH for biogenesis and to protect cells from the detrimental effect of reactive oxygen species. As both normal and cancer cells share the same NAD biosynthetic and metabolic pathways, selectively lowering levels of NAD(H) and NADPH would be a promising strategy for cancer treatment. Targeting nicotinamide phosphoribosyltransferase (NAMPT), a rate limiting enzyme of the NAD salvage pathway, affects the NAD and NADPH pool. Similarly, lowering NADPH by mutant isocitrate dehydrogenase 1/2 (IDH1/2) which produces D-2-hydroxyglutarate (D-2HG), an oncometabolite that downregulates nicotinate phosphoribosyltransferase (NAPRT) via hypermethylation on the promoter region, results in epigenetic regulation. NADPH is used to generate D-2HG, and is also needed to protect dihydrofolate reductase, the target for methotrexate, from degradation. NAD and NADPH pools in various cancer types are regulated by several metabolic enzymes, including methylenetetrahydrofolate dehydrogenase, serine hydroxymethyltransferase, and aldehyde dehydrogenase. Thus, targeting NAD and NADPH synthesis under special circumstances is a novel approach to treat some cancers. This article provides the rationale for targeting the key enzymes that maintain the NAD/NADPH pool, and reviews preclinical studies of targeting these enzymes in cancers.
Collapse
Affiliation(s)
- Alvinsyah Adhityo Pramono
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Gulam M. Rather
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
| | - Herry Herman
- Division of Oncology, Department of Orthopaedic Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia;
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Joseph R. Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
- Department of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence: ; Tel.: +1-(732)-235-8510
| |
Collapse
|
26
|
Abstract
AbstractChondrosarcomas are rare cancers of bone that arise from the malignant transformation of cells of chondrocytic lineage. They are known to be resistant to systemic cytotoxic chemotherapy and radiotherapy. The mainstay of management of localised disease is en bloc surgical resection with curative intent. Metastatic chondrosarcoma has a dismal prognosis, and to date, there are no proven effective systemic therapies in the advanced setting. Genomic studies have demonstrated that 50 to 80% of chondrosarcomas harbour a mutation in either the IDH1 or IDH2 gene. IDH inhibitors are currently under investigation in clinical trials, after showing promising results in phase 1 studies in IDH mutated cancers. In chondrosarcoma, IDH mutations represent an attractive target, however, early results with IDH inhibitors in IDH mutated chondrosarcoma are modest and the final results of ongoing trials are eagerly awaited.
Collapse
|
27
|
He L, Shi X, Chen R, Wu Z, Yang Z, Li Z. Association of Mental Health-Related Proteins DAXX, DRD3, and DISC1 With the Progression and Prognosis of Chondrosarcoma. Front Mol Biosci 2019; 6:134. [PMID: 31850367 PMCID: PMC6888811 DOI: 10.3389/fmolb.2019.00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Chondrosarcoma is the second most common malignant bone tumor. Current therapies remain ineffective, resulting in poor prognoses. Biomarkers for chondrosarcoma and predictors of its prognosis have not been established. Mental health-related proteins have been associated with the pathogenesis, progression, and prognosis of many cancers, but their association with chondrosarcoma has not been reported. In this study, the expression and clinicopathological significance of the mental health-related proteins DAXX, DRD3, and DISC1 in chondrosarcoma tissue samples were examined, over an 84-months follow-up period. In immunohistochemical analysis, the rates of positive DAXX, DRD3, and DISC1 expression were significantly higher in chondrosarcoma than in osteochondroma tissue (P < 0.01). The percentages of positive DAXX, DRD3, and DISC1 expression were significantly lower in tissues with good differentiation (P < 0.01), AJCC stage I/ II (P < 0.01), Enneking stage I (P < 0.01), and non-metastasis (P < 0.05), respectively. In Kaplan-Meier survival analysis, significantly shorter mean survival times were associated with moderate and poor differentiation (P = 0.000), AJCC stage III/IV (P = 0.000), Enneking stage II/III (P = 0.000), metastasis (P = 0.019), invasion (P = 0.013), and positive DAXX (P = 0.012), and/or DRD3 (P = 0.018) expression. In Cox regression analysis, moderate and poor differentiation (P = 0.006), AJCC stage III/IV (P = 0.013), Enneking stage II/III (P = 0.016), metastasis (P = 0.033), invasion (P = 0.011), and positive DAXX (P = 0.033), and/or DRD3 (P = 0.025) staining correlated negatively with the postoperative survival rate and positively with mortality. In competing-risks regression analysis, differentiation (P = 0.005), metastasis (P = 0.014), invasion (P = 0.028), AJCC stage (P = 0.003), Enneking stage (P = 0.036), and DAXX (P = 0.039), and DRD3(P = 0.019) expression were independent predictors of death from chondrosarcoma. The areas under receiver operating characteristic curves for DAXX, DRD3, and DISC1 expression were 0.673 (95% CI, 0.557-0.788; P = 0.010), 0.670 (95% CI, 0.556-0.784; P = 0.011), and 0.688 (95% CI, 0.573-0.802; P = 0.005), respectively. These results suggest that DAXX, DRD3, and DISC1 could serve as biomarkers of chondrosarcoma progression and predictors of its prognosis.
Collapse
Affiliation(s)
- Lile He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| | - Xiangyu Shi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| | - Zhengchun Wu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhulin Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| |
Collapse
|
28
|
Inhibition of PARP Sensitizes Chondrosarcoma Cell Lines to Chemo- and Radiotherapy Irrespective of the IDH1 or IDH2 Mutation Status. Cancers (Basel) 2019; 11:cancers11121918. [PMID: 31810230 PMCID: PMC6966531 DOI: 10.3390/cancers11121918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Chondrosarcomas are chemo- and radiotherapy resistant and frequently harbor mutations in isocitrate dehydrogenase (IDH1 or IDH2), causing increased levels of D-2-hydroxyglutarate (D-2-HG). DNA repair defects and synthetic lethality with poly(ADP-ribose) polymerase (PARP) inhibition occur in IDH mutant glioma and leukemia models. Here we evaluated DNA repair and PARP inhibition, alone or combined with chemo- or radiotherapy, in chondrosarcoma cell lines with or without endogenous IDH mutations. Chondrosarcoma cell lines treated with the PARP inhibitor talazoparib were examined for dose–response relationships, as well as underlying cell death mechanisms and DNA repair functionality. Talazoparib was combined with chemo- or radiotherapy to evaluate potential synergy. Cell lines treated long term with an inhibitor normalizing D-2-HG levels were investigated for synthetic lethality with talazoparib. We report that talazoparib sensitivity was variable and irrespective of IDH mutation status. All cell lines expressed Ataxia Telangiectasia Mutated (ATM), but a subset was impaired in poly(ADP-ribosyl)ation (PARylation) capacity, homologous recombination, and O-6-methylguanine-DNA methyltransferase (MGMT) expression. Talazoparib synergized with temozolomide or radiation, independent of IDH1 mutant inhibition. This study suggests that talazoparib combined with temozolomide or radiation are promising therapeutic strategies for chondrosarcoma, irrespective of IDH mutation status. A subset of chondrosarcomas may be deficient in nonclassical DNA repair pathways, suggesting that PARP inhibitor sensitivity is multifactorial in chondrosarcoma.
Collapse
|
29
|
Venneker S, Szuhai K, Hogendoorn PCW, Bovée JVMG. Mutation-driven epigenetic alterations as a defining hallmark of central cartilaginous tumours, giant cell tumour of bone and chondroblastoma. Virchows Arch 2019; 476:135-146. [PMID: 31728625 PMCID: PMC6968983 DOI: 10.1007/s00428-019-02699-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
Abstract
Recently, specific driver mutations were identified in chondroblastoma, giant cell tumour of bone and central cartilaginous tumours (specifically enchondroma and central chondrosarcoma), sharing the ability to induce genome-wide epigenetic alterations. In chondroblastoma and giant cell tumour of bone, the neoplastic mononuclear stromal-like cells frequently harbour specific point mutations in the genes encoding for histone H3.3 (H3F3A and H3F3B). The identification of these driver mutations has led to development of novel diagnostic tools to distinguish between chondroblastoma, giant cell tumour of bone and other giant cell containing tumours. From a biological perspective, these mutations induce several global and local alterations of the histone modification marks. Similar observations are made for central cartilaginous tumours, which frequently harbour specific point mutations in the metabolic enzymes IDH1 or IDH2. Besides an altered methylation pattern on histones, IDH mutations also induce a global DNA hypermethylation phenotype. In all of these tumour types, the mutation-driven epigenetic alterations lead to a highly altered transcriptome, resulting for instance in alterations in differentiation. These genomic alterations have diagnostic impact. Further research is needed to identify the genes and signalling pathways that are affected by the epigenetic alterations, which will hopefully lead to a better understanding of the biological mechanism underlying tumourigenesis.
Collapse
Affiliation(s)
- Sanne Venneker
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
30
|
MacDonald IJ, Lin CY, Kuo SJ, Su CM, Tang CH. An update on current and future treatment options for chondrosarcoma. Expert Rev Anticancer Ther 2019; 19:773-786. [PMID: 31462102 DOI: 10.1080/14737140.2019.1659731] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Human chondrosarcomas (CS; a malignant cartilage-forming bone tumor) respond poorly to chemotherapy and radiation treatment, resulting in high morbidity and mortality rates. Expanded treatment options are urgently needed. Areas covered: This article updates our 2014 review, in which we evaluated the CS treatments available at that time and potential treatment options under investigation. Since then, advances in research findings, particularly from Chinese herbal medicines, may be bringing us closer to more effective therapies for CS. In particular, promising findings have been reported from research targeting platelet-derived growth factor receptor. Expert opinion: Few treatment options exist for CS; chemotherapy is not even an option for unresectable disease, in which 5-year survival rates are just 2%. New information about the multitude of genes and signaling pathways that encourage CS growth, invasion and metastasis are clarifying how certain signaling pathways and plant-derived active compounds, especially molecularly-targeted therapies that inhibit the PDGF receptor, interfering with these biological processes. This review summarizes discoveries from the last 5 years and discusses how these findings are fueling ongoing work into effectively dealing with the disease process and improving the treatment of CS.
Collapse
Affiliation(s)
- Iona J MacDonald
- Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College , New Taipei City , Taiwan
| | - Shu-Jui Kuo
- Graduate Institute of Clinical Medical Science, China Medical University , Taichung , Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital , Taichung , Taiwan
| | - Chen-Ming Su
- Department of Sports Medicine, College of Health Care, China Medical University , Taichung , Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan.,Department of Pharmacology, School of Medicine, China Medical University , Taichung , Taiwan.,Chinese Medicine Research Center, China Medical University , Taichung , Taiwan.,Department of Biotechnology, College of Health Science, Asia University , Taichung , Taiwan
| |
Collapse
|
31
|
de Jong Y, Ingola M, Briaire-de Bruijn IH, Kruisselbrink AB, Venneker S, Palubeckaite I, Heijs BPAM, Cleton-Jansen AM, Haas RLM, Bovée JVMG. Radiotherapy resistance in chondrosarcoma cells; a possible correlation with alterations in cell cycle related genes. Clin Sarcoma Res 2019; 9:9. [PMID: 31160965 PMCID: PMC6540537 DOI: 10.1186/s13569-019-0119-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background Conventional chondrosarcomas are malignant cartilage tumors considered radioresistant. Nevertheless, retrospective series show a small but significant survival benefit for patients with locally advanced disease treated with radiotherapy. And, in daily practice when considered inoperable their irradiation is an accepted indication for proton beam radiotherapy. Therefore, we investigated the sensitivity of chondrosarcoma cell lines and -tissue samples towards radiotherapy and screened for biomarkers to identify predictors of radiosensitivity. Methods Proliferation and clonogenic assays were performed in chondrosarcoma cell lines after γ-radiation in combination with mutant IDH1 inhibitor AGI-5198. In addition, glutathione levels were measured using mass spectrometry. Chondrosarcoma tumor explants were irradiated after which γ-H2AX foci were counted. Mutation analysis was performed using the Ion AmpliSeq™ Cancer Hotspot Panel and immunohistochemical staining’s were performed for P-S6, LC-3B, P53, Bcl-2, Bcl-xl and Survivin. Results were correlated with the number of γ-H2AX foci. Results Chondrosarcoma cell lines were variably γ-radiation resistant. No difference in radiosensitivity, nor glutathione levels was observed after treatment with AGI-5198. Irradiated chondrosarcoma patient tissue presented a variable increase in γ-H2AX foci compared to non-radiated tissue. Samples were divided into two groups, high and low radioresistant, based on the amount of γ-H2AX foci. All four highly resistant tumors exhibited mutations in the pRb pathway, while none of the less radioresistant tumors showed mutations in these genes. Conclusions Chondrosarcoma cell lines as well as primary tumors are variably radioresistant, particularly in case of a defective Rb pathway. Whether selection for radiotherapy can be based upon an intact Rb pathway should be further investigated. Electronic supplementary material The online version of this article (10.1186/s13569-019-0119-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yvonne de Jong
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Martha Ingola
- 2Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge H Briaire-de Bruijn
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Alwine B Kruisselbrink
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Sanne Venneker
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ieva Palubeckaite
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bram P A M Heijs
- 2Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne-Marie Cleton-Jansen
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Rick L M Haas
- 3Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands.,4Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Judith V M G Bovée
- 1Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
32
|
Sharif T, Martell E, Dai C, Ghassemi-Rad MS, Kennedy BE, Lee PWK, Gujar S. Regulation of Cancer and Cancer-Related Genes via NAD . Antioxid Redox Signal 2019; 30:906-923. [PMID: 29334761 DOI: 10.1089/ars.2017.7478] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE NAD+ is an essential redox cofactor in cellular metabolism and has emerged as an important regulator of a wide spectrum of disease conditions, most notably, cancers. As such, various strategies targeting NAD+ synthesis in cancers are in clinical trials. Recent Advances: Being a substrate required for the activity of various enzyme families, especially sirtuins and poly(adenosine diphosphate [ADP]-ribose) polymerases, NAD+-mediated signaling plays an important role in gene expression, calcium release, cell cycle progression, DNA repair, and cell proliferation. Many strategies exploring the potential of interfering with NAD+ metabolism to sensitize cancer cells to achieve anticancer benefits are highly promising, and are being pursued. CRITICAL ISSUES With the multifaceted roles of NAD+ in cancer, it is important to understand how cellular processes are reliant on NAD+. This review summarizes how NAD+ metabolism regulates various pathophysiological processes in cancer, and how this knowledge can be exploited to devise effective anticancer therapies in clinical settings. FUTURE DIRECTIONS In line with the redundant pathways that facilitate NAD+ metabolism, further studies should comprehensively understand the roles of the various NAD+-synthesizing as well as NAD+-utilizing biomolecules to understand its true potential in cancer treatment.
Collapse
Affiliation(s)
- Tanveer Sharif
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Emma Martell
- 2 Department of Pathology, Dalhousie University, Halifax, Canada
| | - Cathleen Dai
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | | | - Barry E Kennedy
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Patrick W K Lee
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada.,2 Department of Pathology, Dalhousie University, Halifax, Canada
| | - Shashi Gujar
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada.,2 Department of Pathology, Dalhousie University, Halifax, Canada.,3 Department of Biology, Dalhousie University, Halifax, Canada.,4 Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, Canada
| |
Collapse
|
33
|
Addie RD, de Jong Y, Alberti G, Kruisselbrink AB, Que I, Baelde H, Bovée JVMG. Exploration of the chondrosarcoma metabolome; the mTOR pathway as an important pro-survival pathway. J Bone Oncol 2019; 15:100222. [PMID: 30766792 PMCID: PMC6360255 DOI: 10.1016/j.jbo.2019.100222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Chondrosarcomas are malignant cartilage-producing tumors showing mutations and changes in gene expression in metabolism related genes. In this study, we aimed to explore the metabolome and identify targetable metabolic vulnerabilities in chondrosarcoma. Methods A custom-designed metabolic compound screen containing 39 compounds targeting different metabolic pathways was performed in chondrosarcoma cell lines JJ012, SW1353 and CH2879. Based on the anti-proliferative activity, six compounds were selected for validation using real-time metabolic profiling. Two selected compounds (rapamycin and sapanisertib) were further explored for their effect on viability, apoptosis and metabolic dependency, in normoxia and hypoxia. In vivo efficacy of sapanisertib was tested in a chondrosarcoma orthotopic xenograft mouse model. Results Inhibitors of glutamine, glutathione, NAD synthesis and mTOR were effective in chondrosarcoma cells. Of the six compounds that were validated on the metabolic level, mTOR inhibitors rapamycin and sapanisertib showed the most consistent decrease in oxidative and glycolytic parameters. Chondrosarcoma cells were sensitive to mTORC1 inhibition using rapamycin. Inhibition of mTORC1 and mTORC2 using sapanisertib resulted in a dose-dependent decrease in viability in all chondrosarcoma cell lines. In addition, induction of apoptosis was observed in CH2879 after 24 h. Treatment of chondrosarcoma xenografts with sapanisertib slowed down tumor growth compared to control mice. Conclusions mTOR inhibition leads to a reduction of oxidative and glycolytic metabolism and decreased proliferation in chondrosarcoma cell lines. Although further research is needed, these findings suggest that mTOR inhibition might be a potential therapeutic option for patients with chondrosarcoma.
Collapse
Key Words
- ACT, Atypical cartilaginous tumor
- BLI, Bioluminescence imaging
- BSA, Bovine serum albumin
- BSO, Buthionine sulfoximine
- Chondrosarcoma
- D2HG, d-2-Hydroxyglutarate
- DMSO, Dimethyl sulfoxide
- ECAR, Extracellular acidification rate
- FBS, Fetal bovine serum
- FCCP, Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone
- FLI, Fluorescence imaging
- HIF, Hypoxia-inducible factor
- IDH, Isocitrate dehydrogenase
- Metabolism
- OCR, Oxygen consumption rate
- ROS, Reactive oxygen species
- Rapamycin
- mCT, Micro computed tomography
- mTOR, Mammalian target of rapamycin
- mTOR, Sapanisertib
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Ruben D Addie
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Yvonne de Jong
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gaia Alberti
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Ivo Que
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
34
|
Neubauer K, Bednarz-Misa I, Walecka-Zacharska E, Wierzbicki J, Agrawal A, Gamian A, Krzystek-Korpacka M. Oversecretion and Overexpression of Nicotinamide Phosphoribosyltransferase/Pre-B Colony-Enhancing Factor/Visfatin in Inflammatory Bowel Disease Reflects the Disease Activity, Severity of Inflammatory Response and Hypoxia. Int J Mol Sci 2019; 20:E166. [PMID: 30621173 PMCID: PMC6337260 DOI: 10.3390/ijms20010166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase's (Nampt) association with inflammatory bowel disease (IBD) is unclear. The study was aimed at unraveling Nampt's clinical and diagnostic relevance. The serum concentration (Luminex-xMAP® technology) was measured in 113 patients with Crohn's disease (CD), 127 with ulcerative colitis (UC) and 60 non-IBD controls: 40 healthy individuals and 20 with irritable bowel syndrome (IBS). The leukocyte (44 CD/37 UC/19 IBS) and bowel expression (186 samples) was also evaluated (RT-qPCR). All were referred to IBD phenotype, activity, treatment, and inflammatory/nutritional/angiogenic/hypoxia indices. Serum-Nampt and leukocyte-Nampt were positively correlated and were more elevated in active-IBD than in IBS, with leukocyte-Nampt being a fair differential marker. Serum-Nampt in UC positively correlated with its clinical and endoscopic activity as well as with pro-inflammatory cytokines. Serum-Nampt ≤1.54 ng/mL was a good indicator of mucosal healing. The expression of Nampt was up-regulated both in inflamed and quiescent colon and reflected, similarly to leukocyte-Nampt, the clinical activity of IBD. Bowel-Nampt was independently associated with IL1B and hypoxia-inducible factor 1α (HIF1A) expression in inflamed bowel but with FGF2 expression in quiescent bowel. In summary, Nampt's elevation in IBD at local and systemic levels, and protein and mRNA levels, reflects IBD activity and is associated with inflammation, hypoxia (active) and tissue repair (inactive disease).
Collapse
Affiliation(s)
- Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Ewa Walecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
| | - Jaroslaw Wierzbicki
- Department of Minimally Invasive Surgery and Proctology, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Anil Agrawal
- The 2nd Department of General and Oncological Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Andrzej Gamian
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | | |
Collapse
|
35
|
Nazeri E, Gouran Savadkoohi M, Majidzadeh-A K, Esmaeili R. Chondrosarcoma: An overview of clinical behavior, molecular mechanisms mediated drug resistance and potential therapeutic targets. Crit Rev Oncol Hematol 2018; 131:102-109. [PMID: 30293700 DOI: 10.1016/j.critrevonc.2018.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/28/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Sarcomas are known as a heterogeneous class of cancers arisen in the connective tissues and demonstrated various histological subtypes including both soft tissue and bone origin. Chondrosarcoma is one of the main types of bone sarcoma that shows a considerable deficiency in response to chemotherapy and radiotherapy. While conventional treatment based on surgery, chemo-and radiotherapy are used in this tumor, high rate of death especially among children and adolescents are reported. Due to high resistance to current conventional therapies in chondrosarcoma, there is an urgent requirement to recognize factors causing resistance and discover new strategies for optimal treatment. In the past decade, dysregulation of genes associated with tumor development and therapy resistance has been studied to find potential therapeutic targets to overcome resistance. In this review, clinical aspects of chondrosarcoma are summarized. Moreover, it gives a summary of gene dysregulation, mutation, histone modifications and non-coding RNAs associated with tumor development and therapeutic response modulation. Finally, the probable role of tumor microenvironment in chondrosarcoma drug resistance and targeted therapies as a promising molecular therapeutic approach are summarized.
Collapse
Affiliation(s)
- Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | | | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
36
|
Abstract
Aggressive neurosurgical resection to achieve sustained local control is essential for prolonging survival in patients with lower-grade glioma. However, progression in many of these patients is characterized by local regrowth. Most lower-grade gliomas harbor isocitrate dehydrogenase 1 (IDH1) or IDH2 mutations, which sensitize to metabolism-altering agents. To improve local control of IDH mutant gliomas while avoiding systemic toxicity associated with metabolic therapies, we developed a precision intraoperative treatment that couples a rapid multiplexed genotyping tool with a sustained release microparticle (MP) drug delivery system containing an IDH-directed nicotinamide phosphoribosyltransferase (NAMPT) inhibitor (GMX-1778). We validated our genetic diagnostic tool on clinically annotated tumor specimens. GMX-1778 MPs showed mutant IDH genotype-specific toxicity in vitro and in vivo, inducing regression of orthotopic IDH mutant glioma murine models. Our strategy enables immediate intraoperative genotyping and local application of a genotype-specific treatment in surgical scenarios where local tumor control is paramount and systemic toxicity is therapeutically limiting.
Collapse
|
37
|
Ma T, Zou F, Pusch S, Xu Y, von Deimling A, Zha X. Inhibitors of Mutant Isocitrate Dehydrogenases 1 and 2 (mIDH1/2): An Update and Perspective. J Med Chem 2018; 61:8981-9003. [DOI: 10.1021/acs.jmedchem.8b00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tianfang Ma
- Department of Pharmaceutical Engineering and Department of Biochemical Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Fangxia Zou
- Department of Pharmaceutical Engineering and Department of Biochemical Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Stefan Pusch
- German Consortium
of Translational Cancer Research (DKTK), Clinical Cooperation Unit
Neuropathology, German Cancer Research Center (DKFZ), INF 280, Heidelberg D-69120, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, INF 224, Heidelberg D-69120, Germany
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Andreas von Deimling
- German Consortium
of Translational Cancer Research (DKTK), Clinical Cooperation Unit
Neuropathology, German Cancer Research Center (DKFZ), INF 280, Heidelberg D-69120, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, INF 224, Heidelberg D-69120, Germany
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering and Department of Biochemical Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| |
Collapse
|